xref: /openbmc/linux/arch/powerpc/kernel/setup_64.c (revision 7671f967)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Common boot and setup code.
5  *
6  * Copyright (C) 2001 PPC64 Team, IBM Corp
7  */
8 
9 #include <linux/export.h>
10 #include <linux/string.h>
11 #include <linux/sched.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/delay.h>
16 #include <linux/initrd.h>
17 #include <linux/seq_file.h>
18 #include <linux/ioport.h>
19 #include <linux/console.h>
20 #include <linux/utsname.h>
21 #include <linux/tty.h>
22 #include <linux/root_dev.h>
23 #include <linux/notifier.h>
24 #include <linux/cpu.h>
25 #include <linux/unistd.h>
26 #include <linux/serial.h>
27 #include <linux/serial_8250.h>
28 #include <linux/memblock.h>
29 #include <linux/pci.h>
30 #include <linux/lockdep.h>
31 #include <linux/memory.h>
32 #include <linux/nmi.h>
33 #include <linux/pgtable.h>
34 
35 #include <asm/kvm_guest.h>
36 #include <asm/io.h>
37 #include <asm/kdump.h>
38 #include <asm/prom.h>
39 #include <asm/processor.h>
40 #include <asm/smp.h>
41 #include <asm/elf.h>
42 #include <asm/machdep.h>
43 #include <asm/paca.h>
44 #include <asm/time.h>
45 #include <asm/cputable.h>
46 #include <asm/dt_cpu_ftrs.h>
47 #include <asm/sections.h>
48 #include <asm/btext.h>
49 #include <asm/nvram.h>
50 #include <asm/setup.h>
51 #include <asm/rtas.h>
52 #include <asm/iommu.h>
53 #include <asm/serial.h>
54 #include <asm/cache.h>
55 #include <asm/page.h>
56 #include <asm/mmu.h>
57 #include <asm/firmware.h>
58 #include <asm/xmon.h>
59 #include <asm/udbg.h>
60 #include <asm/kexec.h>
61 #include <asm/code-patching.h>
62 #include <asm/livepatch.h>
63 #include <asm/opal.h>
64 #include <asm/cputhreads.h>
65 #include <asm/hw_irq.h>
66 #include <asm/feature-fixups.h>
67 #include <asm/kup.h>
68 #include <asm/early_ioremap.h>
69 #include <asm/pgalloc.h>
70 
71 #include "setup.h"
72 
73 int spinning_secondaries;
74 u64 ppc64_pft_size;
75 
76 struct ppc64_caches ppc64_caches = {
77 	.l1d = {
78 		.block_size = 0x40,
79 		.log_block_size = 6,
80 	},
81 	.l1i = {
82 		.block_size = 0x40,
83 		.log_block_size = 6
84 	},
85 };
86 EXPORT_SYMBOL_GPL(ppc64_caches);
87 
88 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
89 void __init setup_tlb_core_data(void)
90 {
91 	int cpu;
92 
93 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
94 
95 	for_each_possible_cpu(cpu) {
96 		int first = cpu_first_thread_sibling(cpu);
97 
98 		/*
99 		 * If we boot via kdump on a non-primary thread,
100 		 * make sure we point at the thread that actually
101 		 * set up this TLB.
102 		 */
103 		if (cpu_first_thread_sibling(boot_cpuid) == first)
104 			first = boot_cpuid;
105 
106 		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
107 
108 		/*
109 		 * If we have threads, we need either tlbsrx.
110 		 * or e6500 tablewalk mode, or else TLB handlers
111 		 * will be racy and could produce duplicate entries.
112 		 * Should we panic instead?
