1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/export.h> 14 #include <linux/string.h> 15 #include <linux/sched.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/reboot.h> 19 #include <linux/delay.h> 20 #include <linux/initrd.h> 21 #include <linux/seq_file.h> 22 #include <linux/ioport.h> 23 #include <linux/console.h> 24 #include <linux/utsname.h> 25 #include <linux/tty.h> 26 #include <linux/root_dev.h> 27 #include <linux/notifier.h> 28 #include <linux/cpu.h> 29 #include <linux/unistd.h> 30 #include <linux/serial.h> 31 #include <linux/serial_8250.h> 32 #include <linux/bootmem.h> 33 #include <linux/pci.h> 34 #include <linux/lockdep.h> 35 #include <linux/memblock.h> 36 #include <linux/memory.h> 37 #include <linux/nmi.h> 38 39 #include <asm/debugfs.h> 40 #include <asm/io.h> 41 #include <asm/kdump.h> 42 #include <asm/prom.h> 43 #include <asm/processor.h> 44 #include <asm/pgtable.h> 45 #include <asm/smp.h> 46 #include <asm/elf.h> 47 #include <asm/machdep.h> 48 #include <asm/paca.h> 49 #include <asm/time.h> 50 #include <asm/cputable.h> 51 #include <asm/dt_cpu_ftrs.h> 52 #include <asm/sections.h> 53 #include <asm/btext.h> 54 #include <asm/nvram.h> 55 #include <asm/setup.h> 56 #include <asm/rtas.h> 57 #include <asm/iommu.h> 58 #include <asm/serial.h> 59 #include <asm/cache.h> 60 #include <asm/page.h> 61 #include <asm/mmu.h> 62 #include <asm/firmware.h> 63 #include <asm/xmon.h> 64 #include <asm/udbg.h> 65 #include <asm/kexec.h> 66 #include <asm/code-patching.h> 67 #include <asm/livepatch.h> 68 #include <asm/opal.h> 69 #include <asm/cputhreads.h> 70 #include <asm/hw_irq.h> 71 72 #include "setup.h" 73 74 #ifdef DEBUG 75 #define DBG(fmt...) udbg_printf(fmt) 76 #else 77 #define DBG(fmt...) 78 #endif 79 80 int spinning_secondaries; 81 u64 ppc64_pft_size; 82 83 struct ppc64_caches ppc64_caches = { 84 .l1d = { 85 .block_size = 0x40, 86 .log_block_size = 6, 87 }, 88 .l1i = { 89 .block_size = 0x40, 90 .log_block_size = 6 91 }, 92 }; 93 EXPORT_SYMBOL_GPL(ppc64_caches); 94 95 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) 96 void __init setup_tlb_core_data(void) 97 { 98 int cpu; 99 100 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); 101 102 for_each_possible_cpu(cpu) { 103 int first = cpu_first_thread_sibling(cpu); 104 105 /* 106 * If we boot via kdump on a non-primary thread, 107 * make sure we point at the thread that actually 108 * set up this TLB. 109 */ 110 if (cpu_first_thread_sibling(boot_cpuid) == first) 111 first = boot_cpuid; 112 113 paca[cpu].tcd_ptr = &paca[first].tcd; 114 115 /* 116 * If we have threads, we need either tlbsrx. 117 * or e6500 tablewalk mode, or else TLB handlers 118 * will be racy and could produce duplicate entries. 119 * Should we panic instead? 120 */ 121 WARN_ONCE(smt_enabled_at_boot >= 2 && 122 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && 123 book3e_htw_mode != PPC_HTW_E6500, 124 "%s: unsupported MMU configuration\n", __func__); 125 } 126 } 127 #endif 128 129 #ifdef CONFIG_SMP 130 131 static char *smt_enabled_cmdline; 132 133 /* Look for ibm,smt-enabled OF option */ 134 void __init check_smt_enabled(void) 135 { 136 struct device_node *dn; 137 const char *smt_option; 138 139 /* Default to enabling all threads */ 140 smt_enabled_at_boot = threads_per_core; 141 142 /* Allow the command line to overrule the OF option */ 143 if (smt_enabled_cmdline) { 144 if (!strcmp(smt_enabled_cmdline, "on")) 145 smt_enabled_at_boot = threads_per_core; 146 else if (!strcmp(smt_enabled_cmdline, "off")) 147 smt_enabled_at_boot = 0; 148 else { 149 int smt; 150 int rc; 151 152 rc = kstrtoint(smt_enabled_cmdline, 10, &smt); 153 if (!rc) 154 smt_enabled_at_boot = 155 min(threads_per_core, smt); 156 } 157 } else { 158 dn = of_find_node_by_path("/options"); 159 if (dn) { 160 smt_option = of_get_property(dn, "ibm,smt-enabled", 161 NULL); 162 163 if (smt_option) { 164 