xref: /openbmc/linux/arch/powerpc/kernel/setup_64.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/export.h>
14 #include <linux/string.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/reboot.h>
19 #include <linux/delay.h>
20 #include <linux/initrd.h>
21 #include <linux/seq_file.h>
22 #include <linux/ioport.h>
23 #include <linux/console.h>
24 #include <linux/utsname.h>
25 #include <linux/tty.h>
26 #include <linux/root_dev.h>
27 #include <linux/notifier.h>
28 #include <linux/cpu.h>
29 #include <linux/unistd.h>
30 #include <linux/serial.h>
31 #include <linux/serial_8250.h>
32 #include <linux/bootmem.h>
33 #include <linux/pci.h>
34 #include <linux/lockdep.h>
35 #include <linux/memblock.h>
36 #include <linux/memory.h>
37 #include <linux/nmi.h>
38 
39 #include <asm/debugfs.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/prom.h>
43 #include <asm/processor.h>
44 #include <asm/pgtable.h>
45 #include <asm/smp.h>
46 #include <asm/elf.h>
47 #include <asm/machdep.h>
48 #include <asm/paca.h>
49 #include <asm/time.h>
50 #include <asm/cputable.h>
51 #include <asm/dt_cpu_ftrs.h>
52 #include <asm/sections.h>
53 #include <asm/btext.h>
54 #include <asm/nvram.h>
55 #include <asm/setup.h>
56 #include <asm/rtas.h>
57 #include <asm/iommu.h>
58 #include <asm/serial.h>
59 #include <asm/cache.h>
60 #include <asm/page.h>
61 #include <asm/mmu.h>
62 #include <asm/firmware.h>
63 #include <asm/xmon.h>
64 #include <asm/udbg.h>
65 #include <asm/kexec.h>
66 #include <asm/code-patching.h>
67 #include <asm/livepatch.h>
68 #include <asm/opal.h>
69 #include <asm/cputhreads.h>
70 #include <asm/hw_irq.h>
71 
72 #include "setup.h"
73 
74 #ifdef DEBUG
75 #define DBG(fmt...) udbg_printf(fmt)
76 #else
77 #define DBG(fmt...)
78 #endif
79 
80 int spinning_secondaries;
81 u64 ppc64_pft_size;
82 
83 struct ppc64_caches ppc64_caches = {
84 	.l1d = {
85 		.block_size = 0x40,
86 		.log_block_size = 6,
87 	},
88 	.l1i = {
89 		.block_size = 0x40,
90 		.log_block_size = 6
91 	},
92 };
93 EXPORT_SYMBOL_GPL(ppc64_caches);
94 
95 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
96 void __init setup_tlb_core_data(void)
97 {
98 	int cpu;
99 
100 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
101 
102 	for_each_possible_cpu(cpu) {
103 		int first = cpu_first_thread_sibling(cpu);
104 
105 		/*
106 		 * If we boot via kdump on a non-primary thread,
107 		 * make sure we point at the thread that actually
108 		 * set up this TLB.
109 		 */
110 		if (cpu_first_thread_sibling(boot_cpuid) == first)
111 			first = boot_cpuid;
112 
113 		paca[cpu].tcd_ptr = &paca[first].tcd;
114 
115 		/*
116 		 * If we have threads, we need either tlbsrx.
117 		 * or e6500 tablewalk mode, or else TLB handlers
118 		 * will be racy and could produce duplicate entries.
119 		 * Should we panic instead?
