1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #undef DEBUG 14 15 #include <linux/module.h> 16 #include <linux/string.h> 17 #include <linux/sched.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/reboot.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/seq_file.h> 24 #include <linux/ioport.h> 25 #include <linux/console.h> 26 #include <linux/utsname.h> 27 #include <linux/tty.h> 28 #include <linux/root_dev.h> 29 #include <linux/notifier.h> 30 #include <linux/cpu.h> 31 #include <linux/unistd.h> 32 #include <linux/serial.h> 33 #include <linux/serial_8250.h> 34 #include <linux/bootmem.h> 35 #include <linux/pci.h> 36 #include <linux/lockdep.h> 37 #include <linux/lmb.h> 38 #include <asm/io.h> 39 #include <asm/kdump.h> 40 #include <asm/prom.h> 41 #include <asm/processor.h> 42 #include <asm/pgtable.h> 43 #include <asm/smp.h> 44 #include <asm/elf.h> 45 #include <asm/machdep.h> 46 #include <asm/paca.h> 47 #include <asm/time.h> 48 #include <asm/cputable.h> 49 #include <asm/sections.h> 50 #include <asm/btext.h> 51 #include <asm/nvram.h> 52 #include <asm/setup.h> 53 #include <asm/system.h> 54 #include <asm/rtas.h> 55 #include <asm/iommu.h> 56 #include <asm/serial.h> 57 #include <asm/cache.h> 58 #include <asm/page.h> 59 #include <asm/mmu.h> 60 #include <asm/firmware.h> 61 #include <asm/xmon.h> 62 #include <asm/udbg.h> 63 #include <asm/kexec.h> 64 65 #include "setup.h" 66 67 #ifdef DEBUG 68 #define DBG(fmt...) udbg_printf(fmt) 69 #else 70 #define DBG(fmt...) 71 #endif 72 73 int have_of = 1; 74 int boot_cpuid = 0; 75 u64 ppc64_pft_size; 76 77 /* Pick defaults since we might want to patch instructions 78 * before we've read this from the device tree. 79 */ 80 struct ppc64_caches ppc64_caches = { 81 .dline_size = 0x40, 82 .log_dline_size = 6, 83 .iline_size = 0x40, 84 .log_iline_size = 6 85 }; 86 EXPORT_SYMBOL_GPL(ppc64_caches); 87 88 /* 89 * These are used in binfmt_elf.c to put aux entries on the stack 90 * for each elf executable being started. 91 */ 92 int dcache_bsize; 93 int icache_bsize; 94 int ucache_bsize; 95 96 #ifdef CONFIG_SMP 97 98 static int smt_enabled_cmdline; 99 100 /* Look for ibm,smt-enabled OF option */ 101 static void check_smt_enabled(void) 102 { 103 struct device_node *dn; 104 const char *smt_option; 105 106 /* Allow the command line to overrule the OF option */ 107 if (smt_enabled_cmdline) 108 return; 109 110 dn = of_find_node_by_path("/options"); 111 112 if (dn) { 113 smt_option = of_get_property(dn, "ibm,smt-enabled", NULL); 114 115 if (smt_option) { 116 if (!strcmp(smt_option, "on")) 117 smt_enabled_at_boot = 1; 118 else if (!strcmp(smt_option, "off")) 119 smt_enabled_at_boot = 0; 120 } 121 } 122 } 123 124 /* Look for smt-enabled= cmdline option */ 125 static int __init early_smt_enabled(char *p) 126 { 127 smt_enabled_cmdline = 1; 128 129 if (!p) 130 return 0; 131 132 if (!strcmp(p, "on") || !strcmp(p, "1")) 133 smt_enabled_at_boot = 1; 134 else if (!strcmp(p, "off") || !strcmp(p, "0")) 135 smt_enabled_at_boot = 0; 136 137 return 0; 138 } 139 early_param("smt-enabled", early_smt_enabled); 140 141 #else 142 #define check_smt_enabled() 143 #endif /* CONFIG_SMP */ 144 145 /* Put the paca pointer into r13 and SPRG3 */ 146 void __init setup_paca(int cpu) 147 { 148 local_paca = &paca[cpu]; 149 mtspr(SPRN_SPRG3, local_paca); 150 } 151 152 /* 153 * Early initialization entry point. This is called by head.S 154 * with MMU translation disabled. We rely on the "feature" of 155 * the CPU that ignores the top 2 bits of the address in real 156 * mode so we can access kernel globals normally provided we 157 * only toy with things in the RMO region. From here, we do 158 * some early parsing of the device-tree to setup out LMB 159 * data structures, and allocate & initialize the hash table 160 * and segment tables so we can start running with translation 161 * enabled. 