if (!strcmp(smt_option, "on")) 165 smt_enabled_at_boot = threads_per_core; 166 else if (!strcmp(smt_option, "off")) 167 smt_enabled_at_boot = 0; 168 } 169 170 of_node_put(dn); 171 } 172 } 173 } 174 175 /* Look for smt-enabled= cmdline option */ 176 static int __init early_smt_enabled(char *p) 177 { 178 smt_enabled_cmdline = p; 179 return 0; 180 } 181 early_param("smt-enabled", early_smt_enabled); 182 183 #endif /* CONFIG_SMP */ 184 185 /** Fix up paca fields required for the boot cpu */ 186 static void __init fixup_boot_paca(void) 187 { 188 /* The boot cpu is started */ 189 get_paca()->cpu_start = 1; 190 /* Allow percpu accesses to work until we setup percpu data */ 191 get_paca()->data_offset = 0; 192 /* Mark interrupts disabled in PACA */ 193 irq_soft_mask_set(IRQS_DISABLED); 194 } 195 196 static void __init configure_exceptions(void) 197 { 198 /* 199 * Setup the trampolines from the lowmem exception vectors 200 * to the kdump kernel when not using a relocatable kernel. 201 */ 202 setup_kdump_trampoline(); 203 204 /* Under a PAPR hypervisor, we need hypercalls */ 205 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 206 /* Enable AIL if possible */ 207 pseries_enable_reloc_on_exc(); 208 209 /* 210 * Tell the hypervisor that we want our exceptions to 211 * be taken in little endian mode. 212 * 213 * We don't call this for big endian as our calling convention 214 * makes us always enter in BE, and the call may fail under 215 * some circumstances with kdump. 216 */ 217 #ifdef __LITTLE_ENDIAN__ 218 pseries_little_endian_exceptions(); 219 #endif 220 } else { 221 /* Set endian mode using OPAL */ 222 if (firmware_has_feature(FW_FEATURE_OPAL)) 223 opal_configure_cores(); 224 225 /* AIL on native is done in cpu_ready_for_interrupts() */ 226 } 227 } 228 229 static void cpu_ready_for_interrupts(void) 230 { 231 /* 232 * Enable AIL if supported, and we are in hypervisor mode. This 233 * is called once for every processor. 234 * 235 * If we are not in hypervisor mode the job is done once for 236 * the whole partition in configure_exceptions(). 237 */ 238 if (cpu_has_feature(CPU_FTR_HVMODE) && 239 cpu_has_feature(CPU_FTR_ARCH_207S)) { 240 unsigned long lpcr = mfspr(SPRN_LPCR); 241 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); 242 } 243 244 /* 245 * Fixup HFSCR:TM based on CPU features. The bit is set by our 246 * early asm init because at that point we haven't updated our 247 * CPU features from firmware and device-tree. Here we have, 248 * so let's do it. 249 */ 250 if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP)) 251 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM); 252 253 /* Set IR and DR in PACA MSR */ 254 get_paca()->kernel_msr = MSR_KERNEL; 255 } 256 257 /* 258 * Early initialization entry point. This is called by head.S 259 * with MMU translation disabled. We rely on the "feature" of 260 * the CPU that ignores the top 2 bits of the address in real 261 * mode so we can access kernel globals normally provided we 262 * only toy with things in the RMO region. From here, we do 263 * some early parsing of the device-tree to setup out MEMBLOCK 264 * data structures, and allocate & initialize the hash table 265 * and segment tables so we can start running with translation 266 * enabled. 267 * 268 * It is this function which will call the probe() callback of 269 * the various platform types and copy the matching one to the 270 * global ppc_md structure. Your platform can eventually do 271 * some very early initializations from the probe() routine, but 272 * this is not recommended, be very careful as, for example, the 273 * device-tree is not accessible via normal means at this point. 