120 		 */
121 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
122 			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
123 			  book3e_htw_mode != PPC_HTW_E6500,
124 			  "%s: unsupported MMU configuration\n", __func__);
125 	}
126 }
127 #endif
128 
129 #ifdef CONFIG_SMP
130 
131 static char *smt_enabled_cmdline;
132 
133 /* Look for ibm,smt-enabled OF option */
134 void __init check_smt_enabled(void)
135 {
136 	struct device_node *dn;
137 	const char *smt_option;
138 
139 	/* Default to enabling all threads */
140 	smt_enabled_at_boot = threads_per_core;
141 
142 	/* Allow the command line to overrule the OF option */
143 	if (smt_enabled_cmdline) {
144 		if (!strcmp(smt_enabled_cmdline, "on"))
145 			smt_enabled_at_boot = threads_per_core;
146 		else if (!strcmp(smt_enabled_cmdline, "off"))
147 			smt_enabled_at_boot = 0;
148 		else {
149 			int smt;
150 			int rc;
151 
152 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
153 			if (!rc)
154 				smt_enabled_at_boot =
155 					min(threads_per_core, smt);
156 		}
157 	} else {
158 		dn = of_find_node_by_path("/options");
159 		if (dn) {
160 			smt_option = of_get_property(dn, "ibm,smt-enabled",
161 						     NULL);
162 
163 			if (smt_option) {
164 				if (!strcmp(smt_option, "on"))
165 					smt_enabled_at_boot = threads_per_core;
166 				else if (!strcmp(smt_option, "off"))
167 					smt_enabled_at_boot = 0;
168 			}
169 
170 			of_node_put(dn);
171 		}
172 	}
173 }
174 
175 /* Look for smt-enabled= cmdline option */
176 static int __init early_smt_enabled(char *p)
177 {
178 	smt_enabled_cmdline = p;
179 	return 0;
180 }
181 early_param("smt-enabled", early_smt_enabled);
182 
183 #endif /* CONFIG_SMP */
184 
185 /** Fix up paca fields required for the boot cpu */
186 static void __init fixup_boot_paca(void)
187 {
188 	/* The boot cpu is started */
189 	get_paca()->cpu_start = 1;
190 	/* Allow percpu accesses to work until we setup percpu data */
191 	get_paca()->data_offset = 0;
192 	/* Mark interrupts disabled in PACA */
193 	irq_soft_mask_set(IRQS_DISABLED);
194 }
195 
196 static void __init configure_exceptions(void)
197 {
198 	/*
199 	 * Setup the trampolines from the lowmem exception vectors
200 	 * to the kdump kernel when not using a relocatable kernel.
201 	 */
202 	setup_kdump_trampoline();
203 
204 	/* Under a PAPR hypervisor, we need hypercalls */
205 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
206 		/* Enable AIL if possible */
207 		pseries_enable_reloc_on_exc();
208 
209 		/*
210 		 * Tell the hypervisor that we want our exceptions to
211 		 * be taken in little endian mode.
212 		 *
213 		 * We don't call this for big endian as our calling convention
214 		 * makes us always enter in BE, and the call may fail under
215 		 * some circumstances with kdump.
216 		 */
217 #ifdef __LITTLE_ENDIAN__
218 		pseries_little_endian_exceptions();
219 #endif
220 	} else {
221 		/* Set endian mode using OPAL */
222 		if (firmware_has_feature(FW_FEATURE_OPAL))
223 			opal_configure_cores();
224 
225 		/* AIL on native is done in cpu_ready_for_interrupts() */
226 	}
227 }
228 
229 static void cpu_ready_for_interrupts(void)
230 {
231 	/*
232 	 * Enable AIL if supported, and we are in hypervisor mode. This
233 	 * is called once for every processor.
234 	 *
235 	 * If we are not in hypervisor mode the job is done once for
236 	 * the whole partition in configure_exceptions().
237 	 */
238 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
239 	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
240 		unsigned long lpcr = mfspr(SPRN_LPCR);
241 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
242 	}
243 
244 	/*
245 	 * Fixup HFSCR:TM based on CPU features. The bit is set by our
246 	 * early asm init because at that point we haven't updated our
247 	 * CPU features from firmware and device-tree. Here we have,
248 	 * so let's do it.
249 	 */
250 	if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
251 		mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
252 
253 	/* Set IR and DR in PACA MSR */
254 	get_paca()->kernel_msr = MSR_KERNEL;
255 }
256 
257 /*
258  * Early initialization entry point. This is called by head.S
259  * with MMU translation disabled. We rely on the "feature" of
260  * the CPU that ignores the top 2 bits of the address in real
261  * mode so we can access kernel globals normally provided we
262  * only toy with things in the RMO region. From here, we do
263  * some early parsing of the device-tree to setup out MEMBLOCK
264  * data structures, and allocate & initialize the hash table
265  * and segment tables so we can start running with translation
266  * enabled.
267  *
268  * It is this function which will call the probe() callback of
269  * the various platform types and copy the matching one to the
270  * global ppc_md structure. Your platform can eventually do
271  * some very early initializations from the probe() routine, but
272  * this is not recommended, be very careful as, for example, the
273  * device-tree is not accessible via normal means at this point.
