xref: /openbmc/linux/arch/powerpc/kernel/setup_64.c (revision 174cd4b1)
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #define DEBUG
14 
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/memory.h>
39 #include <linux/nmi.h>
40 
41 #include <asm/io.h>
42 #include <asm/kdump.h>
43 #include <asm/prom.h>
44 #include <asm/processor.h>
45 #include <asm/pgtable.h>
46 #include <asm/smp.h>
47 #include <asm/elf.h>
48 #include <asm/machdep.h>
49 #include <asm/paca.h>
50 #include <asm/time.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/btext.h>
54 #include <asm/nvram.h>
55 #include <asm/setup.h>
56 #include <asm/rtas.h>
57 #include <asm/iommu.h>
58 #include <asm/serial.h>
59 #include <asm/cache.h>
60 #include <asm/page.h>
61 #include <asm/mmu.h>
62 #include <asm/firmware.h>
63 #include <asm/xmon.h>
64 #include <asm/udbg.h>
65 #include <asm/kexec.h>
66 #include <asm/code-patching.h>
67 #include <asm/livepatch.h>
68 #include <asm/opal.h>
69 #include <asm/cputhreads.h>
70 
71 #ifdef DEBUG
72 #define DBG(fmt...) udbg_printf(fmt)
73 #else
74 #define DBG(fmt...)
75 #endif
76 
77 int spinning_secondaries;
78 u64 ppc64_pft_size;
79 
80 struct ppc64_caches ppc64_caches = {
81 	.l1d = {
82 		.block_size = 0x40,
83 		.log_block_size = 6,
84 	},
85 	.l1i = {
86 		.block_size = 0x40,
87 		.log_block_size = 6
88 	},
89 };
90 EXPORT_SYMBOL_GPL(ppc64_caches);
91 
92 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
93 void __init setup_tlb_core_data(void)
94 {
95 	int cpu;
96 
97 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
98 
99 	for_each_possible_cpu(cpu) {
100 		int first = cpu_first_thread_sibling(cpu);
101 
102 		/*
103 		 * If we boot via kdump on a non-primary thread,
104 		 * make sure we point at the thread that actually
105 		 * set up this TLB.
106 		 */
107 		if (cpu_first_thread_sibling(boot_cpuid) == first)
108 			first = boot_cpuid;
109 
110 		paca[cpu].tcd_ptr = &paca[first].tcd;
111 
112 		/*
113 		 * If we have threads, we need either tlbsrx.
114 		 * or e6500 tablewalk mode, or else TLB handlers
115 		 * will be racy and could produce duplicate entries.
116 		 * Should we panic instead?
117 		 */
118 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
119 			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
120 			  book3e_htw_mode != PPC_HTW_E6500,
121 			  "%s: unsupported MMU configuration\n", __func__);
122 	}
123 }
124 #endif
125 
126 #ifdef CONFIG_SMP
127 
128 static char *smt_enabled_cmdline;
129 
130 /* Look for ibm,smt-enabled OF option */
131 void __init check_smt_enabled(void)
132 {
133 	struct device_node *dn;
134 	const char *smt_option;
135 
136 	/* Default to enabling all threads */
137 	smt_enabled_at_boot = threads_per_core;
138 
139 	/* Allow the command line to overrule the OF option */
140 	if (smt_enabled_cmdline) {
141 		if (!strcmp(smt_enabled_cmdline, "on"))
142 			smt_enabled_at_boot = threads_per_core;
143 		else if (!strcmp(smt_enabled_cmdline, "off"))
144 			smt_enabled_at_boot = 0;
145 		else {
146 			int smt;
147 			int rc;
148 
149 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
150 			if (!rc)
151 				smt_enabled_at_boot =
152 					min(threads_per_core, smt);
153 		}
154 	} else {
155 		dn = of_find_node_by_path("/options");
156 		if (dn) {
157 			smt_option = of_get_property(dn, "ibm,smt-enabled",
158 						     NULL);
159 
160 			if (smt_option) {
161 				if (!strcmp(smt_option, "on"))
162 					smt_enabled_at_boot = threads_per_core;
163 				else if (!strcmp(smt_option, "off"))
164 					smt_enabled_at_boot = 0;
165 			}
166 
167 			of_node_put(dn);
168 		}
169 	}
170 }
171 
172 /* Look for smt-enabled= cmdline option */
173 static int __init early_smt_enabled(char *p)
174 {
175 	smt_enabled_cmdline = p;
176 	return 0;
177 }
178 early_param("smt-enabled", early_smt_enabled);
179 
180 #endif /* CONFIG_SMP */
181 
182 /** Fix up paca fields required for the boot cpu */
183 static void __init fixup_boot_paca(void)
184 {
185 	/* The boot cpu is started */
186 	get_paca()->cpu_start = 1;
187 	/* Allow percpu accesses to work until we setup percpu data */
188 	get_paca()->data_offset = 0;
189 }
190 
191 static void __init configure_exceptions(void)
192 {
193 	/*
194 	 * Setup the trampolines from the lowmem exception vectors
195 	 * to the kdump kernel when not using a relocatable kernel.
