1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/export.h> 14 #include <linux/string.h> 15 #include <linux/sched.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/reboot.h> 19 #include <linux/delay.h> 20 #include <linux/initrd.h> 21 #include <linux/seq_file.h> 22 #include <linux/ioport.h> 23 #include <linux/console.h> 24 #include <linux/utsname.h> 25 #include <linux/tty.h> 26 #include <linux/root_dev.h> 27 #include <linux/notifier.h> 28 #include <linux/cpu.h> 29 #include <linux/unistd.h> 30 #include <linux/serial.h> 31 #include <linux/serial_8250.h> 32 #include <linux/bootmem.h> 33 #include <linux/pci.h> 34 #include <linux/lockdep.h> 35 #include <linux/memblock.h> 36 #include <linux/memory.h> 37 #include <linux/nmi.h> 38 39 #include <asm/debugfs.h> 40 #include <asm/io.h> 41 #include <asm/kdump.h> 42 #include <asm/prom.h> 43 #include <asm/processor.h> 44 #include <asm/pgtable.h> 45 #include <asm/smp.h> 46 #include <asm/elf.h> 47 #include <asm/machdep.h> 48 #include <asm/paca.h> 49 #include <asm/time.h> 50 #include <asm/cputable.h> 51 #include <asm/dt_cpu_ftrs.h> 52 #include <asm/sections.h> 53 #include <asm/btext.h> 54 #include <asm/nvram.h> 55 #include <asm/setup.h> 56 #include <asm/rtas.h> 57 #include <asm/iommu.h> 58 #include <asm/serial.h> 59 #include <asm/cache.h> 60 #include <asm/page.h> 61 #include <asm/mmu.h> 62 #include <asm/firmware.h> 63 #include <asm/xmon.h> 64 #include <asm/udbg.h> 65 #include <asm/kexec.h> 66 #include <asm/code-patching.h> 67 #include <asm/livepatch.h> 68 #include <asm/opal.h> 69 #include <asm/cputhreads.h> 70 #include <asm/hw_irq.h> 71 72 #include "setup.h" 73 74 #ifdef DEBUG 75 #define DBG(fmt...) udbg_printf(fmt) 76 #else 77 #define DBG(fmt...) 78 #endif 79 80 int spinning_secondaries; 81 u64 ppc64_pft_size; 82 83 struct ppc64_caches ppc64_caches = { 84 .l1d = { 85 .block_size = 0x40, 86 .log_block_size = 6, 87 }, 88 .l1i = { 89 .block_size = 0x40, 90 .log_block_size = 6 91 }, 92 }; 93 EXPORT_SYMBOL_GPL(ppc64_caches); 94 95 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) 96 void __init setup_tlb_core_data(void) 97 { 98 int cpu; 99 100 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); 101 102 for_each_possible_cpu(cpu) { 103 int first = cpu_first_thread_sibling(cpu); 104 105 /* 106 * If we boot via kdump on a non-primary thread, 107 * make sure we point at the thread that actually 108 * set up this TLB. 109 */ 110 if (cpu_first_thread_sibling(boot_cpuid) == first) 111 first = boot_cpuid; 112 113 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd; 114 115 /* 116 * If we have threads, we need either tlbsrx. 117 * or e6500 tablewalk mode, or else TLB handlers 118 * will be racy and could produce duplicate entries. 119 * Should we panic instead? 120 */ 121 WARN_ONCE(smt_enabled_at_boot >= 2 && 122 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && 123 book3e_htw_mode != PPC_HTW_E6500, 124 "%s: unsupported MMU configuration\n", __func__); 125 } 126 } 127 #endif 128 129 #ifdef CONFIG_SMP 130 131 static char *smt_enabled_cmdline; 132 133 /* Look for ibm,smt-enabled OF option */ 134 void __init check_smt_enabled(void) 135 { 136 struct device_node *dn; 137 const char *smt_option; 138 139 /* Default to enabling all threads */ 140 smt_enabled_at_boot = threads_per_core; 141 142 /* Allow the command line to overrule the OF option */ 143 if (smt_enabled_cmdline) { 144 if (!strcmp(smt_enabled_cmdline, "on")) 145 smt_enabled_at_boot = threads_per_core; 146 else if (!strcmp(smt_enabled_cmdline, "off")) 147 smt_enabled_at_boot = 0; 148 else { 149 int smt; 150 int rc; 151 152 rc = kstrtoint(smt_enabled_cmdline, 10, &smt); 153 if (!rc) 154 smt_enabled_at_boot = 155 min(threads_per_core, smt); 156 } 157 } else { 158 dn = of_find_node_by_path("/options"); 159 if (dn) { 160 smt_option = of_get_property(dn, "ibm,smt-enabled", 161 NULL); 162 163 if (smt_option) { 164 if (!strcmp(smt_option, "on")) 165 smt_enabled_at_boot = threads_per_core; 166 else if (!strcmp(smt_option, "off")) 167 smt_enabled_at_boot = 0; 168 } 169 170 of_node_put(dn); 171 } 172 } 173 } 174 175 /* Look for smt-enabled= cmdline option */ 176 static int __init early_smt_enabled(char *p) 177 { 178 smt_enabled_cmdline = p; 179 return 0; 180 } 181 early_param("smt-enabled", early_smt_enabled); 182 183 #endif /* CONFIG_SMP */ 184 185 /** Fix up paca fields required for the boot cpu */ 186 static void __init fixup_boot_paca(void) 187 { 188 /* The boot cpu is started */ 189 get_paca()->cpu_start = 1; 190 /* Allow percpu accesses to work until we setup percpu data */ 191 get_paca()->data_offset = 0; 192 /* Mark interrupts disabled in PACA */ 193 irq_soft_mask_set(IRQS_DISABLED); 194 } 195 196 static void __init configure_exceptions(void) 197 { 198 /* 199 * Setup the trampolines from the lowmem exception vectors 200 * to the kdump kernel when not using a relocatable kernel. 201 */ 202 setup_kdump_trampoline(); 203 204 /* Under a PAPR hypervisor, we need hypercalls */ 205 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 206 /* Enable AIL if possible */ 207 pseries_enable_reloc_on_exc(); 208 209 /* 210 * Tell the hypervisor that we want our exceptions to 211 * be taken in little endian mode. 212 * 213 * We don't call this for big endian as our calling convention 214 * makes us always enter in BE, and the call may fail under 215 * some circumstances with kdump. 216 */ 217 #ifdef __LITTLE_ENDIAN__ 218 pseries_little_endian_exceptions(); 219 #endif 220 } else { 221 /* Set endian mode using OPAL */ 222 if (firmware_has_feature(FW_FEATURE_OPAL)) 223 opal_configure_cores(); 224 225 /* AIL on native is done in cpu_ready_for_interrupts() */ 226 } 227 } 228 229 static void cpu_ready_for_interrupts(void) 230 { 231 /* 232 * Enable AIL if supported, and we are in hypervisor mode. This 233 * is called once for every processor. 234 * 235 * If we are not in hypervisor mode the job is done once for 236 * the whole partition in configure_exceptions(). 237 */ 238 if (cpu_has_feature(CPU_FTR_HVMODE) && 239 cpu_has_feature(CPU_FTR_ARCH_207S)) { 240 unsigned long lpcr = mfspr(SPRN_LPCR); 241 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); 242 } 243 244 /* 245 * Fixup HFSCR:TM based on CPU features. The bit is set by our 246 * early asm init because at that point we haven't updated our 247 * CPU features from firmware and device-tree. Here we have, 248 * so let's do it. 249 */ 250 if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP)) 251 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM); 252 253 /* Set IR and DR in PACA MSR */ 254 get_paca()->kernel_msr = MSR_KERNEL; 255 } 256 257 unsigned long spr_default_dscr = 0; 258 259 void __init record_spr_defaults(void) 260 { 261 if (early_cpu_has_feature(CPU_FTR_DSCR)) 262 spr_default_dscr = mfspr(SPRN_DSCR); 263 } 264 265 /* 266 * Early initialization entry point. This is called by head.S 267 * with MMU translation disabled. We rely on the "feature" of 268 * the CPU that ignores the top 2 bits of the address in real 269 * mode so we can access kernel globals normally provided we 270 * only toy with things in the RMO region. From here, we do 271 * some early parsing of the device-tree to setup out MEMBLOCK 272 * data structures, and allocate & initialize the hash table 273 * and segment tables so we can start running with translation 274 * enabled. 275 * 276 * It is this function which will call the probe() callback of 277 * the various platform types and copy the matching one to the 278 * global ppc_md structure. Your platform can eventually do 279 * some very early initializations from the probe() routine, but 280 * this is not recommended, be very careful as, for example, the 281 * device-tree is not accessible via normal means at this point. 