274 */ 275 276 void __init early_setup(unsigned long dt_ptr) 277 { 278 static __initdata struct paca_struct boot_paca; 279 280 /* -------- printk is _NOT_ safe to use here ! ------- */ 281 282 /* Try new device tree based feature discovery ... */ 283 if (!dt_cpu_ftrs_init(__va(dt_ptr))) 284 /* Otherwise use the old style CPU table */ 285 identify_cpu(0, mfspr(SPRN_PVR)); 286 287 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 288 initialise_paca(&boot_paca, 0); 289 setup_paca(&boot_paca); 290 fixup_boot_paca(); 291 292 /* -------- printk is now safe to use ------- */ 293 294 /* Enable early debugging if any specified (see udbg.h) */ 295 udbg_early_init(); 296 297 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 298 299 /* 300 * Do early initialization using the flattened device 301 * tree, such as retrieving the physical memory map or 302 * calculating/retrieving the hash table size. 303 */ 304 early_init_devtree(__va(dt_ptr)); 305 306 /* Now we know the logical id of our boot cpu, setup the paca. */ 307 setup_paca(&paca[boot_cpuid]); 308 fixup_boot_paca(); 309 310 /* 311 * Configure exception handlers. This include setting up trampolines 312 * if needed, setting exception endian mode, etc... 313 */ 314 configure_exceptions(); 315 316 /* Apply all the dynamic patching */ 317 apply_feature_fixups(); 318 setup_feature_keys(); 319 320 /* Initialize the hash table or TLB handling */ 321 early_init_mmu(); 322 323 /* 324 * After firmware and early platform setup code has set things up, 325 * we note the SPR values for configurable control/performance 326 * registers, and use those as initial defaults. 327 */ 328 record_spr_defaults(); 329 330 /* 331 * At this point, we can let interrupts switch to virtual mode 332 * (the MMU has been setup), so adjust the MSR in the PACA to 333 * have IR and DR set and enable AIL if it exists 334 */ 335 cpu_ready_for_interrupts(); 336 337 DBG(" <- early_setup()\n"); 338 339 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX 340 /* 341 * This needs to be done *last* (after the above DBG() even) 342 * 343 * Right after we return from this function, we turn on the MMU 344 * which means the real-mode access trick that btext does will 345 * no longer work, it needs to switch to using a real MMU 346 * mapping. This call will ensure that it does 347 */ 348 btext_map(); 349 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ 350 } 351 352 #ifdef CONFIG_SMP 353 void early_setup_secondary(void) 354 { 355 /* Mark interrupts disabled in PACA */ 356 irq_soft_mask_set(IRQS_DISABLED); 357 358 /* Initialize the hash table or TLB handling */ 359 early_init_mmu_secondary(); 360 361 /* 362 * At this point, we can let interrupts switch to virtual mode 363 * (the MMU has been setup), so adjust the MSR in the PACA to 364 * have IR and DR set. 365 */ 366 cpu_ready_for_interrupts(); 367 } 368 369 #endif /* CONFIG_SMP */ 370 371 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) 372 static bool use_spinloop(void) 373 { 374 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { 375 /* 376 * See comments in head_64.S -- not all platforms insert 377 * secondaries at __secondary_hold and wait at the spin 378 * loop. 379 */ 380 if (firmware_has_feature(FW_FEATURE_OPAL)) 381 return false; 382 return true; 383 } 384 385 /* 386 * When book3e boots from kexec, the ePAPR spin table does 387 * not get used. 388 */ 389 return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); 390 } 391 392 void smp_release_cpus(void) 393 { 394 unsigned long *ptr; 395 int i; 396 397 if (!use_spinloop()) 398 return; 399 400 DBG(" -> smp_release_cpus()\n"); 401 402 /* All secondary cpus are spinning on a common spinloop, release them 403 * all now so they can start to spin on their individual paca 404 * spinloops. For non SMP kernels, the secondary cpus never get out 405 * of the common spinloop. 