113 		 */
114 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
115 			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
116 			  book3e_htw_mode != PPC_HTW_E6500,
117 			  "%s: unsupported MMU configuration\n", __func__);
118 	}
119 }
120 #endif
121 
122 #ifdef CONFIG_SMP
123 
124 static char *smt_enabled_cmdline;
125 
126 /* Look for ibm,smt-enabled OF option */
127 void __init check_smt_enabled(void)
128 {
129 	struct device_node *dn;
130 	const char *smt_option;
131 
132 	/* Default to enabling all threads */
133 	smt_enabled_at_boot = threads_per_core;
134 
135 	/* Allow the command line to overrule the OF option */
136 	if (smt_enabled_cmdline) {
137 		if (!strcmp(smt_enabled_cmdline, "on"))
138 			smt_enabled_at_boot = threads_per_core;
139 		else if (!strcmp(smt_enabled_cmdline, "off"))
140 			smt_enabled_at_boot = 0;
141 		else {
142 			int smt;
143 			int rc;
144 
145 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
146 			if (!rc)
147 				smt_enabled_at_boot =
148 					min(threads_per_core, smt);
149 		}
150 	} else {
151 		dn = of_find_node_by_path("/options");
152 		if (dn) {
153 			smt_option = of_get_property(dn, "ibm,smt-enabled",
154 						     NULL);
155 
156 			if (smt_option) {
157 				if (!strcmp(smt_option, "on"))
158 					smt_enabled_at_boot = threads_per_core;
159 				else if (!strcmp(smt_option, "off"))
160 					smt_enabled_at_boot = 0;
161 			}
162 
163 			of_node_put(dn);
164 		}
165 	}
166 }
167 
168 /* Look for smt-enabled= cmdline option */
169 static int __init early_smt_enabled(char *p)
170 {
171 	smt_enabled_cmdline = p;
172 	return 0;
173 }
174 early_param("smt-enabled", early_smt_enabled);
175 
176 #endif /* CONFIG_SMP */
177 
178 /** Fix up paca fields required for the boot cpu */
179 static void __init fixup_boot_paca(void)
180 {
181 	/* The boot cpu is started */
182 	get_paca()->cpu_start = 1;
183 	/* Allow percpu accesses to work until we setup percpu data */
184 	get_paca()->data_offset = 0;
185 	/* Mark interrupts disabled in PACA */
186 	irq_soft_mask_set(IRQS_DISABLED);
187 }
188 
189 static void __init configure_exceptions(void)
190 {
191 	/*
192 	 * Setup the trampolines from the lowmem exception vectors
193 	 * to the kdump kernel when not using a relocatable kernel.
194 	 */
195 	setup_kdump_trampoline();
196 
197 	/* Under a PAPR hypervisor, we need hypercalls */
198 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
199 		/*
200 		 * - PR KVM does not support AIL mode interrupts in the host
201 		 *   while a PR guest is running.
202 		 *
203 		 * - SCV system call interrupt vectors are only implemented for
204 		 *   AIL mode interrupts.
205 		 *
206 		 * - On pseries, AIL mode can only be enabled and disabled
207 		 *   system-wide so when a PR VM is created on a pseries host,
208 		 *   all CPUs of the host are set to AIL=0 mode.
209 		 *
210 		 * - Therefore host CPUs must not execute scv while a PR VM
211 		 *   exists.
212 		 *
213 		 * - SCV support can not be disabled dynamically because the
214 		 *   feature is advertised to host userspace. Disabling the
215 		 *   facility and emulating it would be possible but is not
216 		 *   implemented.
217 		 *
218 		 * - So SCV support is blanket disabled if PR KVM could possibly
219 		 *   run. That is, PR support compiled in, booting on pseries
220 		 *   with hash MMU.
221 		 */
222 		if (IS_ENABLED(CONFIG_KVM_BOOK3S_PR_POSSIBLE) && !radix_enabled()) {
223 			init_task.thread.fscr &= ~FSCR_SCV;
224 			cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
225 		}
226 
227 		/* Enable AIL if possible */
228 		if (!pseries_enable_reloc_on_exc()) {
229 			init_task.thread.fscr &= ~FSCR_SCV;
230 			cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
231 		}
232 
233 		/*
234 		 * Tell the hypervisor that we want our exceptions to
235 		 * be taken in little endian mode.
236 		 *
237 		 * We don't call this for big endian as our calling convention
238 		 * makes us always enter in BE, and the call may fail under
239 		 * some circumstances with kdump.
240 		 */
241 #ifdef __LITTLE_ENDIAN__
242 		pseries_little_endian_exceptions();
243 #endif
244 	} else {
245 		/* Set endian mode using OPAL */
246 		if (firmware_has_feature(FW_FEATURE_OPAL))
247 			opal_configure_cores();
248 
249 		/* AIL on native is done in cpu_ready_for_interrupts() */
250 	}
251 }
252 
253 static void cpu_ready_for_interrupts(void)
254 {
255 	/*
256 	 * Enable AIL if supported, and we are in hypervisor mode. This
257 	 * is called once for every processor.
