xref: /openbmc/linux/arch/powerpc/kernel/security.c (revision ee7da21a)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Security related flags and so on.
4 //
5 // Copyright 2018, Michael Ellerman, IBM Corporation.
6 
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/device.h>
10 #include <linux/memblock.h>
11 #include <linux/nospec.h>
12 #include <linux/prctl.h>
13 #include <linux/seq_buf.h>
14 
15 #include <asm/asm-prototypes.h>
16 #include <asm/code-patching.h>
17 #include <asm/debugfs.h>
18 #include <asm/security_features.h>
19 #include <asm/setup.h>
20 #include <asm/inst.h>
21 
22 #include "setup.h"
23 
24 u64 powerpc_security_features __read_mostly = SEC_FTR_DEFAULT;
25 
26 enum branch_cache_flush_type {
27 	BRANCH_CACHE_FLUSH_NONE	= 0x1,
28 	BRANCH_CACHE_FLUSH_SW	= 0x2,
29 	BRANCH_CACHE_FLUSH_HW	= 0x4,
30 };
31 static enum branch_cache_flush_type count_cache_flush_type = BRANCH_CACHE_FLUSH_NONE;
32 static enum branch_cache_flush_type link_stack_flush_type = BRANCH_CACHE_FLUSH_NONE;
33 
34 bool barrier_nospec_enabled;
35 static bool no_nospec;
36 static bool btb_flush_enabled;
37 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_BOOK3S_64)
38 static bool no_spectrev2;
39 #endif
40 
41 static void enable_barrier_nospec(bool enable)
42 {
43 	barrier_nospec_enabled = enable;
44 	do_barrier_nospec_fixups(enable);
45 }
46 
47 void setup_barrier_nospec(void)
48 {
49 	bool enable;
50 
51 	/*
52 	 * It would make sense to check SEC_FTR_SPEC_BAR_ORI31 below as well.
53 	 * But there's a good reason not to. The two flags we check below are
54 	 * both are enabled by default in the kernel, so if the hcall is not
55 	 * functional they will be enabled.
56 	 * On a system where the host firmware has been updated (so the ori
57 	 * functions as a barrier), but on which the hypervisor (KVM/Qemu) has
58 	 * not been updated, we would like to enable the barrier. Dropping the
59 	 * check for SEC_FTR_SPEC_BAR_ORI31 achieves that. The only downside is
60 	 * we potentially enable the barrier on systems where the host firmware
61 	 * is not updated, but that's harmless as it's a no-op.
62 	 */
63 	enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) &&
64 		 security_ftr_enabled(SEC_FTR_BNDS_CHK_SPEC_BAR);
65 
66 	if (!no_nospec && !cpu_mitigations_off())
67 		enable_barrier_nospec(enable);
68 }
69 
70 static int __init handle_nospectre_v1(char *p)
71 {
72 	no_nospec = true;
73 
74 	return 0;
75 }
76 early_param("nospectre_v1", handle_nospectre_v1);
77 
78 #ifdef CONFIG_DEBUG_FS
79 static int barrier_nospec_set(void *data, u64 val)
80 {
81 	switch (val) {
82 	case 0:
83 	case 1:
84 		break;
85 	default:
86 		return -EINVAL;
87 	}
88 
89 	if (!!val == !!barrier_nospec_enabled)
90 		return 0;
91 
92 	enable_barrier_nospec(!!val);
93 
94 	return 0;
95 }
96 
97 static int barrier_nospec_get(void *data, u64 *val)
98 {
99 	*val = barrier_nospec_enabled ? 1 : 0;
100 	return 0;
101 }
102 
103 DEFINE_DEBUGFS_ATTRIBUTE(fops_barrier_nospec, barrier_nospec_get,
104 			 barrier_nospec_set, "%llu\n");
105 
106 static __init int barrier_nospec_debugfs_init(void)
107 {
108 	debugfs_create_file_unsafe("barrier_nospec", 0600,
109 				   powerpc_debugfs_root, NULL,
110 				   &fops_barrier_nospec);
111 	return 0;
112 }
113 device_initcall(barrier_nospec_debugfs_init);
114 
115 static __init int security_feature_debugfs_init(void)
116 {
117 	debugfs_create_x64("security_features", 0400, powerpc_debugfs_root,
118 			   &powerpc_security_features);
119 	return 0;
120 }
121 device_initcall(security_feature_debugfs_init);
122 #endif /* CONFIG_DEBUG_FS */
123 
