1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #define DEBUG 14 15 #include <linux/export.h> 16 #include <linux/string.h> 17 #include <linux/sched.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/reboot.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/seq_file.h> 24 #include <linux/ioport.h> 25 #include <linux/console.h> 26 #include <linux/utsname.h> 27 #include <linux/tty.h> 28 #include <linux/root_dev.h> 29 #include <linux/notifier.h> 30 #include <linux/cpu.h> 31 #include <linux/unistd.h> 32 #include <linux/serial.h> 33 #include <linux/serial_8250.h> 34 #include <linux/bootmem.h> 35 #include <linux/pci.h> 36 #include <linux/lockdep.h> 37 #include <linux/memblock.h> 38 #include <linux/memory.h> 39 #include <linux/nmi.h> 40 41 #include <asm/io.h> 42 #include <asm/kdump.h> 43 #include <asm/prom.h> 44 #include <asm/processor.h> 45 #include <asm/pgtable.h> 46 #include <asm/smp.h> 47 #include <asm/elf.h> 48 #include <asm/machdep.h> 49 #include <asm/paca.h> 50 #include <asm/time.h> 51 #include <asm/cputable.h> 52 #include <asm/dt_cpu_ftrs.h> 53 #include <asm/sections.h> 54 #include <asm/btext.h> 55 #include <asm/nvram.h> 56 #include <asm/setup.h> 57 #include <asm/rtas.h> 58 #include <asm/iommu.h> 59 #include <asm/serial.h> 60 #include <asm/cache.h> 61 #include <asm/page.h> 62 #include <asm/mmu.h> 63 #include <asm/firmware.h> 64 #include <asm/xmon.h> 65 #include <asm/udbg.h> 66 #include <asm/kexec.h> 67 #include <asm/code-patching.h> 68 #include <asm/livepatch.h> 69 #include <asm/opal.h> 70 #include <asm/cputhreads.h> 71 72 #ifdef DEBUG 73 #define DBG(fmt...) udbg_printf(fmt) 74 #else 75 #define DBG(fmt...) 76 #endif 77 78 int spinning_secondaries; 79 u64 ppc64_pft_size; 80 81 struct ppc64_caches ppc64_caches = { 82 .l1d = { 83 .block_size = 0x40, 84 .log_block_size = 6, 85 }, 86 .l1i = { 87 .block_size = 0x40, 88 .log_block_size = 6 89 }, 90 }; 91 EXPORT_SYMBOL_GPL(ppc64_caches); 92 93 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) 94 void __init setup_tlb_core_data(void) 95 { 96 int cpu; 97 98 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); 99 100 for_each_possible_cpu(cpu) { 101 int first = cpu_first_thread_sibling(cpu); 102 103 /* 104 * If we boot via kdump on a non-primary thread, 105 * make sure we point at the thread that actually 106 * set up this TLB. 107 */ 108 if (cpu_first_thread_sibling(boot_cpuid) == first) 109 first = boot_cpuid; 110 111 paca[cpu].tcd_ptr = &paca[first].tcd; 112 113 /* 114 * If we have threads, we need either tlbsrx. 115 * or e6500 tablewalk mode, or else TLB handlers 116 * will be racy and could produce duplicate entries. 117 * Should we panic instead? 118 */ 119 WARN_ONCE(smt_enabled_at_boot >= 2 && 120 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && 121 book3e_htw_mode != PPC_HTW_E6500, 122 "%s: unsupported MMU configuration\n", __func__); 123 } 124 } 125 #endif 126 127 #ifdef CONFIG_SMP 128 129 static char *smt_enabled_cmdline; 130 131 /* Look for ibm,smt-enabled OF option */ 132 void __init check_smt_enabled(void) 133 { 134 struct device_node *dn; 135 const char *smt_option; 136 137 /* Default to enabling all threads */ 138 smt_enabled_at_boot = threads_per_core; 139 140 /* Allow the command line to overrule the OF option */ 141 if (smt_enabled_cmdline) { 142 if (!strcmp(smt_enabled_cmdline, "on")) 143 smt_enabled_at_boot = threads_per_core; 144 else if (!strcmp(smt_enabled_cmdline, "off")) 145 smt_enabled_at_boot = 0; 146 else { 147 int smt; 148 int rc; 149 150 rc = kstrtoint(smt_enabled_cmdline, 10, &smt); 151 if (!rc) 152 smt_enabled_at_boot = 153 min(threads_per_core, smt); 154 } 155 } else { 156 dn = of_find_node_by_path("/options"); 157 if (dn) { 158 smt_option = of_get_property(dn, "ibm,smt-enabled", 159 NULL); 160 161 if (smt_option) { 162 if (!strcmp(smt_option, "on")) 