282 */ 283 284 void __init early_setup(unsigned long dt_ptr) 285 { 286 static __initdata struct paca_struct boot_paca; 287 288 /* -------- printk is _NOT_ safe to use here ! ------- */ 289 290 /* Try new device tree based feature discovery ... */ 291 if (!dt_cpu_ftrs_init(__va(dt_ptr))) 292 /* Otherwise use the old style CPU table */ 293 identify_cpu(0, mfspr(SPRN_PVR)); 294 295 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 296 initialise_paca(&boot_paca, 0); 297 setup_paca(&boot_paca); 298 fixup_boot_paca(); 299 300 /* -------- printk is now safe to use ------- */ 301 302 /* Enable early debugging if any specified (see udbg.h) */ 303 udbg_early_init(); 304 305 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 306 307 /* 308 * Do early initialization using the flattened device 309 * tree, such as retrieving the physical memory map or 310 * calculating/retrieving the hash table size. 311 */ 312 early_init_devtree(__va(dt_ptr)); 313 314 /* Now we know the logical id of our boot cpu, setup the paca. */ 315 if (boot_cpuid != 0) { 316 /* Poison paca_ptrs[0] again if it's not the boot cpu */ 317 memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0])); 318 } 319 setup_paca(paca_ptrs[boot_cpuid]); 320 fixup_boot_paca(); 321 322 /* 323 * Configure exception handlers. This include setting up trampolines 324 * if needed, setting exception endian mode, etc... 325 */ 326 configure_exceptions(); 327 328 /* Apply all the dynamic patching */ 329 apply_feature_fixups(); 330 setup_feature_keys(); 331 332 /* Initialize the hash table or TLB handling */ 333 early_init_mmu(); 334 335 /* 336 * After firmware and early platform setup code has set things up, 337 * we note the SPR values for configurable control/performance 338 * registers, and use those as initial defaults. 339 */ 340 record_spr_defaults(); 341 342 /* 343 * At this point, we can let interrupts switch to virtual mode 344 * (the MMU has been setup), so adjust the MSR in the PACA to 345 * have IR and DR set and enable AIL if it exists 346 */ 347 cpu_ready_for_interrupts(); 348 349 DBG(" <- early_setup()\n"); 350 351 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX 352 /* 353 * This needs to be done *last* (after the above DBG() even) 354 * 355 * Right after we return from this function, we turn on the MMU 356 * which means the real-mode access trick that btext does will 357 * no longer work, it needs to switch to using a real MMU 358 * mapping. This call will ensure that it does 359 */ 360 btext_map(); 361 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ 362 } 363 364 #ifdef CONFIG_SMP 365 void early_setup_secondary(void) 366 { 367 /* Mark interrupts disabled in PACA */ 368 irq_soft_mask_set(IRQS_DISABLED); 369 370 /* Initialize the hash table or TLB handling */ 371 early_init_mmu_secondary(); 372 373 /* 374 * At this point, we can let interrupts switch to virtual mode 375 * (the MMU has been setup), so adjust the MSR in the PACA to 376 * have IR and DR set. 377 */ 378 cpu_ready_for_interrupts(); 379 } 380 381 #endif /* CONFIG_SMP */ 382 383 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) 384 static bool use_spinloop(void) 385 { 386 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { 387 /* 388 * See comments in head_64.S -- not all platforms insert 389 * secondaries at __secondary_hold and wait at the spin 390 * loop. 391 */ 392 if (firmware_has_feature(FW_FEATURE_OPAL)) 393 return false; 394 return true; 395 } 396 397 /* 398 * When book3e boots from kexec, the ePAPR spin table does 399 * not get used. 400 */ 401 return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); 402 } 403 404 void smp_release_cpus(void) 405 { 406 unsigned long *ptr; 407 int i; 408 409 if (!use_spinloop()) 410 return; 411 412 DBG(" -> smp_release_cpus()\n"); 413 414 /* All secondary cpus are spinning on a common spinloop, release them 415 * all now so they can start to spin on their individual paca 416 * spinloops. For non SMP kernels, the secondary cpus never get out 417 * of the common spinloop. 