196 	 */
197 	setup_kdump_trampoline();
198 
199 	/* Under a PAPR hypervisor, we need hypercalls */
200 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
201 		/* Enable AIL if possible */
202 		pseries_enable_reloc_on_exc();
203 
204 		/*
205 		 * Tell the hypervisor that we want our exceptions to
206 		 * be taken in little endian mode.
207 		 *
208 		 * We don't call this for big endian as our calling convention
209 		 * makes us always enter in BE, and the call may fail under
210 		 * some circumstances with kdump.
211 		 */
212 #ifdef __LITTLE_ENDIAN__
213 		pseries_little_endian_exceptions();
214 #endif
215 	} else {
216 		/* Set endian mode using OPAL */
217 		if (firmware_has_feature(FW_FEATURE_OPAL))
218 			opal_configure_cores();
219 
220 		/* AIL on native is done in cpu_ready_for_interrupts() */
221 	}
222 }
223 
224 static void cpu_ready_for_interrupts(void)
225 {
226 	/*
227 	 * Enable AIL if supported, and we are in hypervisor mode. This
228 	 * is called once for every processor.
229 	 *
230 	 * If we are not in hypervisor mode the job is done once for
231 	 * the whole partition in configure_exceptions().
232 	 */
233 	if (early_cpu_has_feature(CPU_FTR_HVMODE) &&
234 	    early_cpu_has_feature(CPU_FTR_ARCH_207S)) {
235 		unsigned long lpcr = mfspr(SPRN_LPCR);
236 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
237 	}
238 
239 	/* Set IR and DR in PACA MSR */
240 	get_paca()->kernel_msr = MSR_KERNEL;
241 }
242 
243 /*
244  * Early initialization entry point. This is called by head.S
245  * with MMU translation disabled. We rely on the "feature" of
246  * the CPU that ignores the top 2 bits of the address in real
247  * mode so we can access kernel globals normally provided we
248  * only toy with things in the RMO region. From here, we do
249  * some early parsing of the device-tree to setup out MEMBLOCK
250  * data structures, and allocate & initialize the hash table
251  * and segment tables so we can start running with translation
252  * enabled.
253  *
254  * It is this function which will call the probe() callback of
255  * the various platform types and copy the matching one to the
256  * global ppc_md structure. Your platform can eventually do
257  * some very early initializations from the probe() routine, but
258  * this is not recommended, be very careful as, for example, the
259  * device-tree is not accessible via normal means at this point.
260  */
261 
262 void __init early_setup(unsigned long dt_ptr)
263 {
264 	static __initdata struct paca_struct boot_paca;
265 
266 	/* -------- printk is _NOT_ safe to use here ! ------- */
267 
268 	/* Identify CPU type */
269 	identify_cpu(0, mfspr(SPRN_PVR));
270 
271 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
272 	initialise_paca(&boot_paca, 0);
273 	setup_paca(&boot_paca);
274 	fixup_boot_paca();
275 
276 	/* -------- printk is now safe to use ------- */
277 
278 	/* Enable early debugging if any specified (see udbg.h) */
279 	udbg_early_init();
280 
281  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
282 
283 	/*
284 	 * Do early initialization using the flattened device
285 	 * tree, such as retrieving the physical memory map or
286 	 * calculating/retrieving the hash table size.
287 	 */
288 	early_init_devtree(__va(dt_ptr));
289 
290 	/* Now we know the logical id of our boot cpu, setup the paca. */
291 	setup_paca(&paca[boot_cpuid]);
292 	fixup_boot_paca();
293 
294 	/*
295 	 * Configure exception handlers. This include setting up trampolines
296 	 * if needed, setting exception endian mode, etc...