163 smt_enabled_at_boot = threads_per_core; 164 else if (!strcmp(smt_option, "off")) 165 smt_enabled_at_boot = 0; 166 } 167 168 of_node_put(dn); 169 } 170 } 171 } 172 173 /* Look for smt-enabled= cmdline option */ 174 static int __init early_smt_enabled(char *p) 175 { 176 smt_enabled_cmdline = p; 177 return 0; 178 } 179 early_param("smt-enabled", early_smt_enabled); 180 181 #endif /* CONFIG_SMP */ 182 183 /** Fix up paca fields required for the boot cpu */ 184 static void __init fixup_boot_paca(void) 185 { 186 /* The boot cpu is started */ 187 get_paca()->cpu_start = 1; 188 /* Allow percpu accesses to work until we setup percpu data */ 189 get_paca()->data_offset = 0; 190 } 191 192 static void __init configure_exceptions(void) 193 { 194 /* 195 * Setup the trampolines from the lowmem exception vectors 196 * to the kdump kernel when not using a relocatable kernel. 197 */ 198 setup_kdump_trampoline(); 199 200 /* Under a PAPR hypervisor, we need hypercalls */ 201 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 202 /* Enable AIL if possible */ 203 pseries_enable_reloc_on_exc(); 204 205 /* 206 * Tell the hypervisor that we want our exceptions to 207 * be taken in little endian mode. 208 * 209 * We don't call this for big endian as our calling convention 210 * makes us always enter in BE, and the call may fail under 211 * some circumstances with kdump. 212 */ 213 #ifdef __LITTLE_ENDIAN__ 214 pseries_little_endian_exceptions(); 215 #endif 216 } else { 217 /* Set endian mode using OPAL */ 218 if (firmware_has_feature(FW_FEATURE_OPAL)) 219 opal_configure_cores(); 220 221 /* AIL on native is done in cpu_ready_for_interrupts() */ 222 } 223 } 224 225 static void cpu_ready_for_interrupts(void) 226 { 227 /* 228 * Enable AIL if supported, and we are in hypervisor mode. This 229 * is called once for every processor. 230 * 231 * If we are not in hypervisor mode the job is done once for 232 * the whole partition in configure_exceptions(). 233 */ 234 if (cpu_has_feature(CPU_FTR_HVMODE) && 235 cpu_has_feature(CPU_FTR_ARCH_207S)) { 236 unsigned long lpcr = mfspr(SPRN_LPCR); 237 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); 238 } 239 240 /* 241 * Fixup HFSCR:TM based on CPU features. The bit is set by our 242 * early asm init because at that point we haven't updated our 243 * CPU features from firmware and device-tree. Here we have, 244 * so let's do it. 245 */ 246 if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP)) 247 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM); 248 249 /* Set IR and DR in PACA MSR */ 250 get_paca()->kernel_msr = MSR_KERNEL; 251 } 252 253 /* 254 * Early initialization entry point. This is called by head.S 255 * with MMU translation disabled. We rely on the "feature" of 256 * the CPU that ignores the top 2 bits of the address in real 257 * mode so we can access kernel globals normally provided we 258 * only toy with things in the RMO region. From here, we do 259 * some early parsing of the device-tree to setup out MEMBLOCK 260 * data structures, and allocate & initialize the hash table 261 * and segment tables so we can start running with translation 262 * enabled. 263 * 264 * It is this function which will call the probe() callback of 265 * the various platform types and copy the matching one to the 266 * global ppc_md structure. Your platform can eventually do 267 * some very early initializations from the probe() routine, but 268 * this is not recommended, be very careful as, for example, the 269 * device-tree is not accessible via normal means at this point. 