418 */ 419 420 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 421 - PHYSICAL_START); 422 *ptr = ppc_function_entry(generic_secondary_smp_init); 423 424 /* And wait a bit for them to catch up */ 425 for (i = 0; i < 100000; i++) { 426 mb(); 427 HMT_low(); 428 if (spinning_secondaries == 0) 429 break; 430 udelay(1); 431 } 432 DBG("spinning_secondaries = %d\n", spinning_secondaries); 433 434 DBG(" <- smp_release_cpus()\n"); 435 } 436 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ 437 438 /* 439 * Initialize some remaining members of the ppc64_caches and systemcfg 440 * structures 441 * (at least until we get rid of them completely). This is mostly some 442 * cache informations about the CPU that will be used by cache flush 443 * routines and/or provided to userland 444 */ 445 446 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, 447 u32 bsize, u32 sets) 448 { 449 info->size = size; 450 info->sets = sets; 451 info->line_size = lsize; 452 info->block_size = bsize; 453 info->log_block_size = __ilog2(bsize); 454 if (bsize) 455 info->blocks_per_page = PAGE_SIZE / bsize; 456 else 457 info->blocks_per_page = 0; 458 459 if (sets == 0) 460 info->assoc = 0xffff; 461 else 462 info->assoc = size / (sets * lsize); 463 } 464 465 static bool __init parse_cache_info(struct device_node *np, 466 bool icache, 467 struct ppc_cache_info *info) 468 { 469 static const char *ipropnames[] __initdata = { 470 "i-cache-size", 471 "i-cache-sets", 472 "i-cache-block-size", 473 "i-cache-line-size", 474 }; 475 static const char *dpropnames[] __initdata = { 476 "d-cache-size", 477 "d-cache-sets", 478 "d-cache-block-size", 479 "d-cache-line-size", 480 }; 481 const char **propnames = icache ? ipropnames : dpropnames; 482 const __be32 *sizep, *lsizep, *bsizep, *setsp; 483 u32 size, lsize, bsize, sets; 484 bool success = true; 485 486 size = 0; 487 sets = -1u; 488 lsize = bsize = cur_cpu_spec->dcache_bsize; 489 sizep = of_get_property(np, propnames[0], NULL); 490 if (sizep != NULL) 491 size = be32_to_cpu(*sizep); 492 setsp = of_get_property(np, propnames[1], NULL); 493 if (setsp != NULL) 494 sets = be32_to_cpu(*setsp); 495 bsizep = of_get_property(np, propnames[2], NULL); 496 lsizep = of_get_property(np, propnames[3], NULL); 497 if (bsizep == NULL) 498 bsizep = lsizep; 499 if (lsizep != NULL) 500 lsize = be32_to_cpu(*lsizep); 501 if (bsizep != NULL) 502 bsize = be32_to_cpu(*bsizep); 503 if (sizep == NULL || bsizep == NULL || lsizep == NULL) 504 success = false; 505 506 /* 507 * OF is weird .. it represents fully associative caches 508 * as "1 way" which doesn't make much sense and doesn't 509 * leave room for direct mapped. We'll assume that 0 510 * in OF means direct mapped for that reason. 511 */ 512 if (sets == 1) 513 sets = 0; 514 else if (sets == 0) 515 sets = 1; 516 517 init_cache_info(info, size, lsize, bsize, sets); 518 519 return success; 520 } 521 522 void __init initialize_cache_info(void) 523 { 524 struct device_node *cpu = NULL, *l2, *l3 = NULL; 525 u32 pvr; 526 527 DBG(" -> initialize_cache_info()\n"); 528 529 /* 530 * All shipping POWER8 machines have a firmware bug that 531 * puts incorrect information in the device-tree. This will 532 * be (hopefully) fixed for future chips but for now hard 533 * code the values if we are running on one of these 534 */ 535 pvr = PVR_VER(mfspr(SPRN_PVR)); 536 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || 537 pvr == PVR_POWER8NVL) { 538 /* size lsize blk sets */ 539 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32); 540 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64); 541 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512); 542 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192); 543 } else 544 cpu = of_find_node_by_type(NULL, "cpu"); 545 546 /* 547 * We're assuming *all* of the CPUs have the same 548 * d-cache and i-cache sizes... -Peter 549 */ 550 if (cpu) { 551 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) 552 DBG("Argh, can't find dcache properties !