xref: /openbmc/linux/arch/powerpc/kernel/setup_64.c (revision 2359ccdd)
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/export.h>
14 #include <linux/string.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/reboot.h>
19 #include <linux/delay.h>
20 #include <linux/initrd.h>
21 #include <linux/seq_file.h>
22 #include <linux/ioport.h>
23 #include <linux/console.h>
24 #include <linux/utsname.h>
25 #include <linux/tty.h>
26 #include <linux/root_dev.h>
27 #include <linux/notifier.h>
28 #include <linux/cpu.h>
29 #include <linux/unistd.h>
30 #include <linux/serial.h>
31 #include <linux/serial_8250.h>
32 #include <linux/bootmem.h>
33 #include <linux/pci.h>
34 #include <linux/lockdep.h>
35 #include <linux/memblock.h>
36 #include <linux/memory.h>
37 #include <linux/nmi.h>
38 
39 #include <asm/debugfs.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/prom.h>
43 #include <asm/processor.h>
44 #include <asm/pgtable.h>
45 #include <asm/smp.h>
46 #include <asm/elf.h>
47 #include <asm/machdep.h>
48 #include <asm/paca.h>
49 #include <asm/time.h>
50 #include <asm/cputable.h>
51 #include <asm/dt_cpu_ftrs.h>
52 #include <asm/sections.h>
53 #include <asm/btext.h>
54 #include <asm/nvram.h>
55 #include <asm/setup.h>
56 #include <asm/rtas.h>
57 #include <asm/iommu.h>
58 #include <asm/serial.h>
59 #include <asm/cache.h>
60 #include <asm/page.h>
61 #include <asm/mmu.h>
62 #include <asm/firmware.h>
63 #include <asm/xmon.h>
64 #include <asm/udbg.h>
65 #include <asm/kexec.h>
66 #include <asm/code-patching.h>
67 #include <asm/livepatch.h>
68 #include <asm/opal.h>
69 #include <asm/cputhreads.h>
70 #include <asm/hw_irq.h>
71 
72 #include "setup.h"
73 
74 #ifdef DEBUG
75 #define DBG(fmt...) udbg_printf(fmt)
76 #else
77 #define DBG(fmt...)
78 #endif
79 
80 int spinning_secondaries;
81 u64 ppc64_pft_size;
82 
83 struct ppc64_caches ppc64_caches = {
84 	.l1d = {
85 		.block_size = 0x40,
86 		.log_block_size = 6,
87 	},
88 	.l1i = {
89 		.block_size = 0x40,
90 		.log_block_size = 6
91 	},
92 };
93 EXPORT_SYMBOL_GPL(ppc64_caches);
94 
95 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
96 void __init setup_tlb_core_data(void)
97 {
98 	int cpu;
99 
100 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
101 
102 	for_each_possible_cpu(cpu) {
103 		int first = cpu_first_thread_sibling(cpu);
104 
105 		/*
106 		 * If we boot via kdump on a non-primary thread,
107 		 * make sure we point at the thread that actually
108 		 * set up this TLB.
109 		 */
110 		if (cpu_first_thread_sibling(boot_cpuid) == first)
111 			first = boot_cpuid;
112 
113 		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
114 
115 		/*
116 		 * If we have threads, we need either tlbsrx.
117 		 * or e6500 tablewalk mode, or else TLB handlers
118 		 * will be racy and could produce duplicate entries.
119 		 * Should we panic instead?
