1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #define DEBUG 14 15 #include <linux/export.h> 16 #include <linux/string.h> 17 #include <linux/sched.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/reboot.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/seq_file.h> 24 #include <linux/ioport.h> 25 #include <linux/console.h> 26 #include <linux/utsname.h> 27 #include <linux/tty.h> 28 #include <linux/root_dev.h> 29 #include <linux/notifier.h> 30 #include <linux/cpu.h> 31 #include <linux/unistd.h> 32 #include <linux/serial.h> 33 #include <linux/serial_8250.h> 34 #include <linux/bootmem.h> 35 #include <linux/pci.h> 36 #include <linux/lockdep.h> 37 #include <linux/memblock.h> 38 #include <linux/memory.h> 39 #include <linux/nmi.h> 40 41 #include <asm/io.h> 42 #include <asm/kdump.h> 43 #include <asm/prom.h> 44 #include <asm/processor.h> 45 #include <asm/pgtable.h> 46 #include <asm/smp.h> 47 #include <asm/elf.h> 48 #include <asm/machdep.h> 49 #include <asm/paca.h> 50 #include <asm/time.h> 51 #include <asm/cputable.h> 52 #include <asm/sections.h> 53 #include <asm/btext.h> 54 #include <asm/nvram.h> 55 #include <asm/setup.h> 56 #include <asm/rtas.h> 57 #include <asm/iommu.h> 58 #include <asm/serial.h> 59 #include <asm/cache.h> 60 #include <asm/page.h> 61 #include <asm/mmu.h> 62 #include <asm/firmware.h> 63 #include <asm/xmon.h> 64 #include <asm/udbg.h> 65 #include <asm/kexec.h> 66 #include <asm/code-patching.h> 67 #include <asm/livepatch.h> 68 #include <asm/opal.h> 69 #include <asm/cputhreads.h> 70 71 #ifdef DEBUG 72 #define DBG(fmt...) udbg_printf(fmt) 73 #else 74 #define DBG(fmt...) 75 #endif 76 77 int spinning_secondaries; 78 u64 ppc64_pft_size; 79 80 struct ppc64_caches ppc64_caches = { 81 .l1d = { 82 .block_size = 0x40, 83 .log_block_size = 6, 84 }, 85 .l1i = { 86 .block_size = 0x40, 87 .log_block_size = 6 88 }, 89 }; 90 EXPORT_SYMBOL_GPL(ppc64_caches); 91 92 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) 93 void __init setup_tlb_core_data(void) 94 { 95 int cpu; 96 97 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); 98 99 for_each_possible_cpu(cpu) { 100 int first = cpu_first_thread_sibling(cpu); 101 102 /* 103 * If we boot via kdump on a non-primary thread, 104 * make sure we point at the thread that actually 105 * set up this TLB. 106 */ 107 if (cpu_first_thread_sibling(boot_cpuid) == first) 108 first = boot_cpuid; 109 110 paca[cpu].tcd_ptr = &paca[first].tcd; 111 112 /* 113 * If we have threads, we need either tlbsrx. 114 * or e6500 tablewalk mode, or else TLB handlers 115 * will be racy and could produce duplicate entries. 116 * Should we panic instead? 117 */ 118 WARN_ONCE(smt_enabled_at_boot >= 2 && 119 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && 120 book3e_htw_mode != PPC_HTW_E6500, 121 "%s: unsupported MMU configuration\n", __func__); 122 } 123 } 124 #endif 125 126 #ifdef CONFIG_SMP 127 128 static char *smt_enabled_cmdline; 129 130 /* Look for ibm,smt-enabled OF option */ 131 void __init check_smt_enabled(void) 132 { 133 struct device_node *dn; 134 const char *smt_option; 135 136 /* Default to enabling all threads */ 137 smt_enabled_at_boot = threads_per_core; 138 139 /* Allow the command line to overrule the OF option */ 140 if (smt_enabled_cmdline) { 141 if (!strcmp(smt_enabled_cmdline, "on")) 142 smt_enabled_at_boot = threads_per_core; 143 else if (!strcmp(smt_enabled_cmdline, "off")) 144 smt_enabled_at_boot = 0; 145 else { 146 int smt; 147 int rc; 148 149 rc = kstrtoint(smt_enabled_cmdline, 10, &smt); 150 if (!rc) 151 smt_enabled_at_boot = 152 min(threads_per_core, smt); 153 } 154 } else { 155 dn = of_find_node_by_path("/options"); 156 if (dn) { 157 smt_option = of_get_property(dn, "ibm,smt-enabled", 158 NULL); 159 160 if (smt_option) { 161 if (!strcmp(smt_option, "on")) 162 smt_enabled_at_boot = threads_per_core; 163 else if (!strcmp(smt_option, "off")) 164 smt_enabled_at_boot = 0; 165 } 166 167 of_node_put(dn); 168 } 169 } 170 } 171 172 /* Look for smt-enabled= cmdline option */ 173 static int __init early_smt_enabled(char *p) 174 { 175 smt_enabled_cmdline = p; 176 return 0; 177 } 178 early_param("smt-enabled", early_smt_enabled); 179 180 #endif /* CONFIG_SMP */ 181 182 /** Fix up paca fields required for the boot cpu */ 183 static void __init fixup_boot_paca(void) 184 { 185 /* The boot cpu is started */ 186 get_paca()->cpu_start = 1; 187 /* Allow percpu accesses to work until we setup percpu data */ 188 get_paca()->data_offset = 0; 189 } 190 191 static void __init configure_exceptions(void) 192 { 193 /* 194 * Setup the trampolines from the lowmem exception vectors 195 * to the kdump kernel when not using a relocatable kernel. 