162 * 163 * It is this function which will call the probe() callback of 164 * the various platform types and copy the matching one to the 165 * global ppc_md structure. Your platform can eventually do 166 * some very early initializations from the probe() routine, but 167 * this is not recommended, be very careful as, for example, the 168 * device-tree is not accessible via normal means at this point. 169 */ 170 171 void __init early_setup(unsigned long dt_ptr) 172 { 173 /* -------- printk is _NOT_ safe to use here ! ------- */ 174 175 /* Fill in any unititialised pacas */ 176 initialise_pacas(); 177 178 /* Identify CPU type */ 179 identify_cpu(0, mfspr(SPRN_PVR)); 180 181 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 182 setup_paca(0); 183 184 /* Initialize lockdep early or else spinlocks will blow */ 185 lockdep_init(); 186 187 /* -------- printk is now safe to use ------- */ 188 189 /* Enable early debugging if any specified (see udbg.h) */ 190 udbg_early_init(); 191 192 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 193 194 /* 195 * Do early initialization using the flattened device 196 * tree, such as retrieving the physical memory map or 197 * calculating/retrieving the hash table size. 198 */ 199 early_init_devtree(__va(dt_ptr)); 200 201 /* Now we know the logical id of our boot cpu, setup the paca. */ 202 setup_paca(boot_cpuid); 203 204 /* Fix up paca fields required for the boot cpu */ 205 get_paca()->cpu_start = 1; 206 get_paca()->stab_real = __pa((u64)&initial_stab); 207 get_paca()->stab_addr = (u64)&initial_stab; 208 209 /* Probe the machine type */ 210 probe_machine(); 211 212 setup_kdump_trampoline(); 213 214 DBG("Found, Initializing memory management...\n"); 215 216 /* 217 * Initialize the MMU Hash table and create the linear mapping 218 * of memory. Has to be done before stab/slb initialization as 219 * this is currently where the page size encoding is obtained 220 */ 221 htab_initialize(); 222 223 /* 224 * Initialize stab / SLB management except on iSeries 225 */ 226 if (cpu_has_feature(CPU_FTR_SLB)) 227 slb_initialize(); 228 else if (!firmware_has_feature(FW_FEATURE_ISERIES)) 229 stab_initialize(get_paca()->stab_real); 230 231 DBG(" <- early_setup()\n"); 232 } 233 234 #ifdef CONFIG_SMP 235 void early_setup_secondary(void) 236 { 237 struct paca_struct *lpaca = get_paca(); 238 239 /* Mark interrupts enabled in PACA */ 240 lpaca->soft_enabled = 0; 241 242 /* Initialize hash table for that CPU */ 243 htab_initialize_secondary(); 244 245 /* Initialize STAB/SLB. We use a virtual address as it works 246 * in real mode on pSeries and we want a virutal address on 247 * iSeries anyway 248 */ 249 if (cpu_has_feature(CPU_FTR_SLB)) 250 slb_initialize(); 251 else 252 stab_initialize(lpaca->stab_addr); 253 } 254 255 #endif /* CONFIG_SMP */ 256 257 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC) 258 void smp_release_cpus(void) 259 { 260 extern unsigned long __secondary_hold_spinloop; 261 unsigned long *ptr; 262 263 DBG(" -> smp_release_cpus()\n"); 264 265 /* All secondary cpus are spinning on a common spinloop, release them 266 * all now so they can start to spin on their individual paca 267 * spinloops. For non SMP kernels, the secondary cpus never get out 268 * of the common spinloop. 