258 	 *
259 	 * If we are not in hypervisor mode the job is done once for
260 	 * the whole partition in configure_exceptions().
261 	 */
262 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
263 		unsigned long lpcr = mfspr(SPRN_LPCR);
264 		unsigned long new_lpcr = lpcr;
265 
266 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
267 			/* P10 DD1 does not have HAIL */
268 			if (pvr_version_is(PVR_POWER10) &&
269 					(mfspr(SPRN_PVR) & 0xf00) == 0x100)
270 				new_lpcr |= LPCR_AIL_3;
271 			else
272 				new_lpcr |= LPCR_HAIL;
273 		} else if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
274 			new_lpcr |= LPCR_AIL_3;
275 		}
276 
277 		if (new_lpcr != lpcr)
278 			mtspr(SPRN_LPCR, new_lpcr);
279 	}
280 
281 	/*
282 	 * Set HFSCR:TM based on CPU features:
283 	 * In the special case of TM no suspend (P9N DD2.1), Linux is
284 	 * told TM is off via the dt-ftrs but told to (partially) use
285 	 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
286 	 * will be off from dt-ftrs but we need to turn it on for the
287 	 * no suspend case.
288 	 */
289 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
290 		if (cpu_has_feature(CPU_FTR_TM_COMP))
291 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
292 		else
293 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
294 	}
295 
296 	/* Set IR and DR in PACA MSR */
297 	get_paca()->kernel_msr = MSR_KERNEL;
298 }
299 
300 unsigned long spr_default_dscr = 0;
301 
302 static void __init record_spr_defaults(void)
303 {
304 	if (early_cpu_has_feature(CPU_FTR_DSCR))
305 		spr_default_dscr = mfspr(SPRN_DSCR);
306 }
307 
308 /*
309  * Early initialization entry point. This is called by head.S
310  * with MMU translation disabled. We rely on the "feature" of
311  * the CPU that ignores the top 2 bits of the address in real
312  * mode so we can access kernel globals normally provided we
313  * only toy with things in the RMO region. From here, we do
314  * some early parsing of the device-tree to setup out MEMBLOCK
315  * data structures, and allocate & initialize the hash table
316  * and segment tables so we can start running with translation
317  * enabled.
318  *
319  * It is this function which will call the probe() callback of
320  * the various platform types and copy the matching one to the
321  * global ppc_md structure. Your platform can eventually do
322  * some very early initializations from the probe() routine, but
323  * this is not recommended, be very careful as, for example, the
324  * device-tree is not accessible via normal means at this point.
325  */
326 
327 void __init early_setup(unsigned long dt_ptr)
328 {
329 	static __initdata struct paca_struct boot_paca;
330 
331 	/* -------- printk is _NOT_ safe to use here ! ------- */
332 
333 	/*
334 	 * Assume we're on cpu 0 for now.
335 	 *
336 	 * We need to load a PACA very early for a few reasons.
337 	 *
338 	 * The stack protector canary is stored in the paca, so as soon as we
339 	 * call any stack protected code we need r13 pointing somewhere valid.
340 	 *
341 	 * If we are using kcov it will call in_task() in its instrumentation,
342 	 * which relies on the current task from the PACA.
343 	 *
344 	 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
345 	 * printk(), which can trigger both stack protector and kcov.
346 	 *
347 	 * percpu variables and spin locks also use the paca.
348 	 *
349 	 * So set up a temporary paca. It will be replaced below once we know
350 	 * what CPU we are on.
351 	 */
352 	initialise_paca(&boot_paca, 0);
353 	setup_paca(&boot_paca);
354 	fixup_boot_paca();
355 
356 	/* -------- printk is now safe to use ------- */
357 
358 	/* Try new device tree based feature discovery ... */
359 	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
360 		/* Otherwise use the old style CPU table */
361 		identify_cpu(0, mfspr(SPRN_PVR));
362 
363 	/* Enable early debugging if any specified (see udbg.h) */
364 	udbg_early_init();
365 
366 	udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
367 
368 	/*
369 	 * Do early initialization using the flattened device
370 	 * tree, such as retrieving the physical memory map or
371 	 * calculating/retrieving the hash table size.