120 		 */
121 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
122 			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
123 			  book3e_htw_mode != PPC_HTW_E6500,
124 			  "%s: unsupported MMU configuration\n", __func__);
125 	}
126 }
127 #endif
128 
129 #ifdef CONFIG_SMP
130 
131 static char *smt_enabled_cmdline;
132 
133 /* Look for ibm,smt-enabled OF option */
134 void __init check_smt_enabled(void)
135 {
136 	struct device_node *dn;
137 	const char *smt_option;
138 
139 	/* Default to enabling all threads */
140 	smt_enabled_at_boot = threads_per_core;
141 
142 	/* Allow the command line to overrule the OF option */
143 	if (smt_enabled_cmdline) {
144 		if (!strcmp(smt_enabled_cmdline, "on"))
145 			smt_enabled_at_boot = threads_per_core;
146 		else if (!strcmp(smt_enabled_cmdline, "off"))
147 			smt_enabled_at_boot = 0;
148 		else {
149 			int smt;
150 			int rc;
151 
152 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
153 			if (!rc)
154 				smt_enabled_at_boot =
155 					min(threads_per_core, smt);
156 		}
157 	} else {
158 		dn = of_find_node_by_path("/options");
159 		if (dn) {
160 			smt_option = of_get_property(dn, "ibm,smt-enabled",
161 						     NULL);
162 
163 			if (smt_option) {
164 				if (!strcmp(smt_option, "on"))
165 					smt_enabled_at_boot = threads_per_core;
166 				else if (!strcmp(smt_option, "off"))
167 					smt_enabled_at_boot = 0;
168 			}
169 
170 			of_node_put(dn);
171 		}
172 	}
173 }
174 
175 /* Look for smt-enabled= cmdline option */
176 static int __init early_smt_enabled(char *p)
177 {
178 	smt_enabled_cmdline = p;
179 	return 0;
180 }
181 early_param("smt-enabled", early_smt_enabled);
182 
183 #endif /* CONFIG_SMP */
184 
185 /** Fix up paca fields required for the boot cpu */
186 static void __init fixup_boot_paca(void)
187 {
188 	/* The boot cpu is started */
189 	get_paca()->cpu_start = 1;
190 	/* Allow percpu accesses to work until we setup percpu data */
191 	get_paca()->data_offset = 0;
192 	/* Mark interrupts disabled in PACA */
193 	irq_soft_mask_set(IRQS_DISABLED);
194 }
195 
196 static void __init configure_exceptions(void)
197 {
198 	/*
199 	 * Setup the trampolines from the lowmem exception vectors
200 	 * to the kdump kernel when not using a relocatable kernel.
201 	 */
202 	setup_kdump_trampoline();
203 
204 	/* Under a PAPR hypervisor, we need hypercalls */
205 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
206 		/* Enable AIL if possible */
207 		pseries_enable_reloc_on_exc();
208 
209 		/*
210 		 * Tell the hypervisor that we want our exceptions to
211 		 * be taken in little endian mode.
212 		 *
213 		 * We don't call this for big endian as our calling convention
214 		 * makes us always enter in BE, and the call may fail under
215 		 * some circumstances with kdump.
216 		 */
217 #ifdef __LITTLE_ENDIAN__
218 		pseries_little_endian_exceptions();
219 #endif
220 	} else {
221 		/* Set endian mode using OPAL */
222 		if (firmware_has_feature(FW_FEATURE_OPAL))
223 			opal_configure_cores();
224 
225 		/* AIL on native is done in cpu_ready_for_interrupts() */
226 	}
227 }
228 
229 static void cpu_ready_for_interrupts(void)
230 {
231 	/*
232 	 * Enable AIL if supported, and we are in hypervisor mode. This
233 	 * is called once for every processor.
234 	 *
235 	 * If we are not in hypervisor mode the job is done once for
236 	 * the whole partition in configure_exceptions().
237 	 */
238 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
239 	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
240 		unsigned long lpcr = mfspr(SPRN_LPCR);
241 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
242 	}
243 
244 	/*
245 	 * Fixup HFSCR:TM based on CPU features. The bit is set by our
246 	 * early asm init because at that point we haven't updated our
247 	 * CPU features from firmware and device-tree. Here we have,
248 	 * so let's do it.
249 	 */
250 	if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
251 		mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
252 
253 	/* Set IR and DR in PACA MSR */
254 	get_paca()->kernel_msr = MSR_KERNEL;
255 }
256 
257 unsigned long spr_default_dscr = 0;
258 
259 void __init record_spr_defaults(void)
260 {
261 	if (early_cpu_has_feature(CPU_FTR_DSCR))
262 		spr_default_dscr = mfspr(SPRN_DSCR);
263 }
264 
265 /*
266  * Early initialization entry point. This is called by head.S
267  * with MMU translation disabled. We rely on the "feature" of
268  * the CPU that ignores the top 2 bits of the address in real
269  * mode so we can access kernel globals normally provided we
270  * only toy with things in the RMO region. From here, we do
271  * some early parsing of the device-tree to setup out MEMBLOCK
272  * data structures, and allocate & initialize the hash table
273  * and segment tables so we can start running with translation
274  * enabled.