269 * This is useless but harmless on iSeries, secondaries are already 270 * waiting on their paca spinloops. */ 271 272 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 273 - PHYSICAL_START); 274 *ptr = 1; 275 mb(); 276 277 DBG(" <- smp_release_cpus()\n"); 278 } 279 #endif /* CONFIG_SMP || CONFIG_KEXEC */ 280 281 /* 282 * Initialize some remaining members of the ppc64_caches and systemcfg 283 * structures 284 * (at least until we get rid of them completely). This is mostly some 285 * cache informations about the CPU that will be used by cache flush 286 * routines and/or provided to userland 287 */ 288 static void __init initialize_cache_info(void) 289 { 290 struct device_node *np; 291 unsigned long num_cpus = 0; 292 293 DBG(" -> initialize_cache_info()\n"); 294 295 for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) { 296 num_cpus += 1; 297 298 /* We're assuming *all* of the CPUs have the same 299 * d-cache and i-cache sizes... -Peter 300 */ 301 302 if ( num_cpus == 1 ) { 303 const u32 *sizep, *lsizep; 304 u32 size, lsize; 305 306 size = 0; 307 lsize = cur_cpu_spec->dcache_bsize; 308 sizep = of_get_property(np, "d-cache-size", NULL); 309 if (sizep != NULL) 310 size = *sizep; 311 lsizep = of_get_property(np, "d-cache-block-size", NULL); 312 /* fallback if block size missing */ 313 if (lsizep == NULL) 314 lsizep = of_get_property(np, "d-cache-line-size", NULL); 315 if (lsizep != NULL) 316 lsize = *lsizep; 317 if (sizep == 0 || lsizep == 0) 318 DBG("Argh, can't find dcache properties ! " 319 "sizep: %p, lsizep: %p\n", sizep, lsizep); 320 321 ppc64_caches.dsize = size; 322 ppc64_caches.dline_size = lsize; 323 ppc64_caches.log_dline_size = __ilog2(lsize); 324 ppc64_caches.dlines_per_page = PAGE_SIZE / lsize; 325 326 size = 0; 327 lsize = cur_cpu_spec->icache_bsize; 328 sizep = of_get_property(np, "i-cache-size", NULL); 329 if (sizep != NULL) 330 size = *sizep; 331 lsizep = of_get_property(np, "i-cache-block-size", NULL); 332 if (lsizep == NULL) 333 lsizep = of_get_property(np, "i-cache-line-size", NULL); 334 if (lsizep != NULL) 335 lsize = *lsizep; 336 if (sizep == 0 || lsizep == 0) 337 DBG("Argh, can't find icache properties ! " 338 "sizep: %p, lsizep: %p\n", sizep, lsizep); 339 340 ppc64_caches.isize = size; 341 ppc64_caches.iline_size = lsize; 342 ppc64_caches.log_iline_size = __ilog2(lsize); 343 ppc64_caches.ilines_per_page = PAGE_SIZE / lsize; 344 } 345 } 346 347 DBG(" <- initialize_cache_info()\n"); 348 } 349 350 351 /* 352 * Do some initial setup of the system. The parameters are those which 353 * were passed in from the bootloader. 354 */ 355 void __init setup_system(void) 356 { 357 DBG(" -> setup_system()\n"); 358 359 /* Apply the CPUs-specific and firmware specific fixups to kernel 360 * text (nop out sections not relevant to this CPU or this firmware) 361 */ 362 do_feature_fixups(cur_cpu_spec->cpu_features, 363 &__start___ftr_fixup, &__stop___ftr_fixup); 364 do_feature_fixups(powerpc_firmware_features, 365 &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup); 366 do_lwsync_fixups(cur_cpu_spec->cpu_features, 367 &__start___lwsync_fixup, &__stop___lwsync_fixup); 