406 */ 407 408 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 409 - PHYSICAL_START); 410 *ptr = ppc_function_entry(generic_secondary_smp_init); 411 412 /* And wait a bit for them to catch up */ 413 for (i = 0; i < 100000; i++) { 414 mb(); 415 HMT_low(); 416 if (spinning_secondaries == 0) 417 break; 418 udelay(1); 419 } 420 DBG("spinning_secondaries = %d\n", spinning_secondaries); 421 422 DBG(" <- smp_release_cpus()\n"); 423 } 424 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ 425 426 /* 427 * Initialize some remaining members of the ppc64_caches and systemcfg 428 * structures 429 * (at least until we get rid of them completely). This is mostly some 430 * cache informations about the CPU that will be used by cache flush 431 * routines and/or provided to userland 432 */ 433 434 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, 435 u32 bsize, u32 sets) 436 { 437 info->size = size; 438 info->sets = sets; 439 info->line_size = lsize; 440 info->block_size = bsize; 441 info->log_block_size = __ilog2(bsize); 442 if (bsize) 443 info->blocks_per_page = PAGE_SIZE / bsize; 444 else 445 info->blocks_per_page = 0; 446 447 if (sets == 0) 448 info->assoc = 0xffff; 449 else 450 info->assoc = size / (sets * lsize); 451 } 452 453 static bool __init parse_cache_info(struct device_node *np, 454 bool icache, 455 struct ppc_cache_info *info) 456 { 457 static const char *ipropnames[] __initdata = { 458 "i-cache-size", 459 "i-cache-sets", 460 "i-cache-block-size", 461 "i-cache-line-size", 462 }; 463 static const char *dpropnames[] __initdata = { 464 "d-cache-size", 465 "d-cache-sets", 466 "d-cache-block-size", 467 "d-cache-line-size", 468 }; 469 const char **propnames = icache ? ipropnames : dpropnames; 470 const __be32 *sizep, *lsizep, *bsizep, *setsp; 471 u32 size, lsize, bsize, sets; 472 bool success = true; 473 474 size = 0; 475 sets = -1u; 476 lsize = bsize = cur_cpu_spec->dcache_bsize; 477 sizep = of_get_property(np, propnames[0], NULL); 478 if (sizep != NULL) 479 size = be32_to_cpu(*sizep); 480 setsp = of_get_property(np, propnames[1], NULL); 481 if (setsp != NULL) 482 sets = be32_to_cpu(*setsp); 483 bsizep = of_get_property(np, propnames[2], NULL); 484 lsizep = of_get_property(np, propnames[3], NULL); 485 if (bsizep == NULL) 486 bsizep = lsizep; 487 if (lsizep != NULL) 488 lsize = be32_to_cpu(*lsizep); 489 if (bsizep != NULL) 490 bsize = be32_to_cpu(*bsizep); 491 if (sizep == NULL || bsizep == NULL || lsizep == NULL) 492 success = false; 493 494 /* 495 * OF is weird .. it represents fully associative caches 496 * as "1 way" which doesn't make much sense and doesn't 497 * leave room for direct mapped. We'll assume that 0 498 * in OF means direct mapped for that reason. 499 */ 500 if (sets == 1) 501 sets = 0; 502 else if (sets == 0) 503 sets = 1; 504 505 init_cache_info(info, size, lsize, bsize, sets); 506 507 return success; 508 } 509 510 void __init initialize_cache_info(void) 511 { 512 struct device_node *cpu = NULL, *l2, *l3 = NULL; 513 u32 pvr; 514 515 DBG(" -> initialize_cache_info()\n"); 516 517 /* 518 * All shipping POWER8 machines have a firmware bug that 519 * puts incorrect information in the device-tree. This will 520 * be (hopefully) fixed for future chips but for now hard 521 * code the values if we are running on one of these 522 */ 523 pvr = PVR_VER(mfspr(SPRN_PVR)); 524 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || 525 pvr == PVR_POWER8NVL) { 526 /* size lsize blk sets */ 527 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32); 528 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64); 529 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512); 530 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192); 531 } else 532 cpu = of_find_node_by_type(NULL, "cpu"); 533 534 /* 535 * We're assuming *all* of the CPUs have the same 536 * d-cache and i-cache sizes... -Peter 537 */ 538 if (cpu) { 539 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) 540 DBG("Argh, can't find dcache properties !