196 */ 197 setup_kdump_trampoline(); 198 199 /* Under a PAPR hypervisor, we need hypercalls */ 200 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 201 /* Enable AIL if possible */ 202 pseries_enable_reloc_on_exc(); 203 204 /* 205 * Tell the hypervisor that we want our exceptions to 206 * be taken in little endian mode. 207 * 208 * We don't call this for big endian as our calling convention 209 * makes us always enter in BE, and the call may fail under 210 * some circumstances with kdump. 211 */ 212 #ifdef __LITTLE_ENDIAN__ 213 pseries_little_endian_exceptions(); 214 #endif 215 } else { 216 /* Set endian mode using OPAL */ 217 if (firmware_has_feature(FW_FEATURE_OPAL)) 218 opal_configure_cores(); 219 220 /* AIL on native is done in cpu_ready_for_interrupts() */ 221 } 222 } 223 224 static void cpu_ready_for_interrupts(void) 225 { 226 /* 227 * Enable AIL if supported, and we are in hypervisor mode. This 228 * is called once for every processor. 229 * 230 * If we are not in hypervisor mode the job is done once for 231 * the whole partition in configure_exceptions(). 232 */ 233 if (early_cpu_has_feature(CPU_FTR_HVMODE) && 234 early_cpu_has_feature(CPU_FTR_ARCH_207S)) { 235 unsigned long lpcr = mfspr(SPRN_LPCR); 236 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); 237 } 238 239 /* Set IR and DR in PACA MSR */ 240 get_paca()->kernel_msr = MSR_KERNEL; 241 } 242 243 /* 244 * Early initialization entry point. This is called by head.S 245 * with MMU translation disabled. We rely on the "feature" of 246 * the CPU that ignores the top 2 bits of the address in real 247 * mode so we can access kernel globals normally provided we 248 * only toy with things in the RMO region. From here, we do 249 * some early parsing of the device-tree to setup out MEMBLOCK 250 * data structures, and allocate & initialize the hash table 251 * and segment tables so we can start running with translation 252 * enabled. 253 * 254 * It is this function which will call the probe() callback of 255 * the various platform types and copy the matching one to the 256 * global ppc_md structure. Your platform can eventually do 257 * some very early initializations from the probe() routine, but 258 * this is not recommended, be very careful as, for example, the 259 * device-tree is not accessible via normal means at this point. 260 */ 261 262 void __init early_setup(unsigned long dt_ptr) 263 { 264 static __initdata struct paca_struct boot_paca; 265 266 /* -------- printk is _NOT_ safe to use here ! ------- */ 267 268 /* Identify CPU type */ 269 identify_cpu(0, mfspr(SPRN_PVR)); 270 271 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 272 initialise_paca(&boot_paca, 0); 273 setup_paca(&boot_paca); 274 fixup_boot_paca(); 275 276 /* -------- printk is now safe to use ------- */ 277 278 /* Enable early debugging if any specified (see udbg.h) */ 279 udbg_early_init(); 280 281 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 282 283 /* 284 * Do early initialization using the flattened device 285 * tree, such as retrieving the physical memory map or 286 * calculating/retrieving the hash table size. 287 */ 288 early_init_devtree(__va(dt_ptr)); 289 290 /* Now we know the logical id of our boot cpu, setup the paca. */ 291 setup_paca(&paca[boot_cpuid]); 292 fixup_boot_paca(); 293 294 /* 295 * Configure exception handlers. This include setting up trampolines 296 * if needed, setting exception endian mode, etc... 297 */ 298 configure_exceptions(); 299 300 /* Apply all the dynamic patching */ 301 apply_feature_fixups(); 302 setup_feature_keys(); 