275  *
276  * It is this function which will call the probe() callback of
277  * the various platform types and copy the matching one to the
278  * global ppc_md structure. Your platform can eventually do
279  * some very early initializations from the probe() routine, but
280  * this is not recommended, be very careful as, for example, the
281  * device-tree is not accessible via normal means at this point.
282  */
283 
284 void __init early_setup(unsigned long dt_ptr)
285 {
286 	static __initdata struct paca_struct boot_paca;
287 
288 	/* -------- printk is _NOT_ safe to use here ! ------- */
289 
290 	/* Try new device tree based feature discovery ... */
291 	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
292 		/* Otherwise use the old style CPU table */
293 		identify_cpu(0, mfspr(SPRN_PVR));
294 
295 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
296 	initialise_paca(&boot_paca, 0);
297 	setup_paca(&boot_paca);
298 	fixup_boot_paca();
299 
300 	/* -------- printk is now safe to use ------- */
301 
302 	/* Enable early debugging if any specified (see udbg.h) */
303 	udbg_early_init();
304 
305  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
306 
307 	/*
308 	 * Do early initialization using the flattened device
309 	 * tree, such as retrieving the physical memory map or
310 	 * calculating/retrieving the hash table size.
311 	 */
312 	early_init_devtree(__va(dt_ptr));
313 
314 	/* Now we know the logical id of our boot cpu, setup the paca. */
315 	if (boot_cpuid != 0) {
316 		/* Poison paca_ptrs[0] again if it's not the boot cpu */
317 		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
318 	}
319 	setup_paca(paca_ptrs[boot_cpuid]);
320 	fixup_boot_paca();
321 
322 	/*
323 	 * Configure exception handlers. This include setting up trampolines
324 	 * if needed, setting exception endian mode, etc...
325 	 */
326 	configure_exceptions();
327 
328 	/* Apply all the dynamic patching */
329 	apply_feature_fixups();
330 	setup_feature_keys();
331 
332 	/* Initialize the hash table or TLB handling */
333 	early_init_mmu();
334 
335 	/*
336 	 * After firmware and early platform setup code has set things up,
337 	 * we note the SPR values for configurable control/performance
338 	 * registers, and use those as initial defaults.
339 	 */
340 	record_spr_defaults();
341 
342 	/*
343 	 * At this point, we can let interrupts switch to virtual mode
344 	 * (the MMU has been setup), so adjust the MSR in the PACA to
345 	 * have IR and DR set and enable AIL if it exists
346 	 */
347 	cpu_ready_for_interrupts();
348 
349 	DBG(" <- early_setup()\n");
350 
351 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
352 	/*
353 	 * This needs to be done *last* (after the above DBG() even)
354 	 *
355 	 * Right after we return from this function, we turn on the MMU
356 	 * which means the real-mode access trick that btext does will
357 	 * no longer work, it needs to switch to using a real MMU
358 	 * mapping. This call will ensure that it does
359 	 */
360 	btext_map();
361 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
362 }
363 
364 #ifdef CONFIG_SMP
365 void early_setup_secondary(void)
366 {
367 	/* Mark interrupts disabled in PACA */
368 	irq_soft_mask_set(IRQS_DISABLED);
369 
370 	/* Initialize the hash table or TLB handling */
371 	early_init_mmu_secondary();
372 
373 	/*
374 	 * At this point, we can let interrupts switch to virtual mode
375 	 * (the MMU has been setup), so adjust the MSR in the PACA to
376 	 * have IR and DR set.
377 	 */
378 	cpu_ready_for_interrupts();
379 }
380 
381 #endif /* CONFIG_SMP */
382 
383 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
384 static bool use_spinloop(void)
385 {
386 	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
387 		/*
388 		 * See comments in head_64.S -- not all platforms insert
389 		 * secondaries at __secondary_hold and wait at the spin
390 		 * loop.
391 		 */
392 		if (firmware_has_feature(FW_FEATURE_OPAL))
393 			return false;
394 		return true;
395 	}
396 
397 	/*
398 	 * When book3e boots from kexec, the ePAPR spin table does
399 	 * not get used.
400 	 */
401 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
402 }
403 
404 void smp_release_cpus(void)
405 {
406 	unsigned long *ptr;
407 	int i;
408 
409 	if (!use_spinloop())
410 		return;
411 
412 	DBG(" -> smp_release_cpus()\n");
413 
414 	/* All secondary cpus are spinning on a common spinloop, release them
415 	 * all now so they can start to spin on their individual paca
416 	 * spinloops. For non SMP kernels, the secondary cpus never get out
417 	 * of the common spinloop.