270 */ 271 272 void __init early_setup(unsigned long dt_ptr) 273 { 274 static __initdata struct paca_struct boot_paca; 275 276 /* -------- printk is _NOT_ safe to use here ! ------- */ 277 278 /* Try new device tree based feature discovery ... */ 279 if (!dt_cpu_ftrs_init(__va(dt_ptr))) 280 /* Otherwise use the old style CPU table */ 281 identify_cpu(0, mfspr(SPRN_PVR)); 282 283 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 284 initialise_paca(&boot_paca, 0); 285 setup_paca(&boot_paca); 286 fixup_boot_paca(); 287 288 /* -------- printk is now safe to use ------- */ 289 290 /* Enable early debugging if any specified (see udbg.h) */ 291 udbg_early_init(); 292 293 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 294 295 /* 296 * Do early initialization using the flattened device 297 * tree, such as retrieving the physical memory map or 298 * calculating/retrieving the hash table size. 299 */ 300 early_init_devtree(__va(dt_ptr)); 301 302 /* Now we know the logical id of our boot cpu, setup the paca. */ 303 setup_paca(&paca[boot_cpuid]); 304 fixup_boot_paca(); 305 306 /* 307 * Configure exception handlers. This include setting up trampolines 308 * if needed, setting exception endian mode, etc... 309 */ 310 configure_exceptions(); 311 312 /* Apply all the dynamic patching */ 313 apply_feature_fixups(); 314 setup_feature_keys(); 315 316 /* Initialize the hash table or TLB handling */ 317 early_init_mmu(); 318 319 /* 320 * At this point, we can let interrupts switch to virtual mode 321 * (the MMU has been setup), so adjust the MSR in the PACA to 322 * have IR and DR set and enable AIL if it exists 323 */ 324 cpu_ready_for_interrupts(); 325 326 DBG(" <- early_setup()\n"); 327 328 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX 329 /* 330 * This needs to be done *last* (after the above DBG() even) 331 * 332 * Right after we return from this function, we turn on the MMU 333 * which means the real-mode access trick that btext does will 334 * no longer work, it needs to switch to using a real MMU 335 * mapping. This call will ensure that it does 336 */ 337 btext_map(); 338 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ 339 } 340 341 #ifdef CONFIG_SMP 342 void early_setup_secondary(void) 343 { 344 /* Mark interrupts disabled in PACA */ 345 get_paca()->soft_enabled = 0; 346 347 /* Initialize the hash table or TLB handling */ 348 early_init_mmu_secondary(); 349 350 /* 351 * At this point, we can let interrupts switch to virtual mode 352 * (the MMU has been setup), so adjust the MSR in the PACA to 353 * have IR and DR set. 354 */ 355 cpu_ready_for_interrupts(); 356 } 357 358 #endif /* CONFIG_SMP */ 359 360 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) 361 static bool use_spinloop(void) 362 { 363 if (!IS_ENABLED(CONFIG_PPC_BOOK3E)) 364 return true; 365 366 /* 367 * When book3e boots from kexec, the ePAPR spin table does 368 * not get used. 369 */ 370 return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); 371 } 372 373 void smp_release_cpus(void) 374 { 375 unsigned long *ptr; 376 int i; 377 378 if (!use_spinloop()) 379 return; 380 381 DBG(" -> smp_release_cpus()\n"); 382 383 /* All secondary cpus are spinning on a common spinloop, release them 384 * all now so they can start to spin on their individual paca 385 * spinloops. For non SMP kernels, the secondary cpus never get out 386 * of the common spinloop. 387 */ 388 389 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 390 - PHYSICAL_START); 391 *ptr = ppc_function_entry(generic_secondary_smp_init); 392 393 /* And wait a bit for them to catch up */ 394 for (i = 0; i < 100000; i++) { 395 mb(); 396 HMT_low(); 397 if (spinning_secondaries == 0) 398 break; 399 udelay(1); 400 } 401 DBG("spinning_secondaries = %d\n", spinning_secondaries); 402 403 DBG(" <- smp_release_cpus()\n"); 404 } 405 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ 406 407 /* 408 * Initialize some remaining members of the ppc64_caches and systemcfg 409 * structures 410 * (at least until we get rid of them completely). This is mostly some 411 * cache informations