\n"); 541 542 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) 543 DBG("Argh, can't find icache properties !\n"); 544 545 /* 546 * Try to find the L2 and L3 if any. Assume they are 547 * unified and use the D-side properties. 548 */ 549 l2 = of_find_next_cache_node(cpu); 550 of_node_put(cpu); 551 if (l2) { 552 parse_cache_info(l2, false, &ppc64_caches.l2); 553 l3 = of_find_next_cache_node(l2); 554 of_node_put(l2); 555 } 556 if (l3) { 557 parse_cache_info(l3, false, &ppc64_caches.l3); 558 of_node_put(l3); 559 } 560 } 561 562 /* For use by binfmt_elf */ 563 dcache_bsize = ppc64_caches.l1d.block_size; 564 icache_bsize = ppc64_caches.l1i.block_size; 565 566 cur_cpu_spec->dcache_bsize = dcache_bsize; 567 cur_cpu_spec->icache_bsize = icache_bsize; 568 569 DBG(" <- initialize_cache_info()\n"); 570 } 571 572 /* 573 * This returns the limit below which memory accesses to the linear 574 * mapping are guarnateed not to cause an architectural exception (e.g., 575 * TLB or SLB miss fault). 576 * 577 * This is used to allocate PACAs and various interrupt stacks that 578 * that are accessed early in interrupt handlers that must not cause 579 * re-entrant interrupts. 580 */ 581 __init u64 ppc64_bolted_size(void) 582 { 583 #ifdef CONFIG_PPC_BOOK3E 584 /* Freescale BookE bolts the entire linear mapping */ 585 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */ 586 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 587 return linear_map_top; 588 /* Other BookE, we assume the first GB is bolted */ 589 return 1ul << 30; 590 #else 591 /* BookS radix, does not take faults on linear mapping */ 592 if (early_radix_enabled()) 593 return ULONG_MAX; 594 595 /* BookS hash, the first segment is bolted */ 596 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT)) 597 return 1UL << SID_SHIFT_1T; 598 return 1UL << SID_SHIFT; 599 #endif 600 } 601 602 void __init irqstack_early_init(void) 603 { 604 u64 limit = ppc64_bolted_size(); 605 unsigned int i; 606 607 /* 608 * Interrupt stacks must be in the first segment since we 609 * cannot afford to take SLB misses on them. They are not 610 * accessed in realmode. 611 */ 612 for_each_possible_cpu(i) { 613 softirq_ctx[i] = (struct thread_info *) 614 __va(memblock_alloc_base(THREAD_SIZE, 615 THREAD_SIZE, limit)); 616 hardirq_ctx[i] = (struct thread_info *) 617 __va(memblock_alloc_base(THREAD_SIZE, 618 THREAD_SIZE, limit)); 619 } 620 } 621 622 #ifdef CONFIG_PPC_BOOK3E 623 void __init exc_lvl_early_init(void) 624 { 625 unsigned int i; 626 unsigned long sp; 627 628 for_each_possible_cpu(i) { 629 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 630 critirq_ctx[i] = (struct thread_info *)__va(sp); 631 paca[i].crit_kstack = __va(sp + THREAD_SIZE); 632 633 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 634 dbgirq_ctx[i] = (struct thread_info *)__va(sp); 635 paca[i].dbg_kstack = __va(sp + THREAD_SIZE); 636 637 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 638 mcheckirq_ctx[i] = (struct thread_info *)__va(sp); 639 paca[i].mc_kstack = __va(sp + THREAD_SIZE); 640 } 641 642 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) 643 patch_exception(0x040, exc_debug_debug_book3e); 644 } 645 #endif 646 647 /* 648 * Emergency stacks are used for a range of things, from asynchronous 649 * NMIs (system reset, machine check) to synchronous, process context. 650 * We set preempt_count to zero, even though that isn't necessarily correct. To 651 * get the right value we'd need to copy it from the previous thread_info, but 652 * doing that might fault causing more problems. 653 * TODO: what to do with accounting? 654 */ 655 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu) 656 { 657 ti->task = NULL; 658 ti->cpu = cpu; 659 ti->preempt_count = 0; 660 ti->local_flags = 0; 661 ti->flags = 0; 662 klp_init_thread_info(ti); 663 } 664 665 /* 666 * Stack space used when we detect a bad kernel stack pointer, and 667 * early in SMP boots before relocation is enabled. Exclusive emergency 668 * stack for machine checks. 