418 	 */
419 
420 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
421 			- PHYSICAL_START);
422 	*ptr = ppc_function_entry(generic_secondary_smp_init);
423 
424 	/* And wait a bit for them to catch up */
425 	for (i = 0; i < 100000; i++) {
426 		mb();
427 		HMT_low();
428 		if (spinning_secondaries == 0)
429 			break;
430 		udelay(1);
431 	}
432 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
433 
434 	DBG(" <- smp_release_cpus()\n");
435 }
436 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
437 
438 /*
439  * Initialize some remaining members of the ppc64_caches and systemcfg
440  * structures
441  * (at least until we get rid of them completely). This is mostly some
442  * cache informations about the CPU that will be used by cache flush
443  * routines and/or provided to userland
444  */
445 
446 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
447 			    u32 bsize, u32 sets)
448 {
449 	info->size = size;
450 	info->sets = sets;
451 	info->line_size = lsize;
452 	info->block_size = bsize;
453 	info->log_block_size = __ilog2(bsize);
454 	if (bsize)
455 		info->blocks_per_page = PAGE_SIZE / bsize;
456 	else
457 		info->blocks_per_page = 0;
458 
459 	if (sets == 0)
460 		info->assoc = 0xffff;
461 	else
462 		info->assoc = size / (sets * lsize);
463 }
464 
465 static bool __init parse_cache_info(struct device_node *np,
466 				    bool icache,
467 				    struct ppc_cache_info *info)
468 {
469 	static const char *ipropnames[] __initdata = {
470 		"i-cache-size",
471 		"i-cache-sets",
472 		"i-cache-block-size",
473 		"i-cache-line-size",
474 	};
475 	static const char *dpropnames[] __initdata = {
476 		"d-cache-size",
477 		"d-cache-sets",
478 		"d-cache-block-size",
479 		"d-cache-line-size",
480 	};
481 	const char **propnames = icache ? ipropnames : dpropnames;
482 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
483 	u32 size, lsize, bsize, sets;
484 	bool success = true;
485 
486 	size = 0;
487 	sets = -1u;
488 	lsize = bsize = cur_cpu_spec->dcache_bsize;
489 	sizep = of_get_property(np, propnames[0], NULL);
490 	if (sizep != NULL)
491 		size = be32_to_cpu(*sizep);
492 	setsp = of_get_property(np, propnames[1], NULL);
493 	if (setsp != NULL)
494 		sets = be32_to_cpu(*setsp);
495 	bsizep = of_get_property(np, propnames[2], NULL);
496 	lsizep = of_get_property(np, propnames[3], NULL);
497 	if (bsizep == NULL)
498 		bsizep = lsizep;
499 	if (lsizep != NULL)
500 		lsize = be32_to_cpu(*lsizep);
501 	if (bsizep != NULL)
502 		bsize = be32_to_cpu(*bsizep);
503 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
504 		success = false;
505 
506 	/*
507 	 * OF is weird .. it represents fully associative caches
508 	 * as "1 way" which doesn't make much sense and doesn't
509 	 * leave room for direct mapped. We'll assume that 0
510 	 * in OF means direct mapped for that reason.
511 	 */
512 	if (sets == 1)
513 		sets = 0;
514 	else if (sets == 0)
515 		sets = 1;
516 
517 	init_cache_info(info, size, lsize, bsize, sets);
518 
519 	return success;
520 }
521 
522 void __init initialize_cache_info(void)
523 {
524 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
525 	u32 pvr;
526 
527 	DBG(" -> initialize_cache_info()\n");
528 
529 	/*
530 	 * All shipping POWER8 machines have a firmware bug that
531 	 * puts incorrect information in the device-tree. This will
532 	 * be (hopefully) fixed for future chips but for now hard
533 	 * code the values if we are running on one of these
534 	 */
535 	pvr = PVR_VER(mfspr(SPRN_PVR));
536 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
537 	    pvr == PVR_POWER8NVL) {
538 						/* size    lsize   blk  sets */
539 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
540 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
541 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
542 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
543 	} else
544 		cpu = of_find_node_by_type(NULL, "cpu");
545 
546 	/*
547 	 * We're assuming *all* of the CPUs have the same
548 	 * d-cache and i-cache sizes... -Peter
549 	 */
550 	if (cpu) {
551 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
552 			DBG("Argh, can't find dcache properties !\n");
553 
554 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
555 			DBG("Argh, can't find icache properties !\n");
556 
557 		/*
558 		 * Try to find the L2 and L3 if any. Assume they are
559 		 * unified and use the D-side properties.
