1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/export.h> 14 #include <linux/string.h> 15 #include <linux/sched.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/reboot.h> 19 #include <linux/delay.h> 20 #include <linux/initrd.h> 21 #include <linux/seq_file.h> 22 #include <linux/ioport.h> 23 #include <linux/console.h> 24 #include <linux/utsname.h> 25 #include <linux/tty.h> 26 #include <linux/root_dev.h> 27 #include <linux/notifier.h> 28 #include <linux/cpu.h> 29 #include <linux/unistd.h> 30 #include <linux/serial.h> 31 #include <linux/serial_8250.h> 32 #include <linux/memblock.h> 33 #include <linux/pci.h> 34 #include <linux/lockdep.h> 35 #include <linux/memory.h> 36 #include <linux/nmi.h> 37 38 #include <asm/debugfs.h> 39 #include <asm/io.h> 40 #include <asm/kdump.h> 41 #include <asm/prom.h> 42 #include <asm/processor.h> 43 #include <asm/pgtable.h> 44 #include <asm/smp.h> 45 #include <asm/elf.h> 46 #include <asm/machdep.h> 47 #include <asm/paca.h> 48 #include <asm/time.h> 49 #include <asm/cputable.h> 50 #include <asm/dt_cpu_ftrs.h> 51 #include <asm/sections.h> 52 #include <asm/btext.h> 53 #include <asm/nvram.h> 54 #include <asm/setup.h> 55 #include <asm/rtas.h> 56 #include <asm/iommu.h> 57 #include <asm/serial.h> 58 #include <asm/cache.h> 59 #include <asm/page.h> 60 #include <asm/mmu.h> 61 #include <asm/firmware.h> 62 #include <asm/xmon.h> 63 #include <asm/udbg.h> 64 #include <asm/kexec.h> 65 #include <asm/code-patching.h> 66 #include <asm/livepatch.h> 67 #include <asm/opal.h> 68 #include <asm/cputhreads.h> 69 #include <asm/hw_irq.h> 70 #include <asm/feature-fixups.h> 71 #include <asm/kup.h> 72 73 #include "setup.h" 74 75 #ifdef DEBUG 76 #define DBG(fmt...) udbg_printf(fmt) 77 #else 78 #define DBG(fmt...) 79 #endif 80 81 int spinning_secondaries; 82 u64 ppc64_pft_size; 83 84 struct ppc64_caches ppc64_caches = { 85 .l1d = { 86 .block_size = 0x40, 87 .log_block_size = 6, 88 }, 89 .l1i = { 90 .block_size = 0x40, 91 .log_block_size = 6 92 }, 93 }; 94 EXPORT_SYMBOL_GPL(ppc64_caches); 95 96 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) 97 void __init setup_tlb_core_data(void) 98 { 99 int cpu; 100 101 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); 102 103 for_each_possible_cpu(cpu) { 104 int first = cpu_first_thread_sibling(cpu); 105 106 /* 107 * If we boot via kdump on a non-primary thread, 108 * make sure we point at the thread that actually 109 * set up this TLB. 110 */ 111 if (cpu_first_thread_sibling(boot_cpuid) == first) 112 first = boot_cpuid; 113 114 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd; 115 116 /* 117 * If we have threads, we need either tlbsrx. 118 * or e6500 tablewalk mode, or else TLB handlers 119 * will be racy and could produce duplicate entries. 120 * Should we panic instead? 121 */ 122 WARN_ONCE(smt_enabled_at_boot >= 2 && 123 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && 124 book3e_htw_mode != PPC_HTW_E6500, 125 "%s: unsupported MMU configuration\n", __func__); 126 } 127 } 128 #endif 129 130 #ifdef CONFIG_SMP 131 132 static char *smt_enabled_cmdline; 133 134 /* Look for ibm,smt-enabled OF option */ 135 void __init check_smt_enabled(void) 136 { 137 struct device_node *dn; 138 const char *smt_option; 139 140 /* Default to enabling all threads */ 141 smt_enabled_at_boot = threads_per_core; 142 143 /* Allow the command line to overrule the OF option */ 144 if (smt_enabled_cmdline) { 145 if (!strcmp(smt_enabled_cmdline, "on")) 146 smt_enabled_at_boot = threads_per_core; 147 else if (!strcmp(smt_enabled_cmdline, "off")) 148 smt_enabled_at_boot = 0; 149 else { 150 int smt; 151 int rc; 152 153 rc = kstrtoint(smt_enabled_cmdline, 10, &smt); 154 if (!rc) 155 smt_enabled_at_boot = 156 min(threads_per_core, smt); 157 } 158 } else { 159 dn = of_find_node_by_path("/options"); 160 if (dn) { 161 smt_option = of_get_property(dn, "ibm,smt-enabled", 162 NULL); 163 164 if (smt_option) { 165 if (!strcmp(smt_option, "on")) 166 smt_enabled_at_boot = threads_per_core; 167 else