274  */
275 
276 void __init early_setup(unsigned long dt_ptr)
277 {
278 	static __initdata struct paca_struct boot_paca;
279 
280 	/* -------- printk is _NOT_ safe to use here ! ------- */
281 
282 	/* Try new device tree based feature discovery ... */
283 	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
284 		/* Otherwise use the old style CPU table */
285 		identify_cpu(0, mfspr(SPRN_PVR));
286 
287 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
288 	initialise_paca(&boot_paca, 0);
289 	setup_paca(&boot_paca);
290 	fixup_boot_paca();
291 
292 	/* -------- printk is now safe to use ------- */
293 
294 	/* Enable early debugging if any specified (see udbg.h) */
295 	udbg_early_init();
296 
297  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
298 
299 	/*
300 	 * Do early initialization using the flattened device
301 	 * tree, such as retrieving the physical memory map or
302 	 * calculating/retrieving the hash table size.
303 	 */
304 	early_init_devtree(__va(dt_ptr));
305 
306 	/* Now we know the logical id of our boot cpu, setup the paca. */
307 	setup_paca(&paca[boot_cpuid]);
308 	fixup_boot_paca();
309 
310 	/*
311 	 * Configure exception handlers. This include setting up trampolines
312 	 * if needed, setting exception endian mode, etc...
313 	 */
314 	configure_exceptions();
315 
316 	/* Apply all the dynamic patching */
317 	apply_feature_fixups();
318 	setup_feature_keys();
319 
320 	/* Initialize the hash table or TLB handling */
321 	early_init_mmu();
322 
323 	/*
324 	 * After firmware and early platform setup code has set things up,
325 	 * we note the SPR values for configurable control/performance
326 	 * registers, and use those as initial defaults.
327 	 */
328 	record_spr_defaults();
329 
330 	/*
331 	 * At this point, we can let interrupts switch to virtual mode
332 	 * (the MMU has been setup), so adjust the MSR in the PACA to
333 	 * have IR and DR set and enable AIL if it exists
334 	 */
335 	cpu_ready_for_interrupts();
336 
337 	DBG(" <- early_setup()\n");
338 
339 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
340 	/*
341 	 * This needs to be done *last* (after the above DBG() even)
342 	 *
343 	 * Right after we return from this function, we turn on the MMU
344 	 * which means the real-mode access trick that btext does will
345 	 * no longer work, it needs to switch to using a real MMU
346 	 * mapping. This call will ensure that it does
347 	 */
348 	btext_map();
349 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
350 }
351 
352 #ifdef CONFIG_SMP
353 void early_setup_secondary(void)
354 {
355 	/* Mark interrupts disabled in PACA */
356 	irq_soft_mask_set(IRQS_DISABLED);
357 
358 	/* Initialize the hash table or TLB handling */
359 	early_init_mmu_secondary();
360 
361 	/*
362 	 * At this point, we can let interrupts switch to virtual mode
363 	 * (the MMU has been setup), so adjust the MSR in the PACA to
364 	 * have IR and DR set.
365 	 */
366 	cpu_ready_for_interrupts();
367 }
368 
369 #endif /* CONFIG_SMP */
370 
371 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
372 static bool use_spinloop(void)
373 {
374 	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
375 		/*
376 		 * See comments in head_64.S -- not all platforms insert
377 		 * secondaries at __secondary_hold and wait at the spin
378 		 * loop.
379 		 */
380 		if (firmware_has_feature(FW_FEATURE_OPAL))
381 			return false;
382 		return true;
383 	}
384 
385 	/*
386 	 * When book3e boots from kexec, the ePAPR spin table does
387 	 * not get used.
388 	 */
389 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
390 }
391 
392 void smp_release_cpus(void)
393 {
394 	unsigned long *ptr;
395 	int i;
396 
397 	if (!use_spinloop())
398 		return;
399 
400 	DBG(" -> smp_release_cpus()\n");
401 
402 	/* All secondary cpus are spinning on a common spinloop, release them
403 	 * all now so they can start to spin on their individual paca
404 	 * spinloops. For non SMP kernels, the secondary cpus never get out
405 	 * of the common spinloop.