560 		 */
561 		l2 = of_find_next_cache_node(cpu);
562 		of_node_put(cpu);
563 		if (l2) {
564 			parse_cache_info(l2, false, &ppc64_caches.l2);
565 			l3 = of_find_next_cache_node(l2);
566 			of_node_put(l2);
567 		}
568 		if (l3) {
569 			parse_cache_info(l3, false, &ppc64_caches.l3);
570 			of_node_put(l3);
571 		}
572 	}
573 
574 	/* For use by binfmt_elf */
575 	dcache_bsize = ppc64_caches.l1d.block_size;
576 	icache_bsize = ppc64_caches.l1i.block_size;
577 
578 	cur_cpu_spec->dcache_bsize = dcache_bsize;
579 	cur_cpu_spec->icache_bsize = icache_bsize;
580 
581 	DBG(" <- initialize_cache_info()\n");
582 }
583 
584 /*
585  * This returns the limit below which memory accesses to the linear
586  * mapping are guarnateed not to cause an architectural exception (e.g.,
587  * TLB or SLB miss fault).
588  *
589  * This is used to allocate PACAs and various interrupt stacks that
590  * that are accessed early in interrupt handlers that must not cause
591  * re-entrant interrupts.
592  */
593 __init u64 ppc64_bolted_size(void)
594 {
595 #ifdef CONFIG_PPC_BOOK3E
596 	/* Freescale BookE bolts the entire linear mapping */
597 	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
598 	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
599 		return linear_map_top;
600 	/* Other BookE, we assume the first GB is bolted */
601 	return 1ul << 30;
602 #else
603 	/* BookS radix, does not take faults on linear mapping */
604 	if (early_radix_enabled())
605 		return ULONG_MAX;
606 
607 	/* BookS hash, the first segment is bolted */
608 	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
609 		return 1UL << SID_SHIFT_1T;
610 	return 1UL << SID_SHIFT;
611 #endif
612 }
613 
614 static void *__init alloc_stack(unsigned long limit, int cpu)
615 {
616 	unsigned long pa;
617 
618 	pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit,
619 					early_cpu_to_node(cpu), MEMBLOCK_NONE);
620 	if (!pa) {
621 		pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
622 		if (!pa)
623 			panic("cannot allocate stacks");
624 	}
625 
626 	return __va(pa);
627 }
628 
629 void __init irqstack_early_init(void)
630 {
631 	u64 limit = ppc64_bolted_size();
632 	unsigned int i;
633 
634 	/*
635 	 * Interrupt stacks must be in the first segment since we
636 	 * cannot afford to take SLB misses on them. They are not
637 	 * accessed in realmode.
638 	 */
639 	for_each_possible_cpu(i) {
640 		softirq_ctx[i] = alloc_stack(limit, i);
641 		hardirq_ctx[i] = alloc_stack(limit, i);
642 	}
643 }
644 
645 #ifdef CONFIG_PPC_BOOK3E
646 void __init exc_lvl_early_init(void)
647 {
648 	unsigned int i;
649 
650 	for_each_possible_cpu(i) {
651 		void *sp;
652 
653 		sp = alloc_stack(ULONG_MAX, i);
654 		critirq_ctx[i] = sp;
655 		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
656 
657 		sp = alloc_stack(ULONG_MAX, i);
658 		dbgirq_ctx[i] = sp;
659 		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
660 
661 		sp = alloc_stack(ULONG_MAX, i);
662 		mcheckirq_ctx[i] = sp;
663 		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
664 	}
665 
666 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
667 		patch_exception(0x040, exc_debug_debug_book3e);
668 }
669 #endif
670 
671 /*
672  * Emergency stacks are used for a range of things, from asynchronous
673  * NMIs (system reset, machine check) to synchronous, process context.
674  * We set preempt_count to zero, even though that isn't necessarily correct. To
675  * get the right value we'd need to copy it from the previous thread_info, but
676  * doing that might fault causing more problems.