372 	 */
373 	early_init_devtree(__va(dt_ptr));
374 
375 	/* Now we know the logical id of our boot cpu, setup the paca. */
376 	if (boot_cpuid != 0) {
377 		/* Poison paca_ptrs[0] again if it's not the boot cpu */
378 		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
379 	}
380 	setup_paca(paca_ptrs[boot_cpuid]);
381 	fixup_boot_paca();
382 
383 	/*
384 	 * Configure exception handlers. This include setting up trampolines
385 	 * if needed, setting exception endian mode, etc...
386 	 */
387 	configure_exceptions();
388 
389 	/*
390 	 * Configure Kernel Userspace Protection. This needs to happen before
391 	 * feature fixups for platforms that implement this using features.
392 	 */
393 	setup_kup();
394 
395 	/* Apply all the dynamic patching */
396 	apply_feature_fixups();
397 	setup_feature_keys();
398 
399 	/* Initialize the hash table or TLB handling */
400 	early_init_mmu();
401 
402 	early_ioremap_setup();
403 
404 	/*
405 	 * After firmware and early platform setup code has set things up,
406 	 * we note the SPR values for configurable control/performance
407 	 * registers, and use those as initial defaults.
408 	 */
409 	record_spr_defaults();
410 
411 	/*
412 	 * At this point, we can let interrupts switch to virtual mode
413 	 * (the MMU has been setup), so adjust the MSR in the PACA to
414 	 * have IR and DR set and enable AIL if it exists
415 	 */
416 	cpu_ready_for_interrupts();
417 
418 	/*
419 	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
420 	 * will only actually get enabled on the boot cpu much later once
421 	 * ftrace itself has been initialized.
422 	 */
423 	this_cpu_enable_ftrace();
424 
425 	udbg_printf(" <- %s()\n", __func__);
426 
427 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
428 	/*
429 	 * This needs to be done *last* (after the above udbg_printf() even)
430 	 *
431 	 * Right after we return from this function, we turn on the MMU
432 	 * which means the real-mode access trick that btext does will
433 	 * no longer work, it needs to switch to using a real MMU
434 	 * mapping. This call will ensure that it does
435 	 */
436 	btext_map();
437 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
438 }
439 
440 #ifdef CONFIG_SMP
441 void early_setup_secondary(void)
442 {
443 	/* Mark interrupts disabled in PACA */
444 	irq_soft_mask_set(IRQS_DISABLED);
445 
446 	/* Initialize the hash table or TLB handling */
447 	early_init_mmu_secondary();
448 
449 	/* Perform any KUP setup that is per-cpu */
450 	setup_kup();
451 
452 	/*
453 	 * At this point, we can let interrupts switch to virtual mode
454 	 * (the MMU has been setup), so adjust the MSR in the PACA to
455 	 * have IR and DR set.
456 	 */
457 	cpu_ready_for_interrupts();
458 }
459 
460 #endif /* CONFIG_SMP */
461 
462 void panic_smp_self_stop(void)
463 {
464 	hard_irq_disable();
465 	spin_begin();
466 	while (1)
467 		spin_cpu_relax();
468 }
469 
470 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
471 static bool use_spinloop(void)
472 {
473 	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
474 		/*
475 		 * See comments in head_64.S -- not all platforms insert
476 		 * secondaries at __secondary_hold and wait at the spin
477 		 * loop.
478 		 */
479 		if (firmware_has_feature(FW_FEATURE_OPAL))
480 			return false;
481 		return true;
482 	}
483 
484 	/*
485 	 * When book3e boots from kexec, the ePAPR spin table does
486 	 * not get used.
487 	 */
488 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
489 }
490 
491 void smp_release_cpus(void)
492 {
493 	unsigned long *ptr;
494 	int i;
495 
496 	if (!use_spinloop())
497 		return;
498 
499 	/* All secondary cpus are spinning on a common spinloop, release them
500 	 * all now so they can start to spin on their individual paca
501 	 * spinloops. For non SMP kernels, the secondary cpus never get out
502 	 * of the common spinloop.