406 	 */
407 
408 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
409 			- PHYSICAL_START);
410 	*ptr = ppc_function_entry(generic_secondary_smp_init);
411 
412 	/* And wait a bit for them to catch up */
413 	for (i = 0; i < 100000; i++) {
414 		mb();
415 		HMT_low();
416 		if (spinning_secondaries == 0)
417 			break;
418 		udelay(1);
419 	}
420 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
421 
422 	DBG(" <- smp_release_cpus()\n");
423 }
424 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
425 
426 /*
427  * Initialize some remaining members of the ppc64_caches and systemcfg
428  * structures
429  * (at least until we get rid of them completely). This is mostly some
430  * cache informations about the CPU that will be used by cache flush
431  * routines and/or provided to userland
432  */
433 
434 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
435 			    u32 bsize, u32 sets)
436 {
437 	info->size = size;
438 	info->sets = sets;
439 	info->line_size = lsize;
440 	info->block_size = bsize;
441 	info->log_block_size = __ilog2(bsize);
442 	if (bsize)
443 		info->blocks_per_page = PAGE_SIZE / bsize;
444 	else
445 		info->blocks_per_page = 0;
446 
447 	if (sets == 0)
448 		info->assoc = 0xffff;
449 	else
450 		info->assoc = size / (sets * lsize);
451 }
452 
453 static bool __init parse_cache_info(struct device_node *np,
454 				    bool icache,
455 				    struct ppc_cache_info *info)
456 {
457 	static const char *ipropnames[] __initdata = {
458 		"i-cache-size",
459 		"i-cache-sets",
460 		"i-cache-block-size",
461 		"i-cache-line-size",
462 	};
463 	static const char *dpropnames[] __initdata = {
464 		"d-cache-size",
465 		"d-cache-sets",
466 		"d-cache-block-size",
467 		"d-cache-line-size",
468 	};
469 	const char **propnames = icache ? ipropnames : dpropnames;
470 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
471 	u32 size, lsize, bsize, sets;
472 	bool success = true;
473 
474 	size = 0;
475 	sets = -1u;
476 	lsize = bsize = cur_cpu_spec->dcache_bsize;
477 	sizep = of_get_property(np, propnames[0], NULL);
478 	if (sizep != NULL)
479 		size = be32_to_cpu(*sizep);
480 	setsp = of_get_property(np, propnames[1], NULL);
481 	if (setsp != NULL)
482 		sets = be32_to_cpu(*setsp);
483 	bsizep = of_get_property(np, propnames[2], NULL);
484 	lsizep = of_get_property(np, propnames[3], NULL);
485 	if (bsizep == NULL)
486 		bsizep = lsizep;
487 	if (lsizep != NULL)
488 		lsize = be32_to_cpu(*lsizep);
489 	if (bsizep != NULL)
490 		bsize = be32_to_cpu(*bsizep);
491 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
492 		success = false;
493 
494 	/*
495 	 * OF is weird .. it represents fully associative caches
496 	 * as "1 way" which doesn't make much sense and doesn't
497 	 * leave room for direct mapped. We'll assume that 0
498 	 * in OF means direct mapped for that reason.
499 	 */
500 	if (sets == 1)
501 		sets = 0;
502 	else if (sets == 0)
503 		sets = 1;
504 
505 	init_cache_info(info, size, lsize, bsize, sets);
506 
507 	return success;
508 }
509 
510 void __init initialize_cache_info(void)
511 {
512 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
513 	u32 pvr;
514 
515 	DBG(" -> initialize_cache_info()\n");
516 
517 	/*
518 	 * All shipping POWER8 machines have a firmware bug that
519 	 * puts incorrect information in the device-tree. This will
520 	 * be (hopefully) fixed for future chips but for now hard
521 	 * code the values if we are running on one of these
522 	 */
523 	pvr = PVR_VER(mfspr(SPRN_PVR));
524 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
525 	    pvr == PVR_POWER8NVL) {
526 						/* size    lsize   blk  sets */
527 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
528 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
529 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
530 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
531 	} else
532 		cpu = of_find_node_by_type(NULL, "cpu");
533 
534 	/*
535 	 * We're assuming *all* of the CPUs have the same
536 	 * d-cache and i-cache sizes... -Peter
537 	 */
538 	if (cpu) {
539 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
540 			DBG("Argh, can't find dcache properties !\n");
541 
542 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
543 			DBG("Argh, can't find icache properties !\n");
544 
545 		/*
546 		 * Try to find the L2 and L3 if any. Assume they are
547 		 * unified and use the D-side properties.