if (!strcmp(smt_option, "off")) 168 smt_enabled_at_boot = 0; 169 } 170 171 of_node_put(dn); 172 } 173 } 174 } 175 176 /* Look for smt-enabled= cmdline option */ 177 static int __init early_smt_enabled(char *p) 178 { 179 smt_enabled_cmdline = p; 180 return 0; 181 } 182 early_param("smt-enabled", early_smt_enabled); 183 184 #endif /* CONFIG_SMP */ 185 186 /** Fix up paca fields required for the boot cpu */ 187 static void __init fixup_boot_paca(void) 188 { 189 /* The boot cpu is started */ 190 get_paca()->cpu_start = 1; 191 /* Allow percpu accesses to work until we setup percpu data */ 192 get_paca()->data_offset = 0; 193 /* Mark interrupts disabled in PACA */ 194 irq_soft_mask_set(IRQS_DISABLED); 195 } 196 197 static void __init configure_exceptions(void) 198 { 199 /* 200 * Setup the trampolines from the lowmem exception vectors 201 * to the kdump kernel when not using a relocatable kernel. 202 */ 203 setup_kdump_trampoline(); 204 205 /* Under a PAPR hypervisor, we need hypercalls */ 206 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 207 /* Enable AIL if possible */ 208 pseries_enable_reloc_on_exc(); 209 210 /* 211 * Tell the hypervisor that we want our exceptions to 212 * be taken in little endian mode. 213 * 214 * We don't call this for big endian as our calling convention 215 * makes us always enter in BE, and the call may fail under 216 * some circumstances with kdump. 217 */ 218 #ifdef __LITTLE_ENDIAN__ 219 pseries_little_endian_exceptions(); 220 #endif 221 } else { 222 /* Set endian mode using OPAL */ 223 if (firmware_has_feature(FW_FEATURE_OPAL)) 224 opal_configure_cores(); 225 226 /* AIL on native is done in cpu_ready_for_interrupts() */ 227 } 228 } 229 230 static void cpu_ready_for_interrupts(void) 231 { 232 /* 233 * Enable AIL if supported, and we are in hypervisor mode. This 234 * is called once for every processor. 235 * 236 * If we are not in hypervisor mode the job is done once for 237 * the whole partition in configure_exceptions(). 238 */ 239 if (cpu_has_feature(CPU_FTR_HVMODE) && 240 cpu_has_feature(CPU_FTR_ARCH_207S)) { 241 unsigned long lpcr = mfspr(SPRN_LPCR); 242 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); 243 } 244 245 /* 246 * Set HFSCR:TM based on CPU features: 247 * In the special case of TM no suspend (P9N DD2.1), Linux is 248 * told TM is off via the dt-ftrs but told to (partially) use 249 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM] 250 * will be off from dt-ftrs but we need to turn it on for the 251 * no suspend case. 252 */ 253 if (cpu_has_feature(CPU_FTR_HVMODE)) { 254 if (cpu_has_feature(CPU_FTR_TM_COMP)) 255 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM); 256 else 257 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM); 258 } 259 260 /* Set IR and DR in PACA MSR */ 261 get_paca()->kernel_msr = MSR_KERNEL; 262 } 263 264 unsigned long spr_default_dscr = 0; 265 266 void __init record_spr_defaults(void) 267 { 268 if (early_cpu_has_feature(CPU_FTR_DSCR)) 269 spr_default_dscr = mfspr(SPRN_DSCR); 270 } 271 272 /* 273 * Early initialization entry point. This is called by head.S 274 * with MMU translation disabled. We rely on the "feature" of 275 * the CPU that ignores the top 2 bits of the address in real 276 * mode so we can access kernel globals normally provided we 277 * only toy with things in the RMO region. From here, we do 278 * some early parsing of the device-tree to setup out MEMBLOCK 279 * data structures, and allocate & initialize the hash table 280 * and segment tables so we can start running with translation 281 * enabled. 282 * 283 * It is this function which will call the probe() callback of 284 * the various platform types and copy the matching one to the 285 * global ppc_md structure. Your platform can eventually do 286 * some very early initializations from the probe() routine, but 287 * this is not recommended, be very careful as, for example, the 288 * device-tree is not accessible via normal means at this point. 