669 */ 670 void __init emergency_stack_init(void) 671 { 672 u64 limit; 673 unsigned int i; 674 675 /* 676 * Emergency stacks must be under 256MB, we cannot afford to take 677 * SLB misses on them. The ABI also requires them to be 128-byte 678 * aligned. 679 * 680 * Since we use these as temporary stacks during secondary CPU 681 * bringup, machine check, system reset, and HMI, we need to get 682 * at them in real mode. This means they must also be within the RMO 683 * region. 684 * 685 * The IRQ stacks allocated elsewhere in this file are zeroed and 686 * initialized in kernel/irq.c. These are initialized here in order 687 * to have emergency stacks available as early as possible. 688 */ 689 limit = min(ppc64_bolted_size(), ppc64_rma_size); 690 691 for_each_possible_cpu(i) { 692 struct thread_info *ti; 693 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit)); 694 memset(ti, 0, THREAD_SIZE); 695 emerg_stack_init_thread_info(ti, i); 696 paca[i].emergency_sp = (void *)ti + THREAD_SIZE; 697 698 #ifdef CONFIG_PPC_BOOK3S_64 699 /* emergency stack for NMI exception handling. */ 700 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit)); 701 memset(ti, 0, THREAD_SIZE); 702 emerg_stack_init_thread_info(ti, i); 703 paca[i].nmi_emergency_sp = (void *)ti + THREAD_SIZE; 704 705 /* emergency stack for machine check exception handling. */ 706 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit)); 707 memset(ti, 0, THREAD_SIZE); 708 emerg_stack_init_thread_info(ti, i); 709 paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE; 710 #endif 711 } 712 } 713 714 #ifdef CONFIG_SMP 715 #define PCPU_DYN_SIZE () 716 717 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) 718 { 719 return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align, 720 __pa(MAX_DMA_ADDRESS)); 721 } 722 723 static void __init pcpu_fc_free(void *ptr, size_t size) 724 { 725 free_bootmem(__pa(ptr), size); 726 } 727 728 static int pcpu_cpu_distance(unsigned int from, unsigned int to) 729 { 730 if (early_cpu_to_node(from) == early_cpu_to_node(to)) 731 return LOCAL_DISTANCE; 732 else 733 return REMOTE_DISTANCE; 734 } 735 736 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 737 EXPORT_SYMBOL(__per_cpu_offset); 738 739 void __init setup_per_cpu_areas(void) 740 { 741 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; 742 size_t atom_size; 743 unsigned long delta; 744 unsigned int cpu; 745 int rc; 746 747 /* 748 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need 749 * to group units. For larger mappings, use 1M atom which 750 * should be large enough to contain a number of units. 751 */ 752 if (mmu_linear_psize == MMU_PAGE_4K) 753 atom_size = PAGE_SIZE; 754 else 755 atom_size = 1 << 20; 756 757 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, 758 pcpu_fc_alloc, pcpu_fc_free); 759 if (rc < 0) 760 panic("cannot initialize percpu area (err=%d)", rc); 761 762 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 763 for_each_possible_cpu(cpu) { 764 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 765 paca[cpu].data_offset = __per_cpu_offset[cpu]; 766 } 767 } 768 #endif 769 770 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 771 unsigned long memory_block_size_bytes(void) 772 { 773 if (ppc_md.memory_block_size) 774 return ppc_md.memory_block_size(); 775 776 return MIN_MEMORY_BLOCK_SIZE; 777 } 778 #endif 779 780 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 781 struct ppc_pci_io ppc_pci_io; 782 EXPORT_SYMBOL(ppc_pci_io); 783 #endif 784 785 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 786 u64 hw_nmi_get_sample_period(int watchdog_thresh) 787 { 788 return ppc_proc_freq * watchdog_thresh; 789 } 790 #endif 791 792 /* 793 * The perf based hardlockup detector breaks PMU event based branches, so 794 * disable it by default. Book3S has a soft-nmi hardlockup detector based 795 * on the decrementer interrupt, so it does not suffer from this problem. 