\n"); 553 554 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) 555 DBG("Argh, can't find icache properties !\n"); 556 557 /* 558 * Try to find the L2 and L3 if any. Assume they are 559 * unified and use the D-side properties. 560 */ 561 l2 = of_find_next_cache_node(cpu); 562 of_node_put(cpu); 563 if (l2) { 564 parse_cache_info(l2, false, &ppc64_caches.l2); 565 l3 = of_find_next_cache_node(l2); 566 of_node_put(l2); 567 } 568 if (l3) { 569 parse_cache_info(l3, false, &ppc64_caches.l3); 570 of_node_put(l3); 571 } 572 } 573 574 /* For use by binfmt_elf */ 575 dcache_bsize = ppc64_caches.l1d.block_size; 576 icache_bsize = ppc64_caches.l1i.block_size; 577 578 cur_cpu_spec->dcache_bsize = dcache_bsize; 579 cur_cpu_spec->icache_bsize = icache_bsize; 580 581 DBG(" <- initialize_cache_info()\n"); 582 } 583 584 /* 585 * This returns the limit below which memory accesses to the linear 586 * mapping are guarnateed not to cause an architectural exception (e.g., 587 * TLB or SLB miss fault). 588 * 589 * This is used to allocate PACAs and various interrupt stacks that 590 * that are accessed early in interrupt handlers that must not cause 591 * re-entrant interrupts. 592 */ 593 __init u64 ppc64_bolted_size(void) 594 { 595 #ifdef CONFIG_PPC_BOOK3E 596 /* Freescale BookE bolts the entire linear mapping */ 597 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */ 598 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 599 return linear_map_top; 600 /* Other BookE, we assume the first GB is bolted */ 601 return 1ul << 30; 602 #else 603 /* BookS radix, does not take faults on linear mapping */ 604 if (early_radix_enabled()) 605 return ULONG_MAX; 606 607 /* BookS hash, the first segment is bolted */ 608 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT)) 609 return 1UL << SID_SHIFT_1T; 610 return 1UL << SID_SHIFT; 611 #endif 612 } 613 614 static void *__init alloc_stack(unsigned long limit, int cpu) 615 { 616 unsigned long pa; 617 618 pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit, 619 early_cpu_to_node(cpu), MEMBLOCK_NONE); 620 if (!pa) { 621 pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit); 622 if (!pa) 623 panic("cannot allocate stacks"); 624 } 625 626 return __va(pa); 627 } 628 629 void __init irqstack_early_init(void) 630 { 631 u64 limit = ppc64_bolted_size(); 632 unsigned int i; 633 634 /* 635 * Interrupt stacks must be in the first segment since we 636 * cannot afford to take SLB misses on them. They are not 637 * accessed in realmode. 638 */ 639 for_each_possible_cpu(i) { 640 softirq_ctx[i] = alloc_stack(limit, i); 641 hardirq_ctx[i] = alloc_stack(limit, i); 642 } 643 } 644 645 #ifdef CONFIG_PPC_BOOK3E 646 void __init exc_lvl_early_init(void) 647 { 648 unsigned int i; 649 650 for_each_possible_cpu(i) { 651 void *sp; 652 653 sp = alloc_stack(ULONG_MAX, i); 654 critirq_ctx[i] = sp; 655 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE; 656 657 sp = alloc_stack(ULONG_MAX, i); 658 dbgirq_ctx[i] = sp; 659 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE; 660 661 sp = alloc_stack(ULONG_MAX, i); 662 mcheckirq_ctx[i] = sp; 663 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE; 664 } 665 666 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) 667 patch_exception(0x040, exc_debug_debug_book3e); 668 } 669 #endif 670 671 /* 672 * Emergency stacks are used for a range of things, from asynchronous 673 * NMIs (system reset, machine check) to synchronous, process context. 674 * We set preempt_count to zero, even though that isn't necessarily correct. To 675 * get the right value we'd need to copy it from the previous thread_info, but 676 * doing that might fault causing more problems. 677 * TODO: what to do with accounting? 