303 304 /* Initialize the hash table or TLB handling */ 305 early_init_mmu(); 306 307 /* 308 * At this point, we can let interrupts switch to virtual mode 309 * (the MMU has been setup), so adjust the MSR in the PACA to 310 * have IR and DR set and enable AIL if it exists 311 */ 312 cpu_ready_for_interrupts(); 313 314 DBG(" <- early_setup()\n"); 315 316 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX 317 /* 318 * This needs to be done *last* (after the above DBG() even) 319 * 320 * Right after we return from this function, we turn on the MMU 321 * which means the real-mode access trick that btext does will 322 * no longer work, it needs to switch to using a real MMU 323 * mapping. This call will ensure that it does 324 */ 325 btext_map(); 326 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ 327 } 328 329 #ifdef CONFIG_SMP 330 void early_setup_secondary(void) 331 { 332 /* Mark interrupts disabled in PACA */ 333 get_paca()->soft_enabled = 0; 334 335 /* Initialize the hash table or TLB handling */ 336 early_init_mmu_secondary(); 337 338 /* 339 * At this point, we can let interrupts switch to virtual mode 340 * (the MMU has been setup), so adjust the MSR in the PACA to 341 * have IR and DR set. 342 */ 343 cpu_ready_for_interrupts(); 344 } 345 346 #endif /* CONFIG_SMP */ 347 348 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) 349 static bool use_spinloop(void) 350 { 351 if (!IS_ENABLED(CONFIG_PPC_BOOK3E)) 352 return true; 353 354 /* 355 * When book3e boots from kexec, the ePAPR spin table does 356 * not get used. 357 */ 358 return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); 359 } 360 361 void smp_release_cpus(void) 362 { 363 unsigned long *ptr; 364 int i; 365 366 if (!use_spinloop()) 367 return; 368 369 DBG(" -> smp_release_cpus()\n"); 370 371 /* All secondary cpus are spinning on a common spinloop, release them 372 * all now so they can start to spin on their individual paca 373 * spinloops. For non SMP kernels, the secondary cpus never get out 374 * of the common spinloop. 375 */ 376 377 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 378 - PHYSICAL_START); 379 *ptr = ppc_function_entry(generic_secondary_smp_init); 380 381 /* And wait a bit for them to catch up */ 382 for (i = 0; i < 100000; i++) { 383 mb(); 384 HMT_low(); 385 if (spinning_secondaries == 0) 386 break; 387 udelay(1); 388 } 389 DBG("spinning_secondaries = %d\n", spinning_secondaries); 390 391 DBG(" <- smp_release_cpus()\n"); 392 } 393 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ 394 395 /* 396 * Initialize some remaining members of the ppc64_caches and systemcfg 397 * structures 398 * (at least until we get rid of them completely). This is mostly some 399 * cache informations about the CPU that will be used by cache flush 400 * routines and/or provided to userland 401 */ 402 403 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, 404 u32 bsize, u32 sets) 405 { 406 info->size = size; 407 info->sets = sets; 408 info->line_size = lsize; 409 info->block_size = bsize; 410 info->log_block_size = __ilog2(bsize); 411 info->blocks_per_page = PAGE_SIZE / bsize; 412 413 if (sets == 0) 414 info->assoc = 0xffff; 415 else 416 info->assoc = size / (sets * lsize); 417 } 418 419 static bool __init parse_cache_info(struct device_node *np, 420 bool icache, 421 struct ppc_cache_info *info) 422 { 423 static const char *ipropnames[] __initdata = { 424 "i-cache-size", 425 "i-cache-sets", 426 "i-cache-block-size", 427 "i-cache-line-size", 428 }; 429 static const char *dpropnames[] __initdata = { 430 "d-cache-size", 431 "d-cache-sets", 432 "d-cache-block-size", 433 "d-cache-line-size", 434 }; 435 const char **propnames = icache ? ipropnames : dpropnames; 436 const __be32 *sizep, *lsizep, *bsizep, *setsp; 437 u32 size, lsize, bsize, sets; 438 bool success = true; 439 440 size = 0; 441 sets = -1u; 442 lsize = bsize = cur_cpu_spec->dcache_bsize; 443 sizep = of_get_property(np, propnames[0], NULL); 444 if (sizep != NULL) 445 size = be32_to_cpu(*sizep); 446 setsp = of_get_property(np, propnames[1], NULL); 447 if (setsp != NULL) 448 sets = be32_to_cpu(*setsp); 449 bsizep = of_get_property(np, propnames[2], NULL); 450 lsizep = of_get_property(np, propnames[3], NULL); 451 if (bsizep == NULL) 452 bsizep = lsizep; 453 if (lsizep != NULL) 454 lsize = be32_to_cpu(*lsizep); 455 if (bsizep != NULL) 456 bsize = be32_to_cpu(*bsizep); 457 if (sizep == NULL || bsizep == NULL || lsizep == NULL) 458 success = false; 459 460 /* 461 * OF is weird .. it represents fully associative caches 462 * as "1 way" which doesn't make much sense and doesn't 463 * leave room for direct mapped. We'll assume that 0 464 * in OF means direct mapped for that reason. 