289 */ 290 291 void __init early_setup(unsigned long dt_ptr) 292 { 293 static __initdata struct paca_struct boot_paca; 294 295 /* -------- printk is _NOT_ safe to use here ! ------- */ 296 297 /* Try new device tree based feature discovery ... */ 298 if (!dt_cpu_ftrs_init(__va(dt_ptr))) 299 /* Otherwise use the old style CPU table */ 300 identify_cpu(0, mfspr(SPRN_PVR)); 301 302 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 303 initialise_paca(&boot_paca, 0); 304 setup_paca(&boot_paca); 305 fixup_boot_paca(); 306 307 /* -------- printk is now safe to use ------- */ 308 309 /* Enable early debugging if any specified (see udbg.h) */ 310 udbg_early_init(); 311 312 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 313 314 /* 315 * Do early initialization using the flattened device 316 * tree, such as retrieving the physical memory map or 317 * calculating/retrieving the hash table size. 318 */ 319 early_init_devtree(__va(dt_ptr)); 320 321 /* Now we know the logical id of our boot cpu, setup the paca. */ 322 if (boot_cpuid != 0) { 323 /* Poison paca_ptrs[0] again if it's not the boot cpu */ 324 memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0])); 325 } 326 setup_paca(paca_ptrs[boot_cpuid]); 327 fixup_boot_paca(); 328 329 /* 330 * Configure exception handlers. This include setting up trampolines 331 * if needed, setting exception endian mode, etc... 332 */ 333 configure_exceptions(); 334 335 /* 336 * Configure Kernel Userspace Protection. This needs to happen before 337 * feature fixups for platforms that implement this using features. 338 */ 339 setup_kup(); 340 341 /* Apply all the dynamic patching */ 342 apply_feature_fixups(); 343 setup_feature_keys(); 344 345 /* Initialize the hash table or TLB handling */ 346 early_init_mmu(); 347 348 /* 349 * After firmware and early platform setup code has set things up, 350 * we note the SPR values for configurable control/performance 351 * registers, and use those as initial defaults. 352 */ 353 record_spr_defaults(); 354 355 /* 356 * At this point, we can let interrupts switch to virtual mode 357 * (the MMU has been setup), so adjust the MSR in the PACA to 358 * have IR and DR set and enable AIL if it exists 359 */ 360 cpu_ready_for_interrupts(); 361 362 /* 363 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it 364 * will only actually get enabled on the boot cpu much later once 365 * ftrace itself has been initialized. 366 */ 367 this_cpu_enable_ftrace(); 368 369 DBG(" <- early_setup()\n"); 370 371 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX 372 /* 373 * This needs to be done *last* (after the above DBG() even) 374 * 375 * Right after we return from this function, we turn on the MMU 376 * which means the real-mode access trick that btext does will 377 * no longer work, it needs to switch to using a real MMU 378 * mapping. This call will ensure that it does 379 */ 380 btext_map(); 381 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ 382 } 383 384 #ifdef CONFIG_SMP 385 void early_setup_secondary(void) 386 { 387 /* Mark interrupts disabled in PACA */ 388 irq_soft_mask_set(IRQS_DISABLED); 389 390 /* Initialize the hash table or TLB handling */ 391 early_init_mmu_secondary(); 392 393 /* Perform any KUP setup that is per-cpu */ 394 setup_kup(); 395 396 /* 397 * At this point, we can let interrupts switch to virtual mode 398 * (the MMU has been setup), so adjust the MSR in the PACA to 399 * have IR and DR set. 400 */ 401 cpu_ready_for_interrupts(); 402 } 403 404 #endif /* CONFIG_SMP */ 405 406 void panic_smp_self_stop(void) 407 { 408 hard_irq_disable(); 409 spin_begin(); 410 while (1) 411 spin_cpu_relax(); 412 } 413 414 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) 415 static bool use_spinloop(void) 416 { 417 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { 418 /* 419 * See comments in head_64.S -- not all platforms insert 420 * secondaries at __secondary_hold and wait at the spin 421 * loop. 422 */ 423 if (firmware_has_feature(FW_FEATURE_OPAL)) 