503 	 */
504 
505 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
506 			- PHYSICAL_START);
507 	*ptr = ppc_function_entry(generic_secondary_smp_init);
508 
509 	/* And wait a bit for them to catch up */
510 	for (i = 0; i < 100000; i++) {
511 		mb();
512 		HMT_low();
513 		if (spinning_secondaries == 0)
514 			break;
515 		udelay(1);
516 	}
517 	pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
518 }
519 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
520 
521 /*
522  * Initialize some remaining members of the ppc64_caches and systemcfg
523  * structures
524  * (at least until we get rid of them completely). This is mostly some
525  * cache informations about the CPU that will be used by cache flush
526  * routines and/or provided to userland
527  */
528 
529 static void __init init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
530 			    u32 bsize, u32 sets)
531 {
532 	info->size = size;
533 	info->sets = sets;
534 	info->line_size = lsize;
535 	info->block_size = bsize;
536 	info->log_block_size = __ilog2(bsize);
537 	if (bsize)
538 		info->blocks_per_page = PAGE_SIZE / bsize;
539 	else
540 		info->blocks_per_page = 0;
541 
542 	if (sets == 0)
543 		info->assoc = 0xffff;
544 	else
545 		info->assoc = size / (sets * lsize);
546 }
547 
548 static bool __init parse_cache_info(struct device_node *np,
549 				    bool icache,
550 				    struct ppc_cache_info *info)
551 {
552 	static const char *ipropnames[] __initdata = {
553 		"i-cache-size",
554 		"i-cache-sets",
555 		"i-cache-block-size",
556 		"i-cache-line-size",
557 	};
558 	static const char *dpropnames[] __initdata = {
559 		"d-cache-size",
560 		"d-cache-sets",
561 		"d-cache-block-size",
562 		"d-cache-line-size",
563 	};
564 	const char **propnames = icache ? ipropnames : dpropnames;
565 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
566 	u32 size, lsize, bsize, sets;
567 	bool success = true;
568 
569 	size = 0;
570 	sets = -1u;
571 	lsize = bsize = cur_cpu_spec->dcache_bsize;
572 	sizep = of_get_property(np, propnames[0], NULL);
573 	if (sizep != NULL)
574 		size = be32_to_cpu(*sizep);
575 	setsp = of_get_property(np, propnames[1], NULL);
576 	if (setsp != NULL)
577 		sets = be32_to_cpu(*setsp);
578 	bsizep = of_get_property(np, propnames[2], NULL);
579 	lsizep = of_get_property(np, propnames[3], NULL);
580 	if (bsizep == NULL)
581 		bsizep = lsizep;
582 	if (lsizep == NULL)
583 		lsizep = bsizep;
584 	if (lsizep != NULL)
585 		lsize = be32_to_cpu(*lsizep);
586 	if (bsizep != NULL)
587 		bsize = be32_to_cpu(*bsizep);
588 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
589 		success = false;
590 
591 	/*
592 	 * OF is weird .. it represents fully associative caches
593 	 * as "1 way" which doesn't make much sense and doesn't
594 	 * leave room for direct mapped. We'll assume that 0
595 	 * in OF means direct mapped for that reason.
596 	 */
597 	if (sets == 1)
598 		sets = 0;
599 	else if (sets == 0)
600 		sets = 1;
601 
602 	init_cache_info(info, size, lsize, bsize, sets);
603 
604 	return success;
605 }
606 
607 void __init initialize_cache_info(void)
608 {
609 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
610 	u32 pvr;
611 
612 	/*
613 	 * All shipping POWER8 machines have a firmware bug that
614 	 * puts incorrect information in the device-tree. This will
615 	 * be (hopefully) fixed for future chips but for now hard
616 	 * code the values if we are running on one of these
617 	 */
618 	pvr = PVR_VER(mfspr(SPRN_PVR));
619 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
620 	    pvr == PVR_POWER8NVL) {
621 						/* size    lsize   blk  sets */
622 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
623 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
624 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
625 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
626 	} else
627 		cpu = of_find_node_by_type(NULL, "cpu");
628 
629 	/*
630 	 * We're assuming *all* of the CPUs have the same
631 	 * d-cache and i-cache sizes... -Peter
632 	 */
633 	if (cpu) {
634 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
635 			pr_warn("Argh, can't find dcache properties !\n");
636 
637 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
638 			pr_warn("Argh, can't find icache properties !\n");
639 
640 		/*
641 		 * Try to find the L2 and L3 if any. Assume they are
642 		 * unified and use the D-side properties.