465 */ 466 if (sets == 1) 467 sets = 0; 468 else if (sets == 0) 469 sets = 1; 470 471 init_cache_info(info, size, lsize, bsize, sets); 472 473 return success; 474 } 475 476 void __init initialize_cache_info(void) 477 { 478 struct device_node *cpu = NULL, *l2, *l3 = NULL; 479 u32 pvr; 480 481 DBG(" -> initialize_cache_info()\n"); 482 483 /* 484 * All shipping POWER8 machines have a firmware bug that 485 * puts incorrect information in the device-tree. This will 486 * be (hopefully) fixed for future chips but for now hard 487 * code the values if we are running on one of these 488 */ 489 pvr = PVR_VER(mfspr(SPRN_PVR)); 490 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || 491 pvr == PVR_POWER8NVL) { 492 /* size lsize blk sets */ 493 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32); 494 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64); 495 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512); 496 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192); 497 } else 498 cpu = of_find_node_by_type(NULL, "cpu"); 499 500 /* 501 * We're assuming *all* of the CPUs have the same 502 * d-cache and i-cache sizes... -Peter 503 */ 504 if (cpu) { 505 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) 506 DBG("Argh, can't find dcache properties !\n"); 507 508 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) 509 DBG("Argh, can't find icache properties !\n"); 510 511 /* 512 * Try to find the L2 and L3 if any. Assume they are 513 * unified and use the D-side properties. 514 */ 515 l2 = of_find_next_cache_node(cpu); 516 of_node_put(cpu); 517 if (l2) { 518 parse_cache_info(l2, false, &ppc64_caches.l2); 519 l3 = of_find_next_cache_node(l2); 520 of_node_put(l2); 521 } 522 if (l3) { 523 parse_cache_info(l3, false, &ppc64_caches.l3); 524 of_node_put(l3); 525 } 526 } 527 528 /* For use by binfmt_elf */ 529 dcache_bsize = ppc64_caches.l1d.block_size; 530 icache_bsize = ppc64_caches.l1i.block_size; 531 532 DBG(" <- initialize_cache_info()\n"); 533 } 534 535 /* This returns the limit below which memory accesses to the linear 536 * mapping are guarnateed not to cause a TLB or SLB miss. This is 537 * used to allocate interrupt or emergency stacks for which our 538 * exception entry path doesn't deal with being interrupted. 539 */ 540 static __init u64 safe_stack_limit(void) 541 { 542 #ifdef CONFIG_PPC_BOOK3E 543 /* Freescale BookE bolts the entire linear mapping */ 544 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 545 return linear_map_top; 546 /* Other BookE, we assume the first GB is bolted */ 547 return 1ul << 30; 548 #else 549 /* BookS, the first segment is bolted */ 550 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 551 return 1UL << SID_SHIFT_1T; 552 return 1UL << SID_SHIFT; 553 #endif 554 } 555 556 void __init irqstack_early_init(void) 557 { 558 u64 limit = safe_stack_limit(); 559 unsigned int i; 560 561 /* 562 * Interrupt stacks must be in the first segment since we 563 * cannot afford to take SLB misses on them. 564 */ 565 for_each_possible_cpu(i) { 566 softirq_ctx[i] = (struct thread_info *) 567 __va(memblock_alloc_base(THREAD_SIZE, 568 THREAD_SIZE, limit)); 569 hardirq_ctx[i] = (struct thread_info *) 570 __va(memblock_alloc_base(THREAD_SIZE, 571 THREAD_SIZE, limit)); 572 } 573 } 574 575 #ifdef CONFIG_PPC_BOOK3E 576 void __init exc_lvl_early_init(void) 577 { 578 unsigned int i; 579 unsigned long sp; 580 581 for_each_possible_cpu(i) { 582 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 583 critirq_ctx[i] = (struct