424 return false; 425 return true; 426 } 427 428 /* 429 * When book3e boots from kexec, the ePAPR spin table does 430 * not get used. 431 */ 432 return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); 433 } 434 435 void smp_release_cpus(void) 436 { 437 unsigned long *ptr; 438 int i; 439 440 if (!use_spinloop()) 441 return; 442 443 DBG(" -> smp_release_cpus()\n"); 444 445 /* All secondary cpus are spinning on a common spinloop, release them 446 * all now so they can start to spin on their individual paca 447 * spinloops. For non SMP kernels, the secondary cpus never get out 448 * of the common spinloop. 449 */ 450 451 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 452 - PHYSICAL_START); 453 *ptr = ppc_function_entry(generic_secondary_smp_init); 454 455 /* And wait a bit for them to catch up */ 456 for (i = 0; i < 100000; i++) { 457 mb(); 458 HMT_low(); 459 if (spinning_secondaries == 0) 460 break; 461 udelay(1); 462 } 463 DBG("spinning_secondaries = %d\n", spinning_secondaries); 464 465 DBG(" <- smp_release_cpus()\n"); 466 } 467 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ 468 469 /* 470 * Initialize some remaining members of the ppc64_caches and systemcfg 471 * structures 472 * (at least until we get rid of them completely). This is mostly some 473 * cache informations about the CPU that will be used by cache flush 474 * routines and/or provided to userland 475 */ 476 477 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, 478 u32 bsize, u32 sets) 479 { 480 info->size = size; 481 info->sets = sets; 482 info->line_size = lsize; 483 info->block_size = bsize; 484 info->log_block_size = __ilog2(bsize); 485 if (bsize) 486 info->blocks_per_page = PAGE_SIZE / bsize; 487 else 488 info->blocks_per_page = 0; 489 490 if (sets == 0) 491 info->assoc = 0xffff; 492 else 493 info->assoc = size / (sets * lsize); 494 } 495 496 static bool __init parse_cache_info(struct device_node *np, 497 bool icache, 498 struct ppc_cache_info *info) 499 { 500 static const char *ipropnames[] __initdata = { 501 "i-cache-size", 502 "i-cache-sets", 503 "i-cache-block-size", 504 "i-cache-line-size", 505 }; 506 static const char *dpropnames[] __initdata = { 507 "d-cache-size", 508 "d-cache-sets", 509 "d-cache-block-size", 510 "d-cache-line-size", 511 }; 512 const char **propnames = icache ? ipropnames : dpropnames; 513 const __be32 *sizep, *lsizep, *bsizep, *setsp; 514 u32 size, lsize, bsize, sets; 515 bool success = true; 516 517 size = 0; 518 sets = -1u; 519 lsize = bsize = cur_cpu_spec->dcache_bsize; 520 sizep = of_get_property(np, propnames[0], NULL); 521 if (sizep != NULL) 522 size = be32_to_cpu(*sizep); 523 setsp = of_get_property(np, propnames[1], NULL); 524 if (setsp != NULL) 525 sets = be32_to_cpu(*setsp); 526 bsizep = of_get_property(np, propnames[2], NULL); 527 lsizep = of_get_property(np, propnames[3], NULL); 528 if (bsizep == NULL) 529 bsizep = lsizep; 530 if (lsizep != NULL) 531 lsize = be32_to_cpu(*lsizep); 532 if (bsizep != NULL) 533 bsize = be32_to_cpu(*bsizep); 534 if (sizep == NULL || bsizep == NULL || lsizep == NULL) 535 success = false; 536 537 /* 538 * OF is weird .. it represents fully associative caches 539 * as "1 way" which doesn't make much sense and doesn't 540 * leave room for direct mapped. We'll assume that 0 541 * in OF means direct mapped for that reason. 542 */ 543 if (sets == 1) 544 sets = 0; 545 else if (sets == 0) 546 sets = 1; 547 548 init_cache_info(info, size, lsize, bsize, sets); 549 550 return success; 551 } 552 553 void __init initialize_cache_info(void) 554 { 555 struct device_node *cpu = NULL, *l2, *l3 = NULL; 556 u32 pvr; 557 558 DBG(" -> initialize_cache_info()\n"); 559 560 /* 561 * All shipping POWER8 machines have a firmware bug that 562 * puts incorrect information in the device-tree. This will 563 * be (hopefully) fixed for future chips but for now hard 564 * code the values if we are running on one of these 565 */ 566 pvr = PVR_VER(mfspr(SPRN_PVR)); 567 