124 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_BOOK3S_64)
125 static int __init handle_nospectre_v2(char *p)
126 {
127 	no_spectrev2 = true;
128 
129 	return 0;
130 }
131 early_param("nospectre_v2", handle_nospectre_v2);
132 #endif /* CONFIG_PPC_FSL_BOOK3E || CONFIG_PPC_BOOK3S_64 */
133 
134 #ifdef CONFIG_PPC_FSL_BOOK3E
135 void setup_spectre_v2(void)
136 {
137 	if (no_spectrev2 || cpu_mitigations_off())
138 		do_btb_flush_fixups();
139 	else
140 		btb_flush_enabled = true;
141 }
142 #endif /* CONFIG_PPC_FSL_BOOK3E */
143 
144 #ifdef CONFIG_PPC_BOOK3S_64
145 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
146 {
147 	bool thread_priv;
148 
149 	thread_priv = security_ftr_enabled(SEC_FTR_L1D_THREAD_PRIV);
150 
151 	if (rfi_flush) {
152 		struct seq_buf s;
153 		seq_buf_init(&s, buf, PAGE_SIZE - 1);
154 
155 		seq_buf_printf(&s, "Mitigation: RFI Flush");
156 		if (thread_priv)
157 			seq_buf_printf(&s, ", L1D private per thread");
158 
159 		seq_buf_printf(&s, "\n");
160 
161 		return s.len;
162 	}
163 
164 	if (thread_priv)
165 		return sprintf(buf, "Vulnerable: L1D private per thread\n");
166 
167 	if (!security_ftr_enabled(SEC_FTR_L1D_FLUSH_HV) &&
168 	    !security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR))
169 		return sprintf(buf, "Not affected\n");
170 
171 	return sprintf(buf, "Vulnerable\n");
172 }
173 
174 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
175 {
176 	return cpu_show_meltdown(dev, attr, buf);
177 }
178 #endif
179 
180 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
181 {
182 	struct seq_buf s;
183 
184 	seq_buf_init(&s, buf, PAGE_SIZE - 1);
185 
186 	if (security_ftr_enabled(SEC_FTR_BNDS_CHK_SPEC_BAR)) {
187 		if (barrier_nospec_enabled)
188 			seq_buf_printf(&s, "Mitigation: __user pointer sanitization");
189 		else
190 			seq_buf_printf(&s, "Vulnerable");
191 
192 		if (security_ftr_enabled(SEC_FTR_SPEC_BAR_ORI31))
193 			seq_buf_printf(&s, ", ori31 speculation barrier enabled");
194 
195 		seq_buf_printf(&s, "\n");
196 	} else
197 		seq_buf_printf(&s, "Not affected\n");
198 
199 	return s.len;
200 }
201 
202 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
203 {
204 	struct seq_buf s;
205 	bool bcs, ccd;
206 
207 	seq_buf_init(&s, buf, PAGE_SIZE - 1);
208 
209 	bcs = security_ftr_enabled(SEC_FTR_BCCTRL_SERIALISED);
210 	ccd = security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED);
211 
212 	if (bcs || ccd) {
213 		seq_buf_printf(&s, "Mitigation: ");
214 
215 		if (bcs)
216 			seq_buf_printf(&s, "Indirect branch serialisation (kernel only)");
217 
218 		if (bcs && ccd)
219 			seq_buf_printf(&s, ", ");
220 
221 		if (ccd)
222 			seq_buf_printf(&s, "Indirect branch cache disabled");
223 
224 	} else if (count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) {
225 		seq_buf_printf(&s, "Mitigation: Software count cache flush");
226 
227 		if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW)
228 			seq_buf_printf(&s, " (hardware accelerated)");
229 
230 	} else if (btb_flush_enabled) {
231 		seq_buf_printf(&s, "Mitigation: Branch predictor state flush");
232 	} else {
233 		seq_buf_printf(&s, "Vulnerable");
234 	}
235 
236 	if (bcs || ccd || count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) {
237 		if (link_stack_flush_type != BRANCH_CACHE_FLUSH_NONE)
238 			seq_buf_printf(&s, ", Software link stack flush");
239 		if (link_stack_flush_type == BRANCH_CACHE_FLUSH_HW)
240 			seq_buf_printf(&s, " (hardware accelerated)");
241 	}
242 
243 	seq_buf_printf(&s, "\n");
244 
245 	return s.len;
246 }
247 
248 #ifdef CONFIG_PPC_BOOK3S_64
249 /*
250  * Store-forwarding barrier support.