thread_info *)__va(sp); 584 paca[i].crit_kstack = __va(sp + THREAD_SIZE); 585 586 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 587 dbgirq_ctx[i] = (struct thread_info *)__va(sp); 588 paca[i].dbg_kstack = __va(sp + THREAD_SIZE); 589 590 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 591 mcheckirq_ctx[i] = (struct thread_info *)__va(sp); 592 paca[i].mc_kstack = __va(sp + THREAD_SIZE); 593 } 594 595 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) 596 patch_exception(0x040, exc_debug_debug_book3e); 597 } 598 #endif 599 600 /* 601 * Stack space used when we detect a bad kernel stack pointer, and 602 * early in SMP boots before relocation is enabled. Exclusive emergency 603 * stack for machine checks. 604 */ 605 void __init emergency_stack_init(void) 606 { 607 u64 limit; 608 unsigned int i; 609 610 /* 611 * Emergency stacks must be under 256MB, we cannot afford to take 612 * SLB misses on them. The ABI also requires them to be 128-byte 613 * aligned. 614 * 615 * Since we use these as temporary stacks during secondary CPU 616 * bringup, we need to get at them in real mode. This means they 617 * must also be within the RMO region. 618 */ 619 limit = min(safe_stack_limit(), ppc64_rma_size); 620 621 for_each_possible_cpu(i) { 622 struct thread_info *ti; 623 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit)); 624 klp_init_thread_info(ti); 625 paca[i].emergency_sp = (void *)ti + THREAD_SIZE; 626 627 #ifdef CONFIG_PPC_BOOK3S_64 628 /* emergency stack for machine check exception handling. */ 629 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit)); 630 klp_init_thread_info(ti); 631 paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE; 632 #endif 633 } 634 } 635 636 #ifdef CONFIG_SMP 637 #define PCPU_DYN_SIZE () 638 639 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) 640 { 641 return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align, 642 __pa(MAX_DMA_ADDRESS)); 643 } 644 645 static void __init pcpu_fc_free(void *ptr, size_t size) 646 { 647 free_bootmem(__pa(ptr), size); 648 } 649 650 static int pcpu_cpu_distance(unsigned int from, unsigned int to) 651 { 652 if (cpu_to_node(from) == cpu_to_node(to)) 653 return LOCAL_DISTANCE; 654 else 655 return REMOTE_DISTANCE; 656 } 657 658 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 659 EXPORT_SYMBOL(__per_cpu_offset); 660 661 void __init setup_per_cpu_areas(void) 662 { 663 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; 664 size_t atom_size; 665 unsigned long delta; 666 unsigned int cpu; 667 int rc; 668 669 /* 670 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need 671 * to group units. For larger mappings, use 1M atom which 672 * should be large enough to contain a number of units. 673 */ 674 if (mmu_linear_psize == MMU_PAGE_4K) 675 atom_size = PAGE_SIZE; 676 else 677 atom_size = 1 << 20; 678 679 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, 680 pcpu_fc_alloc, pcpu_fc_free); 681 if (rc < 0) 682 panic("cannot initialize percpu area (err=%d)", rc); 683 684 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 685 for_each_possible_cpu(cpu) { 686 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 687 paca[cpu].data_offset = __per_cpu_offset[cpu]; 688 } 689 } 690 #endif 691 692 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 693 unsigned long memory_block_size_bytes(void) 694 { 695 if (ppc_md.memory_block_size) 696 return ppc_md.memory_block_size(); 697 698 return MIN_MEMORY_BLOCK_SIZE; 699 } 700 #endif 701 702 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 703 struct ppc_pci_io ppc_pci_io; 704 EXPORT_SYMBOL(ppc_pci_io); 705 #endif 706 707 #ifdef CONFIG_HARDLOCKUP_DETECTOR 708 u64 hw_nmi_get_sample_period(int watchdog_thresh) 709 { 710 return ppc_proc_freq * watchdog_thresh; 711 } 712 713 /* 714 * The hardlockup detector breaks PMU event based branches and is likely 715 * to get false positives in KVM guests, so disable it by default. 716 */ 717 static int __init disable_hardlockup_detector(void) 718 { 719 hardlockup_detector_disable(); 720 721 return 0; 722 } 723 early_initcall(disable_hardlockup_detector); 724 #endif 725