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || 568 pvr == PVR_POWER8NVL) { 569 /* size lsize blk sets */ 570 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32); 571 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64); 572 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512); 573 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192); 574 } else 575 cpu = of_find_node_by_type(NULL, "cpu"); 576 577 /* 578 * We're assuming *all* of the CPUs have the same 579 * d-cache and i-cache sizes... -Peter 580 */ 581 if (cpu) { 582 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) 583 DBG("Argh, can't find dcache properties !\n"); 584 585 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) 586 DBG("Argh, can't find icache properties !\n"); 587 588 /* 589 * Try to find the L2 and L3 if any. Assume they are 590 * unified and use the D-side properties. 591 */ 592 l2 = of_find_next_cache_node(cpu); 593 of_node_put(cpu); 594 if (l2) { 595 parse_cache_info(l2, false, &ppc64_caches.l2); 596 l3 = of_find_next_cache_node(l2); 597 of_node_put(l2); 598 } 599 if (l3) { 600 parse_cache_info(l3, false, &ppc64_caches.l3); 601 of_node_put(l3); 602 } 603 } 604 605 /* For use by binfmt_elf */ 606 dcache_bsize = ppc64_caches.l1d.block_size; 607 icache_bsize = ppc64_caches.l1i.block_size; 608 609 cur_cpu_spec->dcache_bsize = dcache_bsize; 610 cur_cpu_spec->icache_bsize = icache_bsize; 611 612 DBG(" <- initialize_cache_info()\n"); 613 } 614 615 /* 616 * This returns the limit below which memory accesses to the linear 617 * mapping are guarnateed not to cause an architectural exception (e.g., 618 * TLB or SLB miss fault). 619 * 620 * This is used to allocate PACAs and various interrupt stacks that 621 * that are accessed early in interrupt handlers that must not cause 622 * re-entrant interrupts. 623 */ 624 __init u64 ppc64_bolted_size(void) 625 { 626 #ifdef CONFIG_PPC_BOOK3E 627 /* Freescale BookE bolts the entire linear mapping */ 628 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */ 629 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 630 return linear_map_top; 631 /* Other BookE, we assume the first GB is bolted */ 632 return 1ul << 30; 633 #else 634 /* BookS radix, does not take faults on linear mapping */ 635 if (early_radix_enabled()) 636 return ULONG_MAX; 637 638 /* BookS hash, the first segment is bolted */ 639 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT)) 640 return 1UL << SID_SHIFT_1T; 641 return 1UL << SID_SHIFT; 642 #endif 643 } 644 645 static void *__init alloc_stack(unsigned long limit, int cpu) 646 { 647 void *ptr; 648 649 BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16); 650 651 ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_SIZE, 652 MEMBLOCK_LOW_LIMIT, limit, 653 early_cpu_to_node(cpu)); 654 if (!ptr) 655 panic("cannot allocate stacks"); 656 657 return ptr; 658 } 659 660 void __init irqstack_early_init(void) 661 { 662 u64 limit = ppc64_bolted_size(); 663 unsigned int i; 664 665 /* 666 * Interrupt stacks must be in the first segment since we 667 * cannot afford to take SLB misses on them. They are not 668 * accessed in realmode. 669 */ 670 for_each_possible_cpu(i) { 671 softirq_ctx[i] = alloc_stack(limit, i); 672 hardirq_ctx[i] = alloc_stack(limit, i); 673 } 674 } 675 676 #ifdef CONFIG_PPC_BOOK3E 677 void __init exc_lvl_early_init(void) 678 { 679 unsigned int i; 680 681 for_each_possible_cpu(i) { 682 void *sp; 683 684 sp = alloc_stack(ULONG_MAX, i); 685 critirq_ctx[i] = sp; 686 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE; 687 688 sp = alloc_stack(ULONG_MAX, i); 689 dbgirq_ctx[i] = sp; 690 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE; 691 692 sp = alloc_stack(ULONG_MAX, i); 693 mcheckirq_ctx[i] = sp; 694 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE; 695 } 696 697 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) 698 patch_exception(0x040, exc_debug_debug_book3e); 699 } 700 #endif 701 702 /* 703 * Stack space used when we detect a bad kernel stack pointer, and 704 * early in SMP boots before relocation is enabled. Exclusive emergency 705 * stack for machine checks. 