1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #undef DEBUG 14 15 #include <linux/module.h> 16 #include <linux/string.h> 17 #include <linux/sched.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/reboot.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/seq_file.h> 24 #include <linux/ioport.h> 25 #include <linux/console.h> 26 #include <linux/utsname.h> 27 #include <linux/tty.h> 28 #include <linux/root_dev.h> 29 #include <linux/notifier.h> 30 #include <linux/cpu.h> 31 #include <linux/unistd.h> 32 #include <linux/serial.h> 33 #include <linux/serial_8250.h> 34 #include <linux/bootmem.h> 35 #include <linux/pci.h> 36 #include <linux/lockdep.h> 37 #include <linux/lmb.h> 38 #include <asm/io.h> 39 #include <asm/kdump.h> 40 #include <asm/prom.h> 41 #include <asm/processor.h> 42 #include <asm/pgtable.h> 43 #include <asm/smp.h> 44 #include <asm/elf.h> 45 #include <asm/machdep.h> 46 #include <asm/paca.h> 47 #include <asm/time.h> 48 #include <asm/cputable.h> 49 #include <asm/sections.h> 50 #include <asm/btext.h> 51 #include <asm/nvram.h> 52 #include <asm/setup.h> 53 #include <asm/system.h> 54 #include <asm/rtas.h> 55 #include <asm/iommu.h> 56 #include <asm/serial.h> 57 #include <asm/cache.h> 58 #include <asm/page.h> 59 #include <asm/mmu.h> 60 #include <asm/firmware.h> 61 #include <asm/xmon.h> 62 #include <asm/udbg.h> 63 #include <asm/kexec.h> 64 65 #include "setup.h" 66 67 #ifdef DEBUG 68 #define DBG(fmt...) udbg_printf(fmt) 69 #else 70 #define DBG(fmt...) 71 #endif 72 73 int boot_cpuid = 0; 74 u64 ppc64_pft_size; 75 76 /* Pick defaults since we might want to patch instructions 77 * before we've read this from the device tree. 78 */ 79 struct ppc64_caches ppc64_caches = { 80 .dline_size = 0x40, 81 .log_dline_size = 6, 82 .iline_size = 0x40, 83 .log_iline_size = 6 84 }; 85 EXPORT_SYMBOL_GPL(ppc64_caches); 86 87 /* 88 * These are used in binfmt_elf.c to put aux entries on the stack 89 * for each elf executable being started. 90 */ 91 int dcache_bsize; 92 int icache_bsize; 93 int ucache_bsize; 94 95 #ifdef CONFIG_SMP 96 97 static int smt_enabled_cmdline; 98 99 /* Look for ibm,smt-enabled OF option */ 100 static void check_smt_enabled(void) 101 { 102 struct device_node *dn; 103 const char *smt_option; 104 105 /* Allow the command line to overrule the OF option */ 106 if (smt_enabled_cmdline) 107 return; 108 109 dn = of_find_node_by_path("/options"); 110 111 if (dn) { 112 smt_option = of_get_property(dn, "ibm,smt-enabled", NULL); 113 114 if (smt_option) { 115 if (!strcmp(smt_option, "on")) 116 smt_enabled_at_boot = 1; 117 else if (!strcmp(smt_option, "off")) 118 smt_enabled_at_boot = 0; 119 } 120 } 121 } 122 123 /* Look for smt-enabled= cmdline option */ 124 static int __init early_smt_enabled(char *p) 125 { 126 smt_enabled_cmdline = 1; 127 128 if (!p) 129 return 0; 130 131 if (!strcmp(p, "on") || !strcmp(p, "1")) 132 smt_enabled_at_boot = 1; 133 else if (!strcmp(p, "off") || !strcmp(p, "0")) 134 smt_enabled_at_boot = 0; 135 136 return 0; 137 } 138 early_param("smt-enabled", early_smt_enabled); 139 140 #else 141 #define check_smt_enabled() 142 #endif /* CONFIG_SMP */ 143 144 /* Put the paca pointer into r13 and SPRG3 */ 145 void __init setup_paca(int cpu) 146 { 147 local_paca = &paca[cpu]; 148 mtspr(SPRN_SPRG3, local_paca); 149 } 150 151 /* 152 * Early initialization entry point. This is called by head.S 153 * with MMU translation disabled. We rely on the "feature" of 154 * the CPU that ignores the top 2 bits of the address in real 155 * mode so we can access kernel globals normally provided we 156 * only toy with things in the RMO region. From here, we do 157 * some early parsing of the device-tree to setup out LMB 158 * data structures, and allocate & initialize the hash table 159 * and segment tables so we can start running with translation 160 * enabled. 