368 369 /* 370 * Unflatten the device-tree passed by prom_init or kexec 371 */ 372 unflatten_device_tree(); 373 374 /* 375 * Fill the ppc64_caches & systemcfg structures with informations 376 * retrieved from the device-tree. 377 */ 378 initialize_cache_info(); 379 380 /* 381 * Initialize irq remapping subsystem 382 */ 383 irq_early_init(); 384 385 #ifdef CONFIG_PPC_RTAS 386 /* 387 * Initialize RTAS if available 388 */ 389 rtas_initialize(); 390 #endif /* CONFIG_PPC_RTAS */ 391 392 /* 393 * Check if we have an initrd provided via the device-tree 394 */ 395 check_for_initrd(); 396 397 /* 398 * Do some platform specific early initializations, that includes 399 * setting up the hash table pointers. It also sets up some interrupt-mapping 400 * related options that will be used by finish_device_tree() 401 */ 402 if (ppc_md.init_early) 403 ppc_md.init_early(); 404 405 /* 406 * We can discover serial ports now since the above did setup the 407 * hash table management for us, thus ioremap works. We do that early 408 * so that further code can be debugged 409 */ 410 find_legacy_serial_ports(); 411 412 /* 413 * Register early console 414 */ 415 register_early_udbg_console(); 416 417 /* 418 * Initialize xmon 419 */ 420 xmon_setup(); 421 422 check_smt_enabled(); 423 smp_setup_cpu_maps(); 424 425 #ifdef CONFIG_SMP 426 /* Release secondary cpus out of their spinloops at 0x60 now that 427 * we can map physical -> logical CPU ids 428 */ 429 smp_release_cpus(); 430 #endif 431 432 printk("Starting Linux PPC64 %s\n", init_utsname()->version); 433 434 printk("-----------------------------------------------------\n"); 435 printk("ppc64_pft_size = 0x%lx\n", ppc64_pft_size); 436 printk("physicalMemorySize = 0x%lx\n", lmb_phys_mem_size()); 437 if (ppc64_caches.dline_size != 0x80) 438 printk("ppc64_caches.dcache_line_size = 0x%x\n", 439 ppc64_caches.dline_size); 440 if (ppc64_caches.iline_size != 0x80) 441 printk("ppc64_caches.icache_line_size = 0x%x\n", 442 ppc64_caches.iline_size); 443 if (htab_address) 444 printk("htab_address = 0x%p\n", htab_address); 445 printk("htab_hash_mask = 0x%lx\n", htab_hash_mask); 446 #if PHYSICAL_START > 0 447 printk("physical_start = 0x%lx\n", PHYSICAL_START); 448 #endif 449 printk("-----------------------------------------------------\n"); 450 451 DBG(" <- setup_system()\n"); 452 } 453 454 #ifdef CONFIG_IRQSTACKS 455 static void __init irqstack_early_init(void) 456 { 457 unsigned int i; 458 459 /* 460 * interrupt stacks must be under 256MB, we cannot afford to take 461 * SLB misses on them. 462 */ 463 for_each_possible_cpu(i) { 464 softirq_ctx[i] = (struct thread_info *) 465 __va(lmb_alloc_base(THREAD_SIZE, 466 THREAD_SIZE, 0x10000000)); 467 hardirq_ctx[i] = (struct thread_info *) 468 __va(lmb_alloc_base(THREAD_SIZE, 469 THREAD_SIZE, 0x10000000)); 470 } 471 } 472 #else 473 #define irqstack_early_init() 474 #endif 475 476 /* 477 * Stack space used when we detect a bad kernel stack pointer, and 478 * early in SMP boots before relocation is enabled. 479 */ 480 static void __init emergency_stack_init(void) 481 { 482 unsigned long limit; 483 unsigned int i; 484 485 /* 486 * Emergency stacks must be under 256MB, we cannot afford to take 487 * SLB misses on them. The ABI also requires them to be 128-byte 488 * aligned. 489 * 490 * Since we use these as temporary stacks during secondary CPU 491 * bringup, we need to get at them in real mode. This means they 492 * must also be within the RMO region. 