706 */ 707 void __init emergency_stack_init(void) 708 { 709 u64 limit; 710 unsigned int i; 711 712 /* 713 * Emergency stacks must be under 256MB, we cannot afford to take 714 * SLB misses on them. The ABI also requires them to be 128-byte 715 * aligned. 716 * 717 * Since we use these as temporary stacks during secondary CPU 718 * bringup, machine check, system reset, and HMI, we need to get 719 * at them in real mode. This means they must also be within the RMO 720 * region. 721 * 722 * The IRQ stacks allocated elsewhere in this file are zeroed and 723 * initialized in kernel/irq.c. These are initialized here in order 724 * to have emergency stacks available as early as possible. 725 */ 726 limit = min(ppc64_bolted_size(), ppc64_rma_size); 727 728 for_each_possible_cpu(i) { 729 paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; 730 731 #ifdef CONFIG_PPC_BOOK3S_64 732 /* emergency stack for NMI exception handling. */ 733 paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; 734 735 /* emergency stack for machine check exception handling. */ 736 paca_ptrs[i]->mc_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; 737 #endif 738 } 739 } 740 741 #ifdef CONFIG_SMP 742 #define PCPU_DYN_SIZE () 743 744 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) 745 { 746 return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS), 747 MEMBLOCK_ALLOC_ACCESSIBLE, 748 early_cpu_to_node(cpu)); 749 750 } 751 752 static void __init pcpu_fc_free(void *ptr, size_t size) 753 { 754 memblock_free(__pa(ptr), size); 755 } 756 757 static int pcpu_cpu_distance(unsigned int from, unsigned int to) 758 { 759 if (early_cpu_to_node(from) == early_cpu_to_node(to)) 760 return LOCAL_DISTANCE; 761 else 762 return REMOTE_DISTANCE; 763 } 764 765 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 766 EXPORT_SYMBOL(__per_cpu_offset); 767 768 void __init setup_per_cpu_areas(void) 769 { 770 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; 771 size_t atom_size; 772 unsigned long delta; 773 unsigned int cpu; 774 int rc; 775 776 /* 777 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need 778 * to group units. For larger mappings, use 1M atom which 779 * should be large enough to contain a number of units. 780 */ 781 if (mmu_linear_psize == MMU_PAGE_4K) 782 atom_size = PAGE_SIZE; 783 else 784 atom_size = 1 << 20; 785 786 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, 787 pcpu_fc_alloc, pcpu_fc_free); 788 if (rc < 0) 789 panic("cannot initialize percpu area (err=%d)", rc); 790 791 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 792 for_each_possible_cpu(cpu) { 793 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 794 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu]; 795 } 796 } 797 #endif 798 799 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 800 unsigned long memory_block_size_bytes(void) 801 { 802 if (ppc_md.memory_block_size) 803 return ppc_md.memory_block_size(); 804 805 return MIN_MEMORY_BLOCK_SIZE; 806 } 807 #endif 808 809 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 810 struct ppc_pci_io ppc_pci_io; 811 EXPORT_SYMBOL(ppc_pci_io); 812 #endif 813 814 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 815 u64 hw_nmi_get_sample_period(int watchdog_thresh) 816 { 817 return ppc_proc_freq * watchdog_thresh; 818 } 819 #endif 820 821 /* 822 * The perf based hardlockup detector breaks PMU event based branches, so 823 * disable it by default. Book3S has a soft-nmi hardlockup detector based 824 * on the decrementer interrupt, so it does not suffer from this problem. 