678 */ 679 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu) 680 { 681 ti->task = NULL; 682 ti->cpu = cpu; 683 ti->preempt_count = 0; 684 ti->local_flags = 0; 685 ti->flags = 0; 686 klp_init_thread_info(ti); 687 } 688 689 /* 690 * Stack space used when we detect a bad kernel stack pointer, and 691 * early in SMP boots before relocation is enabled. Exclusive emergency 692 * stack for machine checks. 693 */ 694 void __init emergency_stack_init(void) 695 { 696 u64 limit; 697 unsigned int i; 698 699 /* 700 * Emergency stacks must be under 256MB, we cannot afford to take 701 * SLB misses on them. The ABI also requires them to be 128-byte 702 * aligned. 703 * 704 * Since we use these as temporary stacks during secondary CPU 705 * bringup, machine check, system reset, and HMI, we need to get 706 * at them in real mode. This means they must also be within the RMO 707 * region. 708 * 709 * The IRQ stacks allocated elsewhere in this file are zeroed and 710 * initialized in kernel/irq.c. These are initialized here in order 711 * to have emergency stacks available as early as possible. 712 */ 713 limit = min(ppc64_bolted_size(), ppc64_rma_size); 714 715 for_each_possible_cpu(i) { 716 struct thread_info *ti; 717 718 ti = alloc_stack(limit, i); 719 memset(ti, 0, THREAD_SIZE); 720 emerg_stack_init_thread_info(ti, i); 721 paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE; 722 723 #ifdef CONFIG_PPC_BOOK3S_64 724 /* emergency stack for NMI exception handling. */ 725 ti = alloc_stack(limit, i); 726 memset(ti, 0, THREAD_SIZE); 727 emerg_stack_init_thread_info(ti, i); 728 paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE; 729 730 /* emergency stack for machine check exception handling. */ 731 ti = alloc_stack(limit, i); 732 memset(ti, 0, THREAD_SIZE); 733 emerg_stack_init_thread_info(ti, i); 734 paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE; 735 #endif 736 } 737 } 738 739 #ifdef CONFIG_SMP 740 #define PCPU_DYN_SIZE () 741 742 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) 743 { 744 return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align, 745 __pa(MAX_DMA_ADDRESS)); 746 } 747 748 static void __init pcpu_fc_free(void *ptr, size_t size) 749 { 750 free_bootmem(__pa(ptr), size); 751 } 752 753 static int pcpu_cpu_distance(unsigned int from, unsigned int to) 754 { 755 if (early_cpu_to_node(from) == early_cpu_to_node(to)) 756 return LOCAL_DISTANCE; 757 else 758 return REMOTE_DISTANCE; 759 } 760 761 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 762 EXPORT_SYMBOL(__per_cpu_offset); 763 764 void __init setup_per_cpu_areas(void) 765 { 766 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; 767 size_t atom_size; 768 unsigned long delta; 769 unsigned int cpu; 770 int rc; 771 772 /* 773 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need 774 * to group units. For larger mappings, use 1M atom which 775 * should be large enough to contain a number of units. 776 */ 777 if (mmu_linear_psize == MMU_PAGE_4K) 778 atom_size = PAGE_SIZE; 779 else 780 atom_size = 1 << 20; 781 782 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, 783 pcpu_fc_alloc, pcpu_fc_free); 784 if (rc < 0) 785 panic("cannot initialize percpu area (err=%d)", rc); 786 787 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 788 for_each_possible_cpu(cpu) { 789 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 790 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu]; 791 } 792 } 793 #endif 794 795 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 796 unsigned long memory_block_size_bytes(void) 797 { 798 if (ppc_md.memory_block_size) 799 return ppc_md.memory_block_size(); 800 801 return MIN_MEMORY_BLOCK_SIZE; 802 } 803 #endif 804 805 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 806 struct ppc_pci_io ppc_pci_io; 807 EXPORT_SYMBOL(ppc_pci_io); 808 #endif 809 810 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 811 u64 hw_nmi_get_sample_period(int watchdog_thresh) 812 { 813 return ppc_proc_freq * watchdog_thresh; 814 } 815 #endif 816 817 /* 818 * The perf based hardlockup detector breaks PMU event based branches, so 819 * disable it by default. Book3S has a soft-nmi hardlockup detector based 820 * on the decrementer interrupt, so it does not suffer from this problem. 