548 		 */
549 		l2 = of_find_next_cache_node(cpu);
550 		of_node_put(cpu);
551 		if (l2) {
552 			parse_cache_info(l2, false, &ppc64_caches.l2);
553 			l3 = of_find_next_cache_node(l2);
554 			of_node_put(l2);
555 		}
556 		if (l3) {
557 			parse_cache_info(l3, false, &ppc64_caches.l3);
558 			of_node_put(l3);
559 		}
560 	}
561 
562 	/* For use by binfmt_elf */
563 	dcache_bsize = ppc64_caches.l1d.block_size;
564 	icache_bsize = ppc64_caches.l1i.block_size;
565 
566 	cur_cpu_spec->dcache_bsize = dcache_bsize;
567 	cur_cpu_spec->icache_bsize = icache_bsize;
568 
569 	DBG(" <- initialize_cache_info()\n");
570 }
571 
572 /*
573  * This returns the limit below which memory accesses to the linear
574  * mapping are guarnateed not to cause an architectural exception (e.g.,
575  * TLB or SLB miss fault).
576  *
577  * This is used to allocate PACAs and various interrupt stacks that
578  * that are accessed early in interrupt handlers that must not cause
579  * re-entrant interrupts.
580  */
581 __init u64 ppc64_bolted_size(void)
582 {
583 #ifdef CONFIG_PPC_BOOK3E
584 	/* Freescale BookE bolts the entire linear mapping */
585 	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
586 	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
587 		return linear_map_top;
588 	/* Other BookE, we assume the first GB is bolted */
589 	return 1ul << 30;
590 #else
591 	/* BookS radix, does not take faults on linear mapping */
592 	if (early_radix_enabled())
593 		return ULONG_MAX;
594 
595 	/* BookS hash, the first segment is bolted */
596 	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
597 		return 1UL << SID_SHIFT_1T;
598 	return 1UL << SID_SHIFT;
599 #endif
600 }
601 
602 void __init irqstack_early_init(void)
603 {
604 	u64 limit = ppc64_bolted_size();
605 	unsigned int i;
606 
607 	/*
608 	 * Interrupt stacks must be in the first segment since we
609 	 * cannot afford to take SLB misses on them. They are not
610 	 * accessed in realmode.
611 	 */
612 	for_each_possible_cpu(i) {
613 		softirq_ctx[i] = (struct thread_info *)
614 			__va(memblock_alloc_base(THREAD_SIZE,
615 					    THREAD_SIZE, limit));
616 		hardirq_ctx[i] = (struct thread_info *)
617 			__va(memblock_alloc_base(THREAD_SIZE,
618 					    THREAD_SIZE, limit));
619 	}
620 }
621 
622 #ifdef CONFIG_PPC_BOOK3E
623 void __init exc_lvl_early_init(void)
624 {
625 	unsigned int i;
626 	unsigned long sp;
627 
628 	for_each_possible_cpu(i) {
629 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
630 		critirq_ctx[i] = (struct thread_info *)__va(sp);
631 		paca[i].crit_kstack = __va(sp + THREAD_SIZE);
632 
633 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
634 		dbgirq_ctx[i] = (struct thread_info *)__va(sp);
635 		paca[i].dbg_kstack = __va(sp + THREAD_SIZE);
636 
637 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
638 		mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
639 		paca[i].mc_kstack = __va(sp + THREAD_SIZE);
640 	}
641 
642 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
643 		patch_exception(0x040, exc_debug_debug_book3e);
644 }
645 #endif
646 
647 /*
648  * Emergency stacks are used for a range of things, from asynchronous
649  * NMIs (system reset, machine check) to synchronous, process context.
650  * We set preempt_count to zero, even though that isn't necessarily correct. To
651  * get the right value we'd need to copy it from the previous thread_info, but
652  * doing that might fault causing more problems.
653  * TODO: what to do with accounting?