493 */ 494 limit = min(0x10000000UL, lmb.rmo_size); 495 496 for_each_possible_cpu(i) { 497 unsigned long sp; 498 sp = lmb_alloc_base(THREAD_SIZE, THREAD_SIZE, limit); 499 sp += THREAD_SIZE; 500 paca[i].emergency_sp = __va(sp); 501 } 502 } 503 504 /* 505 * Called into from start_kernel, after lock_kernel has been called. 506 * Initializes bootmem, which is unsed to manage page allocation until 507 * mem_init is called. 508 */ 509 void __init setup_arch(char **cmdline_p) 510 { 511 ppc64_boot_msg(0x12, "Setup Arch"); 512 513 *cmdline_p = cmd_line; 514 515 /* 516 * Set cache line size based on type of cpu as a default. 517 * Systems with OF can look in the properties on the cpu node(s) 518 * for a possibly more accurate value. 519 */ 520 dcache_bsize = ppc64_caches.dline_size; 521 icache_bsize = ppc64_caches.iline_size; 522 523 /* reboot on panic */ 524 panic_timeout = 180; 525 526 if (ppc_md.panic) 527 setup_panic(); 528 529 init_mm.start_code = (unsigned long)_stext; 530 init_mm.end_code = (unsigned long) _etext; 531 init_mm.end_data = (unsigned long) _edata; 532 init_mm.brk = klimit; 533 534 irqstack_early_init(); 535 emergency_stack_init(); 536 537 stabs_alloc(); 538 539 /* set up the bootmem stuff with available memory */ 540 do_init_bootmem(); 541 sparse_init(); 542 543 #ifdef CONFIG_DUMMY_CONSOLE 544 conswitchp = &dummy_con; 545 #endif 546 547 if (ppc_md.setup_arch) 548 ppc_md.setup_arch(); 549 550 paging_init(); 551 ppc64_boot_msg(0x15, "Setup Done"); 552 } 553 554 555 /* ToDo: do something useful if ppc_md is not yet setup. */ 556 #define PPC64_LINUX_FUNCTION 0x0f000000 557 #define PPC64_IPL_MESSAGE 0xc0000000 558 #define PPC64_TERM_MESSAGE 0xb0000000 559 560 static void ppc64_do_msg(unsigned int src, const char *msg) 561 { 562 if (ppc_md.progress) { 563 char buf[128]; 564 565 sprintf(buf, "%08X\n", src); 566 ppc_md.progress(buf, 0); 567 snprintf(buf, 128, "%s", msg); 568 ppc_md.progress(buf, 0); 569 } 570 } 571 572 /* Print a boot progress message. */ 573 void ppc64_boot_msg(unsigned int src, const char *msg) 574 { 575 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg); 576 printk("[boot]%04x %s\n", src, msg); 577 } 578 579 /* Print a termination message (print only -- does not stop the kernel) */ 580 void ppc64_terminate_msg(unsigned int src, const char *msg) 581 { 582 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg); 583 printk("[terminate]%04x %s\n", src, msg); 584 } 585 586 void cpu_die(void) 587 { 588 if (ppc_md.cpu_die) 589 ppc_md.cpu_die(); 590 } 591 592 #ifdef CONFIG_SMP 593 void __init setup_per_cpu_areas(void) 594 { 595 int i; 596 unsigned long size; 597 char *ptr; 598 599 /* Copy section for each CPU (we discard the original) */ 600 size = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE); 601 #ifdef CONFIG_MODULES 602 if (size < PERCPU_ENOUGH_ROOM) 603 size = PERCPU_ENOUGH_ROOM; 604 #endif 605 606 for_each_possible_cpu(i) { 607 ptr = alloc_bootmem_pages_node(NODE_DATA(cpu_to_node(i)), size); 608 if (!ptr) 609 panic("Cannot allocate cpu data for CPU %d\n", i); 610 611 paca[i].data_offset = ptr - __per_cpu_start; 612 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start); 613 } 614 } 615 #endif 616 617 618 #ifdef CONFIG_PPC_INDIRECT_IO 619 struct ppc_pci_io ppc_pci_io; 620 EXPORT_SYMBOL(ppc_pci_io); 621 #endif /* CONFIG_PPC_INDIRECT_IO */ 622 623