796 * 797 * It is likely to get false positives in VM guests, so disable it there 798 * by default too. 799 */ 800 static int __init disable_hardlockup_detector(void) 801 { 802 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 803 hardlockup_detector_disable(); 804 #else 805 if (firmware_has_feature(FW_FEATURE_LPAR)) 806 hardlockup_detector_disable(); 807 #endif 808 809 return 0; 810 } 811 early_initcall(disable_hardlockup_detector); 812 813 #ifdef CONFIG_PPC_BOOK3S_64 814 static enum l1d_flush_type enabled_flush_types; 815 static void *l1d_flush_fallback_area; 816 static bool no_rfi_flush; 817 bool rfi_flush; 818 819 static int __init handle_no_rfi_flush(char *p) 820 { 821 pr_info("rfi-flush: disabled on command line."); 822 no_rfi_flush = true; 823 return 0; 824 } 825 early_param("no_rfi_flush", handle_no_rfi_flush); 826 827 /* 828 * The RFI flush is not KPTI, but because users will see doco that says to use 829 * nopti we hijack that option here to also disable the RFI flush. 830 */ 831 static int __init handle_no_pti(char *p) 832 { 833 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n"); 834 handle_no_rfi_flush(NULL); 835 return 0; 836 } 837 early_param("nopti", handle_no_pti); 838 839 static void do_nothing(void *unused) 840 { 841 /* 842 * We don't need to do the flush explicitly, just enter+exit kernel is 843 * sufficient, the RFI exit handlers will do the right thing. 844 */ 845 } 846 847 void rfi_flush_enable(bool enable) 848 { 849 if (rfi_flush == enable) 850 return; 851 852 if (enable) { 853 do_rfi_flush_fixups(enabled_flush_types); 854 on_each_cpu(do_nothing, NULL, 1); 855 } else 856 do_rfi_flush_fixups(L1D_FLUSH_NONE); 857 858 rfi_flush = enable; 859 } 860 861 static void init_fallback_flush(void) 862 { 863 u64 l1d_size, limit; 864 int cpu; 865 866 l1d_size = ppc64_caches.l1d.size; 867 limit = min(ppc64_bolted_size(), ppc64_rma_size); 868 869 /* 870 * Align to L1d size, and size it at 2x L1d size, to catch possible 871 * hardware prefetch runoff. We don't have a recipe for load patterns to 872 * reliably avoid the prefetcher. 873 */ 874 l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit)); 875 memset(l1d_flush_fallback_area, 0, l1d_size * 2); 876 877 for_each_possible_cpu(cpu) { 878 paca[cpu].rfi_flush_fallback_area = l1d_flush_fallback_area; 879 paca[cpu].l1d_flush_size = l1d_size; 880 } 881 } 882 883 void __init setup_rfi_flush(enum l1d_flush_type types, bool enable) 884 { 885 if (types & L1D_FLUSH_FALLBACK) { 886 pr_info("rfi-flush: Using fallback displacement flush\n"); 887 init_fallback_flush(); 888 } 889 890 if (types & L1D_FLUSH_ORI) 891 pr_info("rfi-flush: Using ori type flush\n"); 892 893 if (types & L1D_FLUSH_MTTRIG) 894 pr_info("rfi-flush: Using mttrig type flush\n"); 895 896 enabled_flush_types = types; 897 898 if (!no_rfi_flush) 899 rfi_flush_enable(enable); 900 } 901 902 #ifdef CONFIG_DEBUG_FS 903 static int rfi_flush_set(void *data, u64 val) 904 { 905 if (val == 1) 906 rfi_flush_enable(true); 907 else if (val == 0) 908 rfi_flush_enable(false); 909 else 910 return -EINVAL; 911 912 return 0; 913 } 914 915 static int rfi_flush_get(void *data, u64 *val) 916 { 917 *val = rfi_flush ? 1 : 0; 918 return 0; 919 } 920 921 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n"); 922 923 static __init int rfi_flush_debugfs_init(void) 924 { 925 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush); 926 return 0; 927 } 928 device_initcall(rfi_flush_debugfs_init); 929 #endif 930 931 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf) 932 { 933 if (rfi_flush) 934 return sprintf(buf, "Mitigation: RFI Flush\n"); 935 936 return sprintf(buf, "Vulnerable\n"); 937 } 938 #endif /* CONFIG_PPC_BOOK3S_64 */ 939