643 		 */
644 		l2 = of_find_next_cache_node(cpu);
645 		of_node_put(cpu);
646 		if (l2) {
647 			parse_cache_info(l2, false, &ppc64_caches.l2);
648 			l3 = of_find_next_cache_node(l2);
649 			of_node_put(l2);
650 		}
651 		if (l3) {
652 			parse_cache_info(l3, false, &ppc64_caches.l3);
653 			of_node_put(l3);
654 		}
655 	}
656 
657 	/* For use by binfmt_elf */
658 	dcache_bsize = ppc64_caches.l1d.block_size;
659 	icache_bsize = ppc64_caches.l1i.block_size;
660 
661 	cur_cpu_spec->dcache_bsize = dcache_bsize;
662 	cur_cpu_spec->icache_bsize = icache_bsize;
663 }
664 
665 /*
666  * This returns the limit below which memory accesses to the linear
667  * mapping are guarnateed not to cause an architectural exception (e.g.,
668  * TLB or SLB miss fault).
669  *
670  * This is used to allocate PACAs and various interrupt stacks that
671  * that are accessed early in interrupt handlers that must not cause
672  * re-entrant interrupts.
673  */
674 __init u64 ppc64_bolted_size(void)
675 {
676 #ifdef CONFIG_PPC_BOOK3E
677 	/* Freescale BookE bolts the entire linear mapping */
678 	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
679 	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
680 		return linear_map_top;
681 	/* Other BookE, we assume the first GB is bolted */
682 	return 1ul << 30;
683 #else
684 	/* BookS radix, does not take faults on linear mapping */
685 	if (early_radix_enabled())
686 		return ULONG_MAX;
687 
688 	/* BookS hash, the first segment is bolted */
689 	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
690 		return 1UL << SID_SHIFT_1T;
691 	return 1UL << SID_SHIFT;
692 #endif
693 }
694 
695 static void *__init alloc_stack(unsigned long limit, int cpu)
696 {
697 	void *ptr;
698 
699 	BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
700 
701 	ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
702 				     MEMBLOCK_LOW_LIMIT, limit,
703 				     early_cpu_to_node(cpu));
704 	if (!ptr)
705 		panic("cannot allocate stacks");
706 
707 	return ptr;
708 }
709 
710 void __init irqstack_early_init(void)
711 {
712 	u64 limit = ppc64_bolted_size();
713 	unsigned int i;
714 
715 	/*
716 	 * Interrupt stacks must be in the first segment since we
717 	 * cannot afford to take SLB misses on them. They are not
718 	 * accessed in realmode.
719 	 */
720 	for_each_possible_cpu(i) {
721 		softirq_ctx[i] = alloc_stack(limit, i);
722 		hardirq_ctx[i] = alloc_stack(limit, i);
723 	}
724 }
725 
726 #ifdef CONFIG_PPC_BOOK3E
727 void __init exc_lvl_early_init(void)
728 {
729 	unsigned int i;
730 
731 	for_each_possible_cpu(i) {
732 		void *sp;
733 
734 		sp = alloc_stack(ULONG_MAX, i);
735 		critirq_ctx[i] = sp;
736 		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
737 
738 		sp = alloc_stack(ULONG_MAX, i);
739 		dbgirq_ctx[i] = sp;
740 		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
741 
742 		sp = alloc_stack(ULONG_MAX, i);
743 		mcheckirq_ctx[i] = sp;
744 		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
745 	}
746 
747 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
748 		patch_exception(0x040, exc_debug_debug_book3e);
749 }
750 #endif
751 
752 /*
753  * Stack space used when we detect a bad kernel stack pointer, and
754  * early in SMP boots before relocation is enabled. Exclusive emergency
755  * stack for machine checks.
756  */
757 void __init emergency_stack_init(void)
758 {
759 	u64 limit, mce_limit;
760 	unsigned int i;
761 
762 	/*
763 	 * Emergency stacks must be under 256MB, we cannot afford to take
764 	 * SLB misses on them. The ABI also requires them to be 128-byte
765 	 * aligned.
766 	 *
767 	 * Since we use these as temporary stacks during secondary CPU
768 	 * bringup, machine check, system reset, and HMI, we need to get
769 	 * at them in real mode. This means they must also be within the RMO
770 	 * region.
771 	 *
772 	 * The IRQ stacks allocated elsewhere in this file are zeroed and
773 	 * initialized in kernel/irq.c. These are initialized here in order
774 	 * to have emergency stacks available as early as possible.