297 	 */
298 	configure_exceptions();
299 
300 	/* Apply all the dynamic patching */
301 	apply_feature_fixups();
302 	setup_feature_keys();
303 
304 	/* Initialize the hash table or TLB handling */
305 	early_init_mmu();
306 
307 	/*
308 	 * At this point, we can let interrupts switch to virtual mode
309 	 * (the MMU has been setup), so adjust the MSR in the PACA to
310 	 * have IR and DR set and enable AIL if it exists
311 	 */
312 	cpu_ready_for_interrupts();
313 
314 	DBG(" <- early_setup()\n");
315 
316 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
317 	/*
318 	 * This needs to be done *last* (after the above DBG() even)
319 	 *
320 	 * Right after we return from this function, we turn on the MMU
321 	 * which means the real-mode access trick that btext does will
322 	 * no longer work, it needs to switch to using a real MMU
323 	 * mapping. This call will ensure that it does
324 	 */
325 	btext_map();
326 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
327 }
328 
329 #ifdef CONFIG_SMP
330 void early_setup_secondary(void)
331 {
332 	/* Mark interrupts disabled in PACA */
333 	get_paca()->soft_enabled = 0;
334 
335 	/* Initialize the hash table or TLB handling */
336 	early_init_mmu_secondary();
337 
338 	/*
339 	 * At this point, we can let interrupts switch to virtual mode
340 	 * (the MMU has been setup), so adjust the MSR in the PACA to
341 	 * have IR and DR set.
342 	 */
343 	cpu_ready_for_interrupts();
344 }
345 
346 #endif /* CONFIG_SMP */
347 
348 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
349 static bool use_spinloop(void)
350 {
351 	if (!IS_ENABLED(CONFIG_PPC_BOOK3E))
352 		return true;
353 
354 	/*
355 	 * When book3e boots from kexec, the ePAPR spin table does
356 	 * not get used.
357 	 */
358 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
359 }
360 
361 void smp_release_cpus(void)
362 {
363 	unsigned long *ptr;
364 	int i;
365 
366 	if (!use_spinloop())
367 		return;
368 
369 	DBG(" -> smp_release_cpus()\n");
370 
371 	/* All secondary cpus are spinning on a common spinloop, release them
372 	 * all now so they can start to spin on their individual paca
373 	 * spinloops. For non SMP kernels, the secondary cpus never get out
374 	 * of the common spinloop.
375 	 */
376 
377 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
378 			- PHYSICAL_START);
379 	*ptr = ppc_function_entry(generic_secondary_smp_init);
380 
381 	/* And wait a bit for them to catch up */
382 	for (i = 0; i < 100000; i++) {
383 		mb();
384 		HMT_low();
385 		if (spinning_secondaries == 0)
386 			break;
387 		udelay(1);
388 	}
389 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
390 
391 	DBG(" <- smp_release_cpus()\n");
392 }
393 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
394 
395 /*
396  * Initialize some remaining members of the ppc64_caches and systemcfg
397  * structures
398  * (at least until we get rid of them completely). This is mostly some
399  * cache informations about the CPU that will be used by cache flush
400  * routines and/or provided to userland
401  */
402 
403 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
404 			    u32 bsize, u32 sets)
405 {
406 	info->size = size;
407 	info->sets = sets;
408 	info->line_size = lsize;
409 	info->block_size = bsize;
410 	info->log_block_size = __ilog2(bsize);
411 	info->blocks_per_page = PAGE_SIZE / bsize;
412 
413 	if (sets == 0)
414 		info->assoc = 0xffff;
415 	else
416 		info->assoc = size / (sets * lsize);
417 }
418 
419 static bool __init parse_cache_info(struct device_node *np,
420 				    bool icache,
421 				    struct ppc_cache_info *info)
422 {
423 	static const char *ipropnames[] __initdata = {
424 		"i-cache-size",
425 		"i-cache-sets",
426 		"i-cache-block-size",
427 		"i-cache-line-size",
428 	};
429 	static const char *dpropnames[] __initdata = {
430 		"d-cache-size",
431 		"d-cache-sets",
432 		"d-cache-block-size",
433 		"d-cache-line-size",
434 	};
435 	const char **propnames = icache ? ipropnames : dpropnames;
436 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
437 	u32 size, lsize, bsize, sets;
438 	bool success = true;
439 
440 	size = 0;
441 	sets = -1u;
442 	lsize = bsize = cur_cpu_spec->dcache_bsize;
443 	sizep = of_get_property(np, propnames[0], NULL);
444 	if (sizep != NULL)
445 		size = be32_to_cpu(*sizep);
446 	setsp = of_get_property(np, propnames[1], NULL);
447 	if (setsp != NULL)
448 		sets = be32_to_cpu(*setsp);
449 	bsizep = of_get_property(np, propnames[2], NULL);
450 	lsizep = of_get_property(np, propnames[3], NULL);
451 	if (bsizep == NULL)
452 		bsizep = lsizep;
453 	if (lsizep != NULL)
454 		lsize = be32_to_cpu(*lsizep);
455 	if (bsizep != NULL)
456 		bsize = be32_to_cpu(*bsizep);
457 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
458 		success = false;
459 
460 	/*
461 	 * OF is weird .. it represents fully associative caches
462 	 * as "1 way" which doesn't make much sense and doesn't
463 	 * leave room for direct mapped. We'll assume that 0
464 	 * in OF means direct mapped for that reason.