about the CPU that will be used by cache flush 412 * routines and/or provided to userland 413 */ 414 415 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, 416 u32 bsize, u32 sets) 417 { 418 info->size = size; 419 info->sets = sets; 420 info->line_size = lsize; 421 info->block_size = bsize; 422 info->log_block_size = __ilog2(bsize); 423 if (bsize) 424 info->blocks_per_page = PAGE_SIZE / bsize; 425 else 426 info->blocks_per_page = 0; 427 428 if (sets == 0) 429 info->assoc = 0xffff; 430 else 431 info->assoc = size / (sets * lsize); 432 } 433 434 static bool __init parse_cache_info(struct device_node *np, 435 bool icache, 436 struct ppc_cache_info *info) 437 { 438 static const char *ipropnames[] __initdata = { 439 "i-cache-size", 440 "i-cache-sets", 441 "i-cache-block-size", 442 "i-cache-line-size", 443 }; 444 static const char *dpropnames[] __initdata = { 445 "d-cache-size", 446 "d-cache-sets", 447 "d-cache-block-size", 448 "d-cache-line-size", 449 }; 450 const char **propnames = icache ? ipropnames : dpropnames; 451 const __be32 *sizep, *lsizep, *bsizep, *setsp; 452 u32 size, lsize, bsize, sets; 453 bool success = true; 454 455 size = 0; 456 sets = -1u; 457 lsize = bsize = cur_cpu_spec->dcache_bsize; 458 sizep = of_get_property(np, propnames[0], NULL); 459 if (sizep != NULL) 460 size = be32_to_cpu(*sizep); 461 setsp = of_get_property(np, propnames[1], NULL); 462 if (setsp != NULL) 463 sets = be32_to_cpu(*setsp); 464 bsizep = of_get_property(np, propnames[2], NULL); 465 lsizep = of_get_property(np, propnames[3], NULL); 466 if (bsizep == NULL) 467 bsizep = lsizep; 468 if (lsizep != NULL) 469 lsize = be32_to_cpu(*lsizep); 470 if (bsizep != NULL) 471 bsize = be32_to_cpu(*bsizep); 472 if (sizep == NULL || bsizep == NULL || lsizep == NULL) 473 success = false; 474 475 /* 476 * OF is weird .. it represents fully associative caches 477 * as "1 way" which doesn't make much sense and doesn't 478 * leave room for direct mapped. We'll assume that 0 479 * in OF means direct mapped for that reason. 480 */ 481 if (sets == 1) 482 sets = 0; 483 else if (sets == 0) 484 sets = 1; 485 486 init_cache_info(info, size, lsize, bsize, sets); 487 488 return success; 489 } 490 491 void __init initialize_cache_info(void) 492 { 493 struct device_node *cpu = NULL, *l2, *l3 = NULL; 494 u32 pvr; 495 496 DBG(" -> initialize_cache_info()\n"); 497 498 /* 499 * All shipping POWER8 machines have a firmware bug that 500 * puts incorrect information in the device-tree. This will 501 * be (hopefully) fixed for future chips but for now hard 502 * code the values if we are running on one of these 503 */ 504 pvr = PVR_VER(mfspr(SPRN_PVR)); 505 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || 506 pvr == PVR_POWER8NVL) { 507 /* size lsize blk sets */ 508 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32); 509 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64); 510 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512); 511 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192); 512 } else 513 cpu = of_find_node_by_type(NULL, "cpu"); 514 515 /* 516 * We're assuming *all* of the CPUs have the same 517 * d-cache and i-cache sizes... -Peter 518 */ 519 if (cpu) { 520 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) 521 DBG("Argh, can't find dcache properties !\n"); 522 523 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) 524 DBG("Argh, can't find icache properties !\n"); 525 526 /* 527 * Try to find the L2 and L3 if any. Assume they are 528 * unified and use the D-side properties. 