775 	 */
776 	limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
777 
778 	/*
779 	 * Machine check on pseries calls rtas, but can't use the static
780 	 * rtas_args due to a machine check hitting while the lock is held.
781 	 * rtas args have to be under 4GB, so the machine check stack is
782 	 * limited to 4GB so args can be put on stack.
783 	 */
784 	if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
785 		mce_limit = SZ_4G;
786 
787 	for_each_possible_cpu(i) {
788 		paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
789 
790 #ifdef CONFIG_PPC_BOOK3S_64
791 		/* emergency stack for NMI exception handling. */
792 		paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
793 
794 		/* emergency stack for machine check exception handling. */
795 		paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
796 #endif
797 	}
798 }
799 
800 #ifdef CONFIG_SMP
801 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
802 {
803 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
804 		return LOCAL_DISTANCE;
805 	else
806 		return REMOTE_DISTANCE;
807 }
808 
809 static __init int pcpu_cpu_to_node(int cpu)
810 {
811 	return early_cpu_to_node(cpu);
812 }
813 
814 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
815 EXPORT_SYMBOL(__per_cpu_offset);
816 
817 void __init setup_per_cpu_areas(void)
818 {
819 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
820 	size_t atom_size;
821 	unsigned long delta;
822 	unsigned int cpu;
823 	int rc = -EINVAL;
824 
825 	/*
826 	 * BookE and BookS radix are historical values and should be revisited.
827 	 */
828 	if (IS_ENABLED(CONFIG_PPC_BOOK3E)) {
829 		atom_size = SZ_1M;
830 	} else if (radix_enabled()) {
831 		atom_size = PAGE_SIZE;
832 	} else if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU)) {
833 		/*
834 		 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
835 		 * to group units.  For larger mappings, use 1M atom which
836 		 * should be large enough to contain a number of units.
837 		 */
838 		if (mmu_linear_psize == MMU_PAGE_4K)
839 			atom_size = PAGE_SIZE;
840 		else
841 			atom_size = SZ_1M;
842 	}
843 
844 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
845 		rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
846 					    pcpu_cpu_to_node);
847 		if (rc)
848 			pr_warn("PERCPU: %s allocator failed (%d), "
849 				"falling back to page size\n",
850 				pcpu_fc_names[pcpu_chosen_fc], rc);
851 	}
852 
853 	if (rc < 0)
854 		rc = pcpu_page_first_chunk(0, pcpu_cpu_to_node);
855 	if (rc < 0)
856 		panic("cannot initialize percpu area (err=%d)", rc);
857 
858 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
859 	for_each_possible_cpu(cpu) {
860                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
861 		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
862 	}
863 }
864 #endif
865 
866 #ifdef CONFIG_MEMORY_HOTPLUG
867 unsigned long memory_block_size_bytes(void)
868 {
869 	if (ppc_md.memory_block_size)
870 		return ppc_md.memory_block_size();
871 
872 	return MIN_MEMORY_BLOCK_SIZE;
873 }
874 #endif
875 
876 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
877 struct ppc_pci_io ppc_pci_io;
878 EXPORT_SYMBOL(ppc_pci_io);
879 #endif
880 
881 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
882 u64 hw_nmi_get_sample_period(int watchdog_thresh)
883 {
884 	return ppc_proc_freq * watchdog_thresh;
885 }
886 #endif
887 
888 /*
889  * The perf based hardlockup detector breaks PMU event based branches, so
890  * disable it by default. Book3S has a soft-nmi hardlockup detector based
891  * on the decrementer interrupt, so it does not suffer from this problem.
892  *
893  * It is likely to get false positives in KVM guests, so disable it there
894  * by default too. PowerVM will not stop or arbitrarily oversubscribe
895  * CPUs, but give a minimum regular allotment even with SPLPAR, so enable
896  * the detector for non-KVM guests, assume PowerVM.
897  */
898 static int __init disable_hardlockup_detector(void)
899 {
900 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
901 	hardlockup_detector_disable();
902 #else
903 	if (firmware_has_feature(FW_FEATURE_LPAR)) {
904 		if (is_kvm_guest())
905 			hardlockup_detector_disable();
906 	}
907 #endif
908 
909 	return 0;
910 }
911 early_initcall(disable_hardlockup_detector);
912