465 	 */
466 	if (sets == 1)
467 		sets = 0;
468 	else if (sets == 0)
469 		sets = 1;
470 
471 	init_cache_info(info, size, lsize, bsize, sets);
472 
473 	return success;
474 }
475 
476 void __init initialize_cache_info(void)
477 {
478 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
479 	u32 pvr;
480 
481 	DBG(" -> initialize_cache_info()\n");
482 
483 	/*
484 	 * All shipping POWER8 machines have a firmware bug that
485 	 * puts incorrect information in the device-tree. This will
486 	 * be (hopefully) fixed for future chips but for now hard
487 	 * code the values if we are running on one of these
488 	 */
489 	pvr = PVR_VER(mfspr(SPRN_PVR));
490 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
491 	    pvr == PVR_POWER8NVL) {
492 						/* size    lsize   blk  sets */
493 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
494 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
495 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
496 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
497 	} else
498 		cpu = of_find_node_by_type(NULL, "cpu");
499 
500 	/*
501 	 * We're assuming *all* of the CPUs have the same
502 	 * d-cache and i-cache sizes... -Peter
503 	 */
504 	if (cpu) {
505 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
506 			DBG("Argh, can't find dcache properties !\n");
507 
508 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
509 			DBG("Argh, can't find icache properties !\n");
510 
511 		/*
512 		 * Try to find the L2 and L3 if any. Assume they are
513 		 * unified and use the D-side properties.
514 		 */
515 		l2 = of_find_next_cache_node(cpu);
516 		of_node_put(cpu);
517 		if (l2) {
518 			parse_cache_info(l2, false, &ppc64_caches.l2);
519 			l3 = of_find_next_cache_node(l2);
520 			of_node_put(l2);
521 		}
522 		if (l3) {
523 			parse_cache_info(l3, false, &ppc64_caches.l3);
524 			of_node_put(l3);
525 		}
526 	}
527 
528 	/* For use by binfmt_elf */
529 	dcache_bsize = ppc64_caches.l1d.block_size;
530 	icache_bsize = ppc64_caches.l1i.block_size;
531 
532 	DBG(" <- initialize_cache_info()\n");
533 }
534 
535 /* This returns the limit below which memory accesses to the linear
536  * mapping are guarnateed not to cause a TLB or SLB miss. This is
537  * used to allocate interrupt or emergency stacks for which our
538  * exception entry path doesn't deal with being interrupted.
539  */
540 static __init u64 safe_stack_limit(void)
541 {
542 #ifdef CONFIG_PPC_BOOK3E
543 	/* Freescale BookE bolts the entire linear mapping */
544 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
545 		return linear_map_top;
546 	/* Other BookE, we assume the first GB is bolted */
547 	return 1ul << 30;
548 #else
549 	/* BookS, the first segment is bolted */
550 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
551 		return 1UL << SID_SHIFT_1T;
552 	return 1UL << SID_SHIFT;
553 #endif
554 }
555 
556 void __init irqstack_early_init(void)
557 {
558 	u64 limit = safe_stack_limit();
559 	unsigned int i;
560 
561 	/*
562 	 * Interrupt stacks must be in the first segment since we
563 	 * cannot afford to take SLB misses on them.