821 * 822 * It is likely to get false positives in VM guests, so disable it there 823 * by default too. 824 */ 825 static int __init disable_hardlockup_detector(void) 826 { 827 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 828 hardlockup_detector_disable(); 829 #else 830 if (firmware_has_feature(FW_FEATURE_LPAR)) 831 hardlockup_detector_disable(); 832 #endif 833 834 return 0; 835 } 836 early_initcall(disable_hardlockup_detector); 837 838 #ifdef CONFIG_PPC_BOOK3S_64 839 static enum l1d_flush_type enabled_flush_types; 840 static void *l1d_flush_fallback_area; 841 static bool no_rfi_flush; 842 bool rfi_flush; 843 844 static int __init handle_no_rfi_flush(char *p) 845 { 846 pr_info("rfi-flush: disabled on command line."); 847 no_rfi_flush = true; 848 return 0; 849 } 850 early_param("no_rfi_flush", handle_no_rfi_flush); 851 852 /* 853 * The RFI flush is not KPTI, but because users will see doco that says to use 854 * nopti we hijack that option here to also disable the RFI flush. 855 */ 856 static int __init handle_no_pti(char *p) 857 { 858 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n"); 859 handle_no_rfi_flush(NULL); 860 return 0; 861 } 862 early_param("nopti", handle_no_pti); 863 864 static void do_nothing(void *unused) 865 { 866 /* 867 * We don't need to do the flush explicitly, just enter+exit kernel is 868 * sufficient, the RFI exit handlers will do the right thing. 869 */ 870 } 871 872 void rfi_flush_enable(bool enable) 873 { 874 if (enable) { 875 do_rfi_flush_fixups(enabled_flush_types); 876 on_each_cpu(do_nothing, NULL, 1); 877 } else 878 do_rfi_flush_fixups(L1D_FLUSH_NONE); 879 880 rfi_flush = enable; 881 } 882 883 static void __ref init_fallback_flush(void) 884 { 885 u64 l1d_size, limit; 886 int cpu; 887 888 /* Only allocate the fallback flush area once (at boot time). */ 889 if (l1d_flush_fallback_area) 890 return; 891 892 l1d_size = ppc64_caches.l1d.size; 893 limit = min(ppc64_bolted_size(), ppc64_rma_size); 894 895 /* 896 * Align to L1d size, and size it at 2x L1d size, to catch possible 897 * hardware prefetch runoff. We don't have a recipe for load patterns to 898 * reliably avoid the prefetcher. 899 */ 900 l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit)); 901 memset(l1d_flush_fallback_area, 0, l1d_size * 2); 902 903 for_each_possible_cpu(cpu) { 904 struct paca_struct *paca = paca_ptrs[cpu]; 905 paca->rfi_flush_fallback_area = l1d_flush_fallback_area; 906 paca->l1d_flush_size = l1d_size; 907 } 908 } 909 910 void setup_rfi_flush(enum l1d_flush_type types, bool enable) 911 { 912 if (types & L1D_FLUSH_FALLBACK) { 913 pr_info("rfi-flush: fallback displacement flush available\n"); 914 init_fallback_flush(); 915 } 916 917 if (types & L1D_FLUSH_ORI) 918 pr_info("rfi-flush: ori type flush available\n"); 919 920 if (types & L1D_FLUSH_MTTRIG) 921 pr_info("rfi-flush: mttrig type flush available\n"); 922 923 enabled_flush_types = types; 924 925 if (!no_rfi_flush) 926 rfi_flush_enable(enable); 927 } 928 929 #ifdef CONFIG_DEBUG_FS 930 static int rfi_flush_set(void *data, u64 val) 931 { 932 bool enable; 933 934 if (val == 1) 935 enable = true; 936 else if (val == 0) 937 enable = false; 938 else 939 return -EINVAL; 940 941 /* Only do anything if we're changing state */ 942 if (enable != rfi_flush) 943 rfi_flush_enable(enable); 944 945 return 0; 946 } 947 948 static int rfi_flush_get(void *data, u64 *val) 949 { 950 *val = rfi_flush ? 1 : 0; 951 return 0; 952 } 953 954 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n"); 955 956 static __init int rfi_flush_debugfs_init(void) 957 { 958 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush); 959 return 0; 960 } 961 device_initcall(rfi_flush_debugfs_init); 962 #endif 963 #endif /* CONFIG_PPC_BOOK3S_64 */ 964