161 * 162 * It is this function which will call the probe() callback of 163 * the various platform types and copy the matching one to the 164 * global ppc_md structure. Your platform can eventually do 165 * some very early initializations from the probe() routine, but 166 * this is not recommended, be very careful as, for example, the 167 * device-tree is not accessible via normal means at this point. 168 */ 169 170 void __init early_setup(unsigned long dt_ptr) 171 { 172 /* -------- printk is _NOT_ safe to use here ! ------- */ 173 174 /* Fill in any unititialised pacas */ 175 initialise_pacas(); 176 177 /* Identify CPU type */ 178 identify_cpu(0, mfspr(SPRN_PVR)); 179 180 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 181 setup_paca(0); 182 183 /* Initialize lockdep early or else spinlocks will blow */ 184 lockdep_init(); 185 186 /* -------- printk is now safe to use ------- */ 187 188 /* Enable early debugging if any specified (see udbg.h) */ 189 udbg_early_init(); 190 191 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 192 193 /* 194 * Do early initialization using the flattened device 195 * tree, such as retrieving the physical memory map or 196 * calculating/retrieving the hash table size. 197 */ 198 early_init_devtree(__va(dt_ptr)); 199 200 /* Now we know the logical id of our boot cpu, setup the paca. */ 201 setup_paca(boot_cpuid); 202 203 /* Fix up paca fields required for the boot cpu */ 204 get_paca()->cpu_start = 1; 205 206 /* Probe the machine type */ 207 probe_machine(); 208 209 setup_kdump_trampoline(); 210 211 DBG("Found, Initializing memory management...\n"); 212 213 /* Initialize the hash table or TLB handling */ 214 early_init_mmu(); 215 216 DBG(" <- early_setup()\n"); 217 } 218 219 #ifdef CONFIG_SMP 220 void early_setup_secondary(void) 221 { 222 /* Mark interrupts enabled in PACA */ 223 get_paca()->soft_enabled = 0; 224 225 /* Initialize the hash table or TLB handling */ 226 early_init_mmu_secondary(); 227 } 228 229 #endif /* CONFIG_SMP */ 230 231 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC) 232 extern unsigned long __secondary_hold_spinloop; 233 extern void generic_secondary_smp_init(void); 234 235 void smp_release_cpus(void) 236 { 237 unsigned long *ptr; 238 239 DBG(" -> smp_release_cpus()\n"); 240 241 /* All secondary cpus are spinning on a common spinloop, release them 242 * all now so they can start to spin on their individual paca 243 * spinloops. For non SMP kernels, the secondary cpus never get out 244 * of the common spinloop. 245 */ 246 247 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 248 - PHYSICAL_START); 249 *ptr = __pa(generic_secondary_smp_init); 250 mb(); 251 252 DBG(" <- smp_release_cpus()\n"); 253 } 254 #endif /* CONFIG_SMP || CONFIG_KEXEC */ 255 256 /* 257 * Initialize some remaining members of the ppc64_caches and systemcfg 258 * structures 259 * (at least until we get rid of them completely). This is mostly some 260 * cache informations about the CPU that will be used by cache flush 261 * routines and/or provided to userland 262 */ 263 static void __init initialize_cache_info(void) 264 { 265 struct device_node *np; 266 unsigned long num_cpus = 0; 267 268 DBG(" -> initialize_cache_info()\n"); 269 270 for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) { 271 num_cpus += 1; 272 273 /* We're assuming *all* of the CPUs have the same 274 * d-cache and i-cache sizes... -Peter 275 */ 276 277 if ( num_cpus == 1 ) { 278 const u32 *sizep, *lsizep; 279 u32 size, lsize; 280 281 size = 0; 282 lsize = cur_cpu_spec->dcache_bsize; 283 sizep = of_get_property(np, "d-cache-size", NULL); 284 if (sizep != NULL) 285 size = *sizep; 286 lsizep = of_get_property(np, "d-cache-block-size", NULL); 287 /* fallback if block size missing */ 288 if (lsizep == NULL) 289 lsizep = of_get_property(np, "d-cache-line-size", NULL); 290 if (lsizep != NULL) 291 lsize = *lsizep; 292 if (sizep == 0 || lsizep == 0) 293 DBG("Argh, can't find dcache properties ! " 294 "sizep: %p, lsizep: %p\n", sizep, lsizep); 295 296 ppc64_caches.dsize = size; 297 ppc64_caches.dline_size = lsize; 298 ppc64_caches.log_dline_size = __ilog2(lsize); 299 ppc64_caches.dlines_per_page = PAGE_SIZE / lsize; 300 301 size = 0; 302 lsize = cur_cpu_spec->icache_bsize; 303 sizep = of_get_property(np, "i-cache-size", NULL); 304 if (sizep != NULL) 305 size = *sizep; 306 lsizep = of_get_property(np, "i-cache-block-size", NULL); 307 if (lsizep == NULL) 308 lsizep = of_get_property(np, "i-cache-line-size", NULL); 309 if (lsizep != NULL) 310 lsize = *lsizep; 311 if (sizep == 0 || lsizep == 0) 312 DBG("Argh, can't find icache properties ! " 313 "sizep: %p, lsizep: %p\n", sizep, lsizep); 314 315 ppc64_caches.isize = size; 316 ppc64_caches.iline_size = lsize; 317 ppc64_caches.log_iline_size = __ilog2(lsize); 318 ppc64_caches.ilines_per_page = PAGE_SIZE / lsize; 319 } 320 } 321 322 DBG(" <- initialize_cache_info()\n"); 323 } 324 325 326 /* 327 * Do some initial setup of the system. The parameters are those which 328 * were passed in from the bootloader. 329 */ 330 void __init setup_system(void) 331 { 332 DBG(" -> setup_system()\n"); 333 334 /* Apply the CPUs-specific and firmware specific fixups to kernel 335 * text (nop out sections not relevant to this CPU or this firmware) 336 */ 337 do_feature_fixups(cur_cpu_spec->cpu_features, 338 &__start___ftr_fixup, &__stop___ftr_fixup); 339 do_feature_fixups(cur_cpu_spec->mmu_features, 340 &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup); 341 do_feature_fixups(powerpc_firmware_features, 342 &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup); 343 do_lwsync_fixups(cur_cpu_spec->cpu_features, 344 &__start___lwsync_fixup, &__stop___lwsync_fixup); 345 346 /* 347 * Unflatten the device-tree passed by prom_init or kexec 348 */ 349 unflatten_device_tree(); 350 351 /* 352 * Fill the ppc64_caches & systemcfg structures with informations 353 * retrieved from the device-tree. 354 */ 355 initialize_cache_info(); 356 357 /* 358 * Initialize irq remapping subsystem 359 */ 360 irq_early_init(); 361 362 #ifdef CONFIG_PPC_RTAS 363 /* 364 * Initialize RTAS if available 365 */ 366 rtas_initialize(); 367 #endif /* CONFIG_PPC_RTAS */ 368 369 /* 370 * Check if we have an initrd provided via the device-tree 371 */ 372 check_for_initrd(); 373 374 /* 375 * Do some platform specific early initializations, that includes 376 * setting up the hash table pointers. It also sets up some interrupt-mapping 377 * related options that will be used by finish_device_tree() 378 */ 379 if (ppc_md.init_early) 380 ppc_md.init_early(); 381 382 /* 383 * We can discover serial ports now since the above did setup the 384 * hash table management for us, thus ioremap works. We do that early 385 * so that further code can be debugged 386 */ 387 find_legacy_serial_ports(); 388 389 /* 390 * Register early console 391 */ 392 register_early_udbg_console(); 393 394 /* 395 * Initialize xmon 396 */ 397 xmon_setup(); 398 399 check_smt_enabled(); 400 smp_setup_cpu_maps(); 401 402 #ifdef CONFIG_SMP 403 /* Release secondary cpus out of their spinloops at 0x60 now that 404 * we can map physical -> logical CPU ids 405 */ 406 smp_release_cpus(); 407 #endif 408 409 printk("Starting Linux PPC64 %s\n", init_utsname()->version); 410 411 printk("-----------------------------------------------------\n"); 412 printk("ppc64_pft_size = 0x%llx\n", ppc64_pft_size); 413 printk("physicalMemorySize = 0x%llx\n", lmb_phys_mem_size()); 414 if (ppc64_caches.dline_size != 0x80) 415 printk("ppc64_caches.dcache_line_size = 0x%x\n", 416 ppc64_caches.dline_size); 417 if (ppc64_caches.iline_size != 0x80) 418 printk("ppc64_caches.icache_line_size = 0x%x\n", 419 ppc64_caches.iline_size); 420 if (htab_address) 421 printk("htab_address = 0x%p\n", htab_address); 422 printk("htab_hash_mask = 0x%lx\n", htab_hash_mask); 423 if (PHYSICAL_START > 0) 424 printk("physical_start = 0x%lx\n", 425 PHYSICAL_START); 426 printk("-----------------------------------------------------\n"); 427 428 DBG(" <- setup_system()\n"); 429 } 430 431 #ifdef CONFIG_IRQSTACKS 432 static void __init irqstack_early_init(void) 433 { 434 unsigned int i; 435 436 /* 437 * interrupt stacks must be under 256MB, we cannot afford to take 438 * SLB misses on them. 439 */ 440 for_each_possible_cpu(i) { 441 softirq_ctx[i] = (struct thread_info *) 442 __va(lmb_alloc_base(THREAD_SIZE, 443 THREAD_SIZE, 0x10000000)); 444 hardirq_ctx[i] = (struct thread_info *) 445 __va(lmb_alloc_base(THREAD_SIZE, 446 THREAD_SIZE, 0x10000000)); 447 } 448 } 449 #else 450 #define irqstack_early_init() 451 #endif 452 453 /* 454 * Stack space used when we detect a bad kernel stack pointer, and 455 * early in SMP boots before relocation is enabled. 