654  */
655 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
656 {
657 	ti->task = NULL;
658 	ti->cpu = cpu;
659 	ti->preempt_count = 0;
660 	ti->local_flags = 0;
661 	ti->flags = 0;
662 	klp_init_thread_info(ti);
663 }
664 
665 /*
666  * Stack space used when we detect a bad kernel stack pointer, and
667  * early in SMP boots before relocation is enabled. Exclusive emergency
668  * stack for machine checks.
669  */
670 void __init emergency_stack_init(void)
671 {
672 	u64 limit;
673 	unsigned int i;
674 
675 	/*
676 	 * Emergency stacks must be under 256MB, we cannot afford to take
677 	 * SLB misses on them. The ABI also requires them to be 128-byte
678 	 * aligned.
679 	 *
680 	 * Since we use these as temporary stacks during secondary CPU
681 	 * bringup, machine check, system reset, and HMI, we need to get
682 	 * at them in real mode. This means they must also be within the RMO
683 	 * region.
684 	 *
685 	 * The IRQ stacks allocated elsewhere in this file are zeroed and
686 	 * initialized in kernel/irq.c. These are initialized here in order
687 	 * to have emergency stacks available as early as possible.
688 	 */
689 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
690 
691 	for_each_possible_cpu(i) {
692 		struct thread_info *ti;
693 		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
694 		memset(ti, 0, THREAD_SIZE);
695 		emerg_stack_init_thread_info(ti, i);
696 		paca[i].emergency_sp = (void *)ti + THREAD_SIZE;
697 
698 #ifdef CONFIG_PPC_BOOK3S_64
699 		/* emergency stack for NMI exception handling. */
700 		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
701 		memset(ti, 0, THREAD_SIZE);
702 		emerg_stack_init_thread_info(ti, i);
703 		paca[i].nmi_emergency_sp = (void *)ti + THREAD_SIZE;
704 
705 		/* emergency stack for machine check exception handling. */
706 		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
707 		memset(ti, 0, THREAD_SIZE);
708 		emerg_stack_init_thread_info(ti, i);
709 		paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE;
710 #endif
711 	}
712 }
713 
714 #ifdef CONFIG_SMP
715 #define PCPU_DYN_SIZE		()
716 
717 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
718 {
719 	return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
720 				    __pa(MAX_DMA_ADDRESS));
721 }
722 
723 static void __init pcpu_fc_free(void *ptr, size_t size)
724 {
725 	free_bootmem(__pa(ptr), size);
726 }
727 
728 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
729 {
730 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
731 		return LOCAL_DISTANCE;
732 	else
733 		return REMOTE_DISTANCE;
734 }
735 
736 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
737 EXPORT_SYMBOL(__per_cpu_offset);
738 
739 void __init setup_per_cpu_areas(void)
740 {
741 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
742 	size_t atom_size;
743 	unsigned long delta;
744 	unsigned int cpu;
745 	int rc;
746 
747 	/*
748 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
749 	 * to group units.  For larger mappings, use 1M atom which
750 	 * should be large enough to contain a number of units.
751 	 */
752 	if (mmu_linear_psize == MMU_PAGE_4K)
753 		atom_size = PAGE_SIZE;
754 	else
755 		atom_size = 1 << 20;
756 
757 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
758 				    pcpu_fc_alloc, pcpu_fc_free);
759 	if (rc < 0)
760 		panic("cannot initialize percpu area (err=%d)", rc);
761 
762 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
763 	for_each_possible_cpu(cpu) {
764                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
765 		paca[cpu].data_offset = __per_cpu_offset[cpu];
766 	}
767 }
768 #endif
769 
770 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
771 unsigned long memory_block_size_bytes(void)
772 {
773 	if (ppc_md.memory_block_size)
774 		return ppc_md.memory_block_size();
775 
776 	return MIN_MEMORY_BLOCK_SIZE;
777 }
778 #endif
779 
780 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
781 struct ppc_pci_io ppc_pci_io;
782 EXPORT_SYMBOL(ppc_pci_io);
783 #endif
784 
785 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
786 u64 hw_nmi_get_sample_period(int watchdog_thresh)
787 {
788 	return ppc_proc_freq * watchdog_thresh;
789 }
790 #endif
791 
792 /*
793  * The perf based hardlockup detector breaks PMU event based branches, so
794  * disable it by default. Book3S has a soft-nmi hardlockup detector based
795  * on the decrementer interrupt, so it does not suffer from this problem.