677  * TODO: what to do with accounting?
678  */
679 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
680 {
681 	ti->task = NULL;
682 	ti->cpu = cpu;
683 	ti->preempt_count = 0;
684 	ti->local_flags = 0;
685 	ti->flags = 0;
686 	klp_init_thread_info(ti);
687 }
688 
689 /*
690  * Stack space used when we detect a bad kernel stack pointer, and
691  * early in SMP boots before relocation is enabled. Exclusive emergency
692  * stack for machine checks.
693  */
694 void __init emergency_stack_init(void)
695 {
696 	u64 limit;
697 	unsigned int i;
698 
699 	/*
700 	 * Emergency stacks must be under 256MB, we cannot afford to take
701 	 * SLB misses on them. The ABI also requires them to be 128-byte
702 	 * aligned.
703 	 *
704 	 * Since we use these as temporary stacks during secondary CPU
705 	 * bringup, machine check, system reset, and HMI, we need to get
706 	 * at them in real mode. This means they must also be within the RMO
707 	 * region.
708 	 *
709 	 * The IRQ stacks allocated elsewhere in this file are zeroed and
710 	 * initialized in kernel/irq.c. These are initialized here in order
711 	 * to have emergency stacks available as early as possible.
712 	 */
713 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
714 
715 	for_each_possible_cpu(i) {
716 		struct thread_info *ti;
717 
718 		ti = alloc_stack(limit, i);
719 		memset(ti, 0, THREAD_SIZE);
720 		emerg_stack_init_thread_info(ti, i);
721 		paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE;
722 
723 #ifdef CONFIG_PPC_BOOK3S_64
724 		/* emergency stack for NMI exception handling. */
725 		ti = alloc_stack(limit, i);
726 		memset(ti, 0, THREAD_SIZE);
727 		emerg_stack_init_thread_info(ti, i);
728 		paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE;
729 
730 		/* emergency stack for machine check exception handling. */
731 		ti = alloc_stack(limit, i);
732 		memset(ti, 0, THREAD_SIZE);
733 		emerg_stack_init_thread_info(ti, i);
734 		paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE;
735 #endif
736 	}
737 }
738 
739 #ifdef CONFIG_SMP
740 #define PCPU_DYN_SIZE		()
741 
742 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
743 {
744 	return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
745 				    __pa(MAX_DMA_ADDRESS));
746 }
747 
748 static void __init pcpu_fc_free(void *ptr, size_t size)
749 {
750 	free_bootmem(__pa(ptr), size);
751 }
752 
753 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
754 {
755 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
756 		return LOCAL_DISTANCE;
757 	else
758 		return REMOTE_DISTANCE;
759 }
760 
761 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
762 EXPORT_SYMBOL(__per_cpu_offset);
763 
764 void __init setup_per_cpu_areas(void)
765 {
766 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
767 	size_t atom_size;
768 	unsigned long delta;
769 	unsigned int cpu;
770 	int rc;
771 
772 	/*
773 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
774 	 * to group units.  For larger mappings, use 1M atom which
775 	 * should be large enough to contain a number of units.
776 	 */
777 	if (mmu_linear_psize == MMU_PAGE_4K)
778 		atom_size = PAGE_SIZE;
779 	else
780 		atom_size = 1 << 20;
781 
782 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
783 				    pcpu_fc_alloc, pcpu_fc_free);
784 	if (rc < 0)
785 		panic("cannot initialize percpu area (err=%d)", rc);
786 
787 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
788 	for_each_possible_cpu(cpu) {
789                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
790 		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
791 	}
792 }
793 #endif
794 
795 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
796 unsigned long memory_block_size_bytes(void)
797 {
798 	if (ppc_md.memory_block_size)
799 		return ppc_md.memory_block_size();
800 
801 	return MIN_MEMORY_BLOCK_SIZE;
802 }
803 #endif
804 
805 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
806 struct ppc_pci_io ppc_pci_io;
807 EXPORT_SYMBOL(ppc_pci_io);
808 #endif
809 
810 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
811 u64 hw_nmi_get_sample_period(int watchdog_thresh)
812 {
813 	return ppc_proc_freq * watchdog_thresh;
814 }
815 #endif
816 
817 /*
818  * The perf based hardlockup detector breaks PMU event based branches, so
819  * disable it by default. Book3S has a soft-nmi hardlockup detector based
820  * on the decrementer interrupt, so it does not suffer from this problem.