456 */ 457 static void __init emergency_stack_init(void) 458 { 459 unsigned long limit; 460 unsigned int i; 461 462 /* 463 * Emergency stacks must be under 256MB, we cannot afford to take 464 * SLB misses on them. The ABI also requires them to be 128-byte 465 * aligned. 466 * 467 * Since we use these as temporary stacks during secondary CPU 468 * bringup, we need to get at them in real mode. This means they 469 * must also be within the RMO region. 470 */ 471 limit = min(0x10000000ULL, lmb.rmo_size); 472 473 for_each_possible_cpu(i) { 474 unsigned long sp; 475 sp = lmb_alloc_base(THREAD_SIZE, THREAD_SIZE, limit); 476 sp += THREAD_SIZE; 477 paca[i].emergency_sp = __va(sp); 478 } 479 } 480 481 /* 482 * Called into from start_kernel, after lock_kernel has been called. 483 * Initializes bootmem, which is unsed to manage page allocation until 484 * mem_init is called. 485 */ 486 void __init setup_arch(char **cmdline_p) 487 { 488 ppc64_boot_msg(0x12, "Setup Arch"); 489 490 *cmdline_p = cmd_line; 491 492 /* 493 * Set cache line size based on type of cpu as a default. 494 * Systems with OF can look in the properties on the cpu node(s) 495 * for a possibly more accurate value. 496 */ 497 dcache_bsize = ppc64_caches.dline_size; 498 icache_bsize = ppc64_caches.iline_size; 499 500 /* reboot on panic */ 501 panic_timeout = 180; 502 503 if (ppc_md.panic) 504 setup_panic(); 505 506 init_mm.start_code = (unsigned long)_stext; 507 init_mm.end_code = (unsigned long) _etext; 508 init_mm.end_data = (unsigned long) _edata; 509 init_mm.brk = klimit; 510 511 irqstack_early_init(); 512 emergency_stack_init(); 513 514 stabs_alloc(); 515 516 /* set up the bootmem stuff with available memory */ 517 do_init_bootmem(); 518 sparse_init(); 519 520 #ifdef CONFIG_DUMMY_CONSOLE 521 conswitchp = &dummy_con; 522 #endif 523 524 if (ppc_md.setup_arch) 525 ppc_md.setup_arch(); 526 527 paging_init(); 528 ppc64_boot_msg(0x15, "Setup Done"); 529 } 530 531 532 /* ToDo: do something useful if ppc_md is not yet setup. */ 533 #define PPC64_LINUX_FUNCTION 0x0f000000 534 #define PPC64_IPL_MESSAGE 0xc0000000 535 #define PPC64_TERM_MESSAGE 0xb0000000 536 537 static void ppc64_do_msg(unsigned int src, const char *msg) 538 { 539 if (ppc_md.progress) { 540 char buf[128]; 541 542 sprintf(buf, "%08X\n", src); 543 ppc_md.progress(buf, 0); 544 snprintf(buf, 128, "%s", msg); 545 ppc_md.progress(buf, 0); 546 } 547 } 548 549 /* Print a boot progress message. */ 550 void ppc64_boot_msg(unsigned int src, const char *msg) 551 { 552 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg); 553 printk("[boot]%04x %s\n", src, msg); 554 } 555 556 void cpu_die(void) 557 { 558 if (ppc_md.cpu_die) 559 ppc_md.cpu_die(); 560 } 561 562 #ifdef CONFIG_SMP 563 void __init setup_per_cpu_areas(void) 564 { 565 int i; 566 unsigned long size; 567 char *ptr; 568 569 /* Copy section for each CPU (we discard the original) */ 570 size = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE); 571 #ifdef CONFIG_MODULES 572 if (size < PERCPU_ENOUGH_ROOM) 573 size = PERCPU_ENOUGH_ROOM; 574 #endif 575 576 for_each_possible_cpu(i) { 577 ptr = alloc_bootmem_pages_node(NODE_DATA(cpu_to_node(i)), size); 578 579 paca[i].data_offset = ptr - __per_cpu_start; 580 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start); 581 } 582 } 583 #endif 584 585 586 #ifdef CONFIG_PPC_INDIRECT_IO 587 struct ppc_pci_io ppc_pci_io; 588 EXPORT_SYMBOL(ppc_pci_io); 589 #endif /* CONFIG_PPC_INDIRECT_IO */ 590 591