796  *
797  * It is likely to get false positives in VM guests, so disable it there
798  * by default too.
799  */
800 static int __init disable_hardlockup_detector(void)
801 {
802 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
803 	hardlockup_detector_disable();
804 #else
805 	if (firmware_has_feature(FW_FEATURE_LPAR))
806 		hardlockup_detector_disable();
807 #endif
808 
809 	return 0;
810 }
811 early_initcall(disable_hardlockup_detector);
812 
813 #ifdef CONFIG_PPC_BOOK3S_64
814 static enum l1d_flush_type enabled_flush_types;
815 static void *l1d_flush_fallback_area;
816 static bool no_rfi_flush;
817 bool rfi_flush;
818 
819 static int __init handle_no_rfi_flush(char *p)
820 {
821 	pr_info("rfi-flush: disabled on command line.");
822 	no_rfi_flush = true;
823 	return 0;
824 }
825 early_param("no_rfi_flush", handle_no_rfi_flush);
826 
827 /*
828  * The RFI flush is not KPTI, but because users will see doco that says to use
829  * nopti we hijack that option here to also disable the RFI flush.
830  */
831 static int __init handle_no_pti(char *p)
832 {
833 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
834 	handle_no_rfi_flush(NULL);
835 	return 0;
836 }
837 early_param("nopti", handle_no_pti);
838 
839 static void do_nothing(void *unused)
840 {
841 	/*
842 	 * We don't need to do the flush explicitly, just enter+exit kernel is
843 	 * sufficient, the RFI exit handlers will do the right thing.
844 	 */
845 }
846 
847 void rfi_flush_enable(bool enable)
848 {
849 	if (rfi_flush == enable)
850 		return;
851 
852 	if (enable) {
853 		do_rfi_flush_fixups(enabled_flush_types);
854 		on_each_cpu(do_nothing, NULL, 1);
855 	} else
856 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
857 
858 	rfi_flush = enable;
859 }
860 
861 static void init_fallback_flush(void)
862 {
863 	u64 l1d_size, limit;
864 	int cpu;
865 
866 	l1d_size = ppc64_caches.l1d.size;
867 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
868 
869 	/*
870 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
871 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
872 	 * reliably avoid the prefetcher.
873 	 */
874 	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
875 	memset(l1d_flush_fallback_area, 0, l1d_size * 2);
876 
877 	for_each_possible_cpu(cpu) {
878 		paca[cpu].rfi_flush_fallback_area = l1d_flush_fallback_area;
879 		paca[cpu].l1d_flush_size = l1d_size;
880 	}
881 }
882 
883 void __init setup_rfi_flush(enum l1d_flush_type types, bool enable)
884 {
885 	if (types & L1D_FLUSH_FALLBACK) {
886 		pr_info("rfi-flush: Using fallback displacement flush\n");
887 		init_fallback_flush();
888 	}
889 
890 	if (types & L1D_FLUSH_ORI)
891 		pr_info("rfi-flush: Using ori type flush\n");
892 
893 	if (types & L1D_FLUSH_MTTRIG)
894 		pr_info("rfi-flush: Using mttrig type flush\n");
895 
896 	enabled_flush_types = types;
897 
898 	if (!no_rfi_flush)
899 		rfi_flush_enable(enable);
900 }
901 
902 #ifdef CONFIG_DEBUG_FS
903 static int rfi_flush_set(void *data, u64 val)
904 {
905 	if (val == 1)
906 		rfi_flush_enable(true);
907 	else if (val == 0)
908 		rfi_flush_enable(false);
909 	else
910 		return -EINVAL;
911 
912 	return 0;
913 }
914 
915 static int rfi_flush_get(void *data, u64 *val)
916 {
917 	*val = rfi_flush ? 1 : 0;
918 	return 0;
919 }
920 
921 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
922 
923 static __init int rfi_flush_debugfs_init(void)
924 {
925 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
926 	return 0;
927 }
928 device_initcall(rfi_flush_debugfs_init);
929 #endif
930 
931 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
932 {
933 	if (rfi_flush)
934 		return sprintf(buf, "Mitigation: RFI Flush\n");
935 
936 	return sprintf(buf, "Vulnerable\n");
937 }
938 #endif /* CONFIG_PPC_BOOK3S_64 */
939