825 * 826 * It is likely to get false positives in VM guests, so disable it there 827 * by default too. 828 */ 829 static int __init disable_hardlockup_detector(void) 830 { 831 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 832 hardlockup_detector_disable(); 833 #else 834 if (firmware_has_feature(FW_FEATURE_LPAR)) 835 hardlockup_detector_disable(); 836 #endif 837 838 return 0; 839 } 840 early_initcall(disable_hardlockup_detector); 841 842 #ifdef CONFIG_PPC_BOOK3S_64 843 static enum l1d_flush_type enabled_flush_types; 844 static void *l1d_flush_fallback_area; 845 static bool no_rfi_flush; 846 bool rfi_flush; 847 848 static int __init handle_no_rfi_flush(char *p) 849 { 850 pr_info("rfi-flush: disabled on command line."); 851 no_rfi_flush = true; 852 return 0; 853 } 854 early_param("no_rfi_flush", handle_no_rfi_flush); 855 856 /* 857 * The RFI flush is not KPTI, but because users will see doco that says to use 858 * nopti we hijack that option here to also disable the RFI flush. 859 */ 860 static int __init handle_no_pti(char *p) 861 { 862 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n"); 863 handle_no_rfi_flush(NULL); 864 return 0; 865 } 866 early_param("nopti", handle_no_pti); 867 868 static void do_nothing(void *unused) 869 { 870 /* 871 * We don't need to do the flush explicitly, just enter+exit kernel is 872 * sufficient, the RFI exit handlers will do the right thing. 873 */ 874 } 875 876 void rfi_flush_enable(bool enable) 877 { 878 if (enable) { 879 do_rfi_flush_fixups(enabled_flush_types); 880 on_each_cpu(do_nothing, NULL, 1); 881 } else 882 do_rfi_flush_fixups(L1D_FLUSH_NONE); 883 884 rfi_flush = enable; 885 } 886 887 static void __ref init_fallback_flush(void) 888 { 889 u64 l1d_size, limit; 890 int cpu; 891 892 /* Only allocate the fallback flush area once (at boot time). */ 893 if (l1d_flush_fallback_area) 894 return; 895 896 l1d_size = ppc64_caches.l1d.size; 897 898 /* 899 * If there is no d-cache-size property in the device tree, l1d_size 900 * could be zero. That leads to the loop in the asm wrapping around to 901 * 2^64-1, and then walking off the end of the fallback area and 902 * eventually causing a page fault which is fatal. Just default to 903 * something vaguely sane. 904 */ 905 if (!l1d_size) 906 l1d_size = (64 * 1024); 907 908 limit = min(ppc64_bolted_size(), ppc64_rma_size); 909 910 /* 911 * Align to L1d size, and size it at 2x L1d size, to catch possible 912 * hardware prefetch runoff. We don't have a recipe for load patterns to 913 * reliably avoid the prefetcher. 914 */ 915 l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2, 916 l1d_size, MEMBLOCK_LOW_LIMIT, 917 limit, NUMA_NO_NODE); 918 if (!l1d_flush_fallback_area) 919 panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n", 920 __func__, l1d_size * 2, l1d_size, &limit); 921 922 923 for_each_possible_cpu(cpu) { 924 struct paca_struct *paca = paca_ptrs[cpu]; 925 paca->rfi_flush_fallback_area = l1d_flush_fallback_area; 926 paca->l1d_flush_size = l1d_size; 927 } 928 } 929 930 void setup_rfi_flush(enum l1d_flush_type types, bool enable) 931 { 932 if (types & L1D_FLUSH_FALLBACK) { 933 pr_info("rfi-flush: fallback displacement flush available\n"); 934 init_fallback_flush(); 935 } 936 937 if (types & L1D_FLUSH_ORI) 938 pr_info("rfi-flush: ori type flush available\n"); 939 940 if (types & L1D_FLUSH_MTTRIG) 941 pr_info("rfi-flush: mttrig type flush available\n"); 942 943 enabled_flush_types = types; 944 945 if (!no_rfi_flush && !cpu_mitigations_off()) 946 rfi_flush_enable(enable); 947 } 948 949 #ifdef CONFIG_DEBUG_FS 950 static int rfi_flush_set(void *data, u64 val) 951 { 952 bool enable; 953 954 if (val == 1) 955 enable = true; 956 else if (val == 0) 957 enable = false; 958 else 959 return -EINVAL; 960 961 /* Only do anything if we're changing state */ 962 if (enable != rfi_flush) 963 rfi_flush_enable(enable); 964 965 return 0; 966 } 967 968 static int rfi_flush_get(void *data, u64 *val) 969 { 970 *val = rfi_flush ? 1 : 0; 971 return 0; 972 } 973 974 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n"); 975 976 static __init int rfi_flush_debugfs_init(void) 977 { 978 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush); 979 return 0; 980 } 981 device_initcall(rfi_flush_debugfs_init); 982 #endif 983 #endif /* CONFIG_PPC_BOOK3S_64 */ 984