529 */ 530 l2 = of_find_next_cache_node(cpu); 531 of_node_put(cpu); 532 if (l2) { 533 parse_cache_info(l2, false, &ppc64_caches.l2); 534 l3 = of_find_next_cache_node(l2); 535 of_node_put(l2); 536 } 537 if (l3) { 538 parse_cache_info(l3, false, &ppc64_caches.l3); 539 of_node_put(l3); 540 } 541 } 542 543 /* For use by binfmt_elf */ 544 dcache_bsize = ppc64_caches.l1d.block_size; 545 icache_bsize = ppc64_caches.l1i.block_size; 546 547 cur_cpu_spec->dcache_bsize = dcache_bsize; 548 cur_cpu_spec->icache_bsize = icache_bsize; 549 550 DBG(" <- initialize_cache_info()\n"); 551 } 552 553 /* This returns the limit below which memory accesses to the linear 554 * mapping are guarnateed not to cause a TLB or SLB miss. This is 555 * used to allocate interrupt or emergency stacks for which our 556 * exception entry path doesn't deal with being interrupted. 557 */ 558 static __init u64 safe_stack_limit(void) 559 { 560 #ifdef CONFIG_PPC_BOOK3E 561 /* Freescale BookE bolts the entire linear mapping */ 562 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 563 return linear_map_top; 564 /* Other BookE, we assume the first GB is bolted */ 565 return 1ul << 30; 566 #else 567 if (early_radix_enabled()) 568 return ULONG_MAX; 569 570 /* BookS, the first segment is bolted */ 571 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 572 return 1UL << SID_SHIFT_1T; 573 return 1UL << SID_SHIFT; 574 #endif 575 } 576 577 void __init irqstack_early_init(void) 578 { 579 u64 limit = safe_stack_limit(); 580 unsigned int i; 581 582 /* 583 * Interrupt stacks must be in the first segment since we 584 * cannot afford to take SLB misses on them. They are not 585 * accessed in realmode. 586 */ 587 for_each_possible_cpu(i) { 588 softirq_ctx[i] = (struct thread_info *) 589 __va(memblock_alloc_base(THREAD_SIZE, 590 THREAD_SIZE, limit)); 591 hardirq_ctx[i] = (struct thread_info *) 592 __va(memblock_alloc_base(THREAD_SIZE, 593 THREAD_SIZE, limit)); 594 } 595 } 596 597 #ifdef CONFIG_PPC_BOOK3E 598 void __init exc_lvl_early_init(void) 599 { 600 unsigned int i; 601 unsigned long sp; 602 603 for_each_possible_cpu(i) { 604 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 605 critirq_ctx[i] = (struct thread_info *)__va(sp); 606 paca[i].crit_kstack = __va(sp + THREAD_SIZE); 607 608 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 609 dbgirq_ctx[i] = (struct thread_info *)__va(sp); 610 paca[i].dbg_kstack = __va(sp + THREAD_SIZE); 611 612 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 613 mcheckirq_ctx[i] = (struct thread_info *)__va(sp); 614 paca[i].mc_kstack = __va(sp + THREAD_SIZE); 615 } 616 617 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) 618 patch_exception(0x040, exc_debug_debug_book3e); 619 } 620 #endif 621 622 /* 623 * Emergency stacks are used for a range of things, from asynchronous 624 * NMIs (system reset, machine check) to synchronous, process context. 625 * We set preempt_count to zero, even though that isn't necessarily correct. To 626 * get the right value we'd need to copy it from the previous thread_info, but 627 * doing that might fault causing more problems. 628 * TODO: what to do with accounting? 629 */ 630 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu) 631 { 632 ti->task = NULL; 633 ti->cpu = cpu; 634 ti->preempt_count = 0; 635 ti->local_flags = 0; 636 ti->flags = 0; 637 klp_init_thread_info(ti); 638 } 639 640 /* 641 * Stack space used when we detect a bad kernel stack pointer, and 642 * early in SMP boots before relocation is enabled. Exclusive emergency 643 * stack for machine checks. 644 */ 645 void __init emergency_stack_init(void) 646 { 647 u64 limit; 648 unsigned int i; 649 650 /* 651 * Emergency stacks must be under 256MB, we cannot afford to take 652 * SLB misses on them. The ABI also requires them to be 128-byte 653 * aligned. 654 * 655 * Since we use these as temporary stacks during secondary CPU 656 * bringup, machine check, system reset, and HMI, we need to get 657 * at them in real mode. This means they must also be within the RMO 658 * region. 