821  *
822  * It is likely to get false positives in VM guests, so disable it there
823  * by default too.
824  */
825 static int __init disable_hardlockup_detector(void)
826 {
827 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
828 	hardlockup_detector_disable();
829 #else
830 	if (firmware_has_feature(FW_FEATURE_LPAR))
831 		hardlockup_detector_disable();
832 #endif
833 
834 	return 0;
835 }
836 early_initcall(disable_hardlockup_detector);
837 
838 #ifdef CONFIG_PPC_BOOK3S_64
839 static enum l1d_flush_type enabled_flush_types;
840 static void *l1d_flush_fallback_area;
841 static bool no_rfi_flush;
842 bool rfi_flush;
843 
844 static int __init handle_no_rfi_flush(char *p)
845 {
846 	pr_info("rfi-flush: disabled on command line.");
847 	no_rfi_flush = true;
848 	return 0;
849 }
850 early_param("no_rfi_flush", handle_no_rfi_flush);
851 
852 /*
853  * The RFI flush is not KPTI, but because users will see doco that says to use
854  * nopti we hijack that option here to also disable the RFI flush.
855  */
856 static int __init handle_no_pti(char *p)
857 {
858 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
859 	handle_no_rfi_flush(NULL);
860 	return 0;
861 }
862 early_param("nopti", handle_no_pti);
863 
864 static void do_nothing(void *unused)
865 {
866 	/*
867 	 * We don't need to do the flush explicitly, just enter+exit kernel is
868 	 * sufficient, the RFI exit handlers will do the right thing.
869 	 */
870 }
871 
872 void rfi_flush_enable(bool enable)
873 {
874 	if (enable) {
875 		do_rfi_flush_fixups(enabled_flush_types);
876 		on_each_cpu(do_nothing, NULL, 1);
877 	} else
878 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
879 
880 	rfi_flush = enable;
881 }
882 
883 static void __ref init_fallback_flush(void)
884 {
885 	u64 l1d_size, limit;
886 	int cpu;
887 
888 	/* Only allocate the fallback flush area once (at boot time). */
889 	if (l1d_flush_fallback_area)
890 		return;
891 
892 	l1d_size = ppc64_caches.l1d.size;
893 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
894 
895 	/*
896 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
897 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
898 	 * reliably avoid the prefetcher.
899 	 */
900 	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
901 	memset(l1d_flush_fallback_area, 0, l1d_size * 2);
902 
903 	for_each_possible_cpu(cpu) {
904 		struct paca_struct *paca = paca_ptrs[cpu];
905 		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
906 		paca->l1d_flush_size = l1d_size;
907 	}
908 }
909 
910 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
911 {
912 	if (types & L1D_FLUSH_FALLBACK) {
913 		pr_info("rfi-flush: fallback displacement flush available\n");
914 		init_fallback_flush();
915 	}
916 
917 	if (types & L1D_FLUSH_ORI)
918 		pr_info("rfi-flush: ori type flush available\n");
919 
920 	if (types & L1D_FLUSH_MTTRIG)
921 		pr_info("rfi-flush: mttrig type flush available\n");
922 
923 	enabled_flush_types = types;
924 
925 	if (!no_rfi_flush)
926 		rfi_flush_enable(enable);
927 }
928 
929 #ifdef CONFIG_DEBUG_FS
930 static int rfi_flush_set(void *data, u64 val)
931 {
932 	bool enable;
933 
934 	if (val == 1)
935 		enable = true;
936 	else if (val == 0)
937 		enable = false;
938 	else
939 		return -EINVAL;
940 
941 	/* Only do anything if we're changing state */
942 	if (enable != rfi_flush)
943 		rfi_flush_enable(enable);
944 
945 	return 0;
946 }
947 
948 static int rfi_flush_get(void *data, u64 *val)
949 {
950 	*val = rfi_flush ? 1 : 0;
951 	return 0;
952 }
953 
954 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
955 
956 static __init int rfi_flush_debugfs_init(void)
957 {
958 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
959 	return 0;
960 }
961 device_initcall(rfi_flush_debugfs_init);
962 #endif
963 #endif /* CONFIG_PPC_BOOK3S_64 */
964