564 	 */
565 	for_each_possible_cpu(i) {
566 		softirq_ctx[i] = (struct thread_info *)
567 			__va(memblock_alloc_base(THREAD_SIZE,
568 					    THREAD_SIZE, limit));
569 		hardirq_ctx[i] = (struct thread_info *)
570 			__va(memblock_alloc_base(THREAD_SIZE,
571 					    THREAD_SIZE, limit));
572 	}
573 }
574 
575 #ifdef CONFIG_PPC_BOOK3E
576 void __init exc_lvl_early_init(void)
577 {
578 	unsigned int i;
579 	unsigned long sp;
580 
581 	for_each_possible_cpu(i) {
582 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
583 		critirq_ctx[i] = (struct thread_info *)__va(sp);
584 		paca[i].crit_kstack = __va(sp + THREAD_SIZE);
585 
586 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
587 		dbgirq_ctx[i] = (struct thread_info *)__va(sp);
588 		paca[i].dbg_kstack = __va(sp + THREAD_SIZE);
589 
590 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
591 		mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
592 		paca[i].mc_kstack = __va(sp + THREAD_SIZE);
593 	}
594 
595 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
596 		patch_exception(0x040, exc_debug_debug_book3e);
597 }
598 #endif
599 
600 /*
601  * Stack space used when we detect a bad kernel stack pointer, and
602  * early in SMP boots before relocation is enabled. Exclusive emergency
603  * stack for machine checks.
604  */
605 void __init emergency_stack_init(void)
606 {
607 	u64 limit;
608 	unsigned int i;
609 
610 	/*
611 	 * Emergency stacks must be under 256MB, we cannot afford to take
612 	 * SLB misses on them. The ABI also requires them to be 128-byte
613 	 * aligned.
614 	 *
615 	 * Since we use these as temporary stacks during secondary CPU
616 	 * bringup, we need to get at them in real mode. This means they
617 	 * must also be within the RMO region.
618 	 */
619 	limit = min(safe_stack_limit(), ppc64_rma_size);
620 
621 	for_each_possible_cpu(i) {
622 		struct thread_info *ti;
623 		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
624 		klp_init_thread_info(ti);
625 		paca[i].emergency_sp = (void *)ti + THREAD_SIZE;
626 
627 #ifdef CONFIG_PPC_BOOK3S_64
628 		/* emergency stack for machine check exception handling. */
629 		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
630 		klp_init_thread_info(ti);
631 		paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE;
632 #endif
633 	}
634 }
635 
636 #ifdef CONFIG_SMP
637 #define PCPU_DYN_SIZE		()
638 
639 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
640 {
641 	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
642 				    __pa(MAX_DMA_ADDRESS));
643 }
644 
645 static void __init pcpu_fc_free(void *ptr, size_t size)
646 {
647 	free_bootmem(__pa(ptr), size);
648 }
649 
650 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
651 {
652 	if (cpu_to_node(from) == cpu_to_node(to))
653 		return LOCAL_DISTANCE;
654 	else
655 		return REMOTE_DISTANCE;
656 }
657 
658 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
659 EXPORT_SYMBOL(__per_cpu_offset);
660 
661 void __init setup_per_cpu_areas(void)
662 {
663 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
664 	size_t atom_size;
665 	unsigned long delta;
666 	unsigned int cpu;
667 	int rc;
668 
669 	/*
670 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
671 	 * to group units.  For larger mappings, use 1M atom which
672 	 * should be large enough to contain a number of units.
673 	 */
674 	if (mmu_linear_psize == MMU_PAGE_4K)
675 		atom_size = PAGE_SIZE;
676 	else
677 		atom_size = 1 << 20;
678 
679 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
680 				    pcpu_fc_alloc, pcpu_fc_free);
681 	if (rc < 0)
682 		panic("cannot initialize percpu area (err=%d)", rc);
683 
684 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
685 	for_each_possible_cpu(cpu) {
686                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
687 		paca[cpu].data_offset = __per_cpu_offset[cpu];
688 	}
689 }
690 #endif
691 
692 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
693 unsigned long memory_block_size_bytes(void)
694 {
695 	if (ppc_md.memory_block_size)
696 		return ppc_md.memory_block_size();
697 
698 	return MIN_MEMORY_BLOCK_SIZE;
699 }
700 #endif
701 
702 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
703 struct ppc_pci_io ppc_pci_io;
704 EXPORT_SYMBOL(ppc_pci_io);
705 #endif
706 
707 #ifdef CONFIG_HARDLOCKUP_DETECTOR
708 u64 hw_nmi_get_sample_period(int watchdog_thresh)
709 {
710 	return ppc_proc_freq * watchdog_thresh;
711 }
712 
713 /*
714  * The hardlockup detector breaks PMU event based branches and is likely
715  * to get false positives in KVM guests, so disable it by default.
716  */
717 static int __init disable_hardlockup_detector(void)
718 {
719 	hardlockup_detector_disable();
720 
721 	return 0;
722 }
723 early_initcall(disable_hardlockup_detector);
724 #endif
725