659 * 660 * The IRQ stacks allocated elsewhere in this file are zeroed and 661 * initialized in kernel/irq.c. These are initialized here in order 662 * to have emergency stacks available as early as possible. 663 */ 664 limit = min(safe_stack_limit(), ppc64_rma_size); 665 666 for_each_possible_cpu(i) { 667 struct thread_info *ti; 668 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit)); 669 memset(ti, 0, THREAD_SIZE); 670 emerg_stack_init_thread_info(ti, i); 671 paca[i].emergency_sp = (void *)ti + THREAD_SIZE; 672 673 #ifdef CONFIG_PPC_BOOK3S_64 674 /* emergency stack for NMI exception handling. */ 675 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit)); 676 memset(ti, 0, THREAD_SIZE); 677 emerg_stack_init_thread_info(ti, i); 678 paca[i].nmi_emergency_sp = (void *)ti + THREAD_SIZE; 679 680 /* emergency stack for machine check exception handling. */ 681 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit)); 682 memset(ti, 0, THREAD_SIZE); 683 emerg_stack_init_thread_info(ti, i); 684 paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE; 685 #endif 686 } 687 } 688 689 #ifdef CONFIG_SMP 690 #define PCPU_DYN_SIZE () 691 692 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) 693 { 694 return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align, 695 __pa(MAX_DMA_ADDRESS)); 696 } 697 698 static void __init pcpu_fc_free(void *ptr, size_t size) 699 { 700 free_bootmem(__pa(ptr), size); 701 } 702 703 static int pcpu_cpu_distance(unsigned int from, unsigned int to) 704 { 705 if (early_cpu_to_node(from) == early_cpu_to_node(to)) 706 return LOCAL_DISTANCE; 707 else 708 return REMOTE_DISTANCE; 709 } 710 711 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 712 EXPORT_SYMBOL(__per_cpu_offset); 713 714 void __init setup_per_cpu_areas(void) 715 { 716 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; 717 size_t atom_size; 718 unsigned long delta; 719 unsigned int cpu; 720 int rc; 721 722 /* 723 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need 724 * to group units. For larger mappings, use 1M atom which 725 * should be large enough to contain a number of units. 726 */ 727 if (mmu_linear_psize == MMU_PAGE_4K) 728 atom_size = PAGE_SIZE; 729 else 730 atom_size = 1 << 20; 731 732 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, 733 pcpu_fc_alloc, pcpu_fc_free); 734 if (rc < 0) 735 panic("cannot initialize percpu area (err=%d)", rc); 736 737 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 738 for_each_possible_cpu(cpu) { 739 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 740 paca[cpu].data_offset = __per_cpu_offset[cpu]; 741 } 742 } 743 #endif 744 745 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 746 unsigned long memory_block_size_bytes(void) 747 { 748 if (ppc_md.memory_block_size) 749 return ppc_md.memory_block_size(); 750 751 return MIN_MEMORY_BLOCK_SIZE; 752 } 753 #endif 754 755 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 756 struct ppc_pci_io ppc_pci_io; 757 EXPORT_SYMBOL(ppc_pci_io); 758 #endif 759 760 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 761 u64 hw_nmi_get_sample_period(int watchdog_thresh) 762 { 763 return ppc_proc_freq * watchdog_thresh; 764 } 765 #endif 766 767 /* 768 * The perf based hardlockup detector breaks PMU event based branches, so 769 * disable it by default. Book3S has a soft-nmi hardlockup detector based 770 * on the decrementer interrupt, so it does not suffer from this problem. 771 * 772 * It is likely to get false positives in VM guests, so disable it there 773 * by default too. 774 */ 775 static int __init disable_hardlockup_detector(void) 776 { 777 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 778 hardlockup_detector_disable(); 779 #else 780 if (firmware_has_feature(FW_FEATURE_LPAR)) 781 hardlockup_detector_disable(); 782 #endif 783 784 return 0; 785 } 786 early_initcall(disable_hardlockup_detector); 787