251  */
252 
253 static enum stf_barrier_type stf_enabled_flush_types;
254 static bool no_stf_barrier;
255 static bool stf_barrier;
256 
257 static int __init handle_no_stf_barrier(char *p)
258 {
259 	pr_info("stf-barrier: disabled on command line.");
260 	no_stf_barrier = true;
261 	return 0;
262 }
263 
264 early_param("no_stf_barrier", handle_no_stf_barrier);
265 
266 /* This is the generic flag used by other architectures */
267 static int __init handle_ssbd(char *p)
268 {
269 	if (!p || strncmp(p, "auto", 5) == 0 || strncmp(p, "on", 2) == 0 ) {
270 		/* Until firmware tells us, we have the barrier with auto */
271 		return 0;
272 	} else if (strncmp(p, "off", 3) == 0) {
273 		handle_no_stf_barrier(NULL);
274 		return 0;
275 	} else
276 		return 1;
277 
278 	return 0;
279 }
280 early_param("spec_store_bypass_disable", handle_ssbd);
281 
282 /* This is the generic flag used by other architectures */
283 static int __init handle_no_ssbd(char *p)
284 {
285 	handle_no_stf_barrier(NULL);
286 	return 0;
287 }
288 early_param("nospec_store_bypass_disable", handle_no_ssbd);
289 
290 static void stf_barrier_enable(bool enable)
291 {
292 	if (enable)
293 		do_stf_barrier_fixups(stf_enabled_flush_types);
294 	else
295 		do_stf_barrier_fixups(STF_BARRIER_NONE);
296 
297 	stf_barrier = enable;
298 }
299 
300 void setup_stf_barrier(void)
301 {
302 	enum stf_barrier_type type;
303 	bool enable;
304 
305 	/* Default to fallback in case fw-features are not available */
306 	if (cpu_has_feature(CPU_FTR_ARCH_300))
307 		type = STF_BARRIER_EIEIO;
308 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
309 		type = STF_BARRIER_SYNC_ORI;
310 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
311 		type = STF_BARRIER_FALLBACK;
312 	else
313 		type = STF_BARRIER_NONE;
314 
315 	enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) &&
316 		 security_ftr_enabled(SEC_FTR_STF_BARRIER);
317 
318 	if (type == STF_BARRIER_FALLBACK) {
319 		pr_info("stf-barrier: fallback barrier available\n");
320 	} else if (type == STF_BARRIER_SYNC_ORI) {
321 		pr_info("stf-barrier: hwsync barrier available\n");
322 	} else if (type == STF_BARRIER_EIEIO) {
323 		pr_info("stf-barrier: eieio barrier available\n");
324 	}
325 
326 	stf_enabled_flush_types = type;
327 
328 	if (!no_stf_barrier && !cpu_mitigations_off())
329 		stf_barrier_enable(enable);
330 }
331 
332 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
333 {
334 	if (stf_barrier && stf_enabled_flush_types != STF_BARRIER_NONE) {
335 		const char *type;
336 		switch (stf_enabled_flush_types) {
337 		case STF_BARRIER_EIEIO:
338 			type = "eieio";
339 			break;
340 		case STF_BARRIER_SYNC_ORI:
341 			type = "hwsync";
342 			break;
343 		case STF_BARRIER_FALLBACK:
344 			type = "fallback";
345 			break;
346 		default:
347 			type = "unknown";
348 		}
349 		return sprintf(buf, "Mitigation: Kernel entry/exit barrier (%s)\n", type);
350 	}
351 
352 	if (!security_ftr_enabled(SEC_FTR_L1D_FLUSH_HV) &&
353 	    !security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR))
354 		return sprintf(buf, "Not affected\n");
355 
356 	return sprintf(buf, "Vulnerable\n");
357 }
358 
359 static int ssb_prctl_get(struct task_struct *task)
360 {
361 	if (stf_enabled_flush_types == STF_BARRIER_NONE)
362 		/*
363 		 * We don't have an explicit signal from firmware that we're
364 		 * vulnerable or not, we only have certain CPU revisions that
365 		 * are known to be vulnerable.
366 		 *
367 		 * We assume that if we're on another CPU, where the barrier is
368 		 * NONE, then we are not vulnerable.
369 		 */
370 		return PR_SPEC_NOT_AFFECTED;
371 	else
372 		/*
373 		 * If we do have a barrier type then we are vulnerable. The
374 		 * barrier is not a global or per-process mitigation, so the
375 		 * only value we can report here is PR_SPEC_ENABLE, which
376 		 * appears as "vulnerable" in /proc.
377 		 */
378 		return PR_SPEC_ENABLE;
379 
380 	return -EINVAL;
381 }
382 
383 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
384 {
385 	switch (which) {
386 	case PR_SPEC_STORE_BYPASS:
387 		return ssb_prctl_get(task);
388 	default:
389 		return -ENODEV;
390 	}
391 }
392 
393 #ifdef CONFIG_DEBUG_FS
394 static int stf_barrier_set(void *data, u64 val)
395 {
396 	bool enable;
397 
398 	if (val == 1)
399 		enable = true;
400 	else if (val == 0)
401 		enable = false;
402 	else
403 		return -EINVAL;
404 
405 	/* Only do anything if we're changing state */
406 	if (enable != stf_barrier)
407 		stf_barrier_enable(enable);
408 
409 	return 0;
410 }
411 
412 static int stf_barrier_get(void *data, u64 *val)
413 {
414 	*val = stf_barrier ? 1 : 0;
415 	return 0;
416 }
417 
418 DEFINE_DEBUGFS_ATTRIBUTE(fops_stf_barrier, stf_barrier_get, stf_barrier_set,
419 			 "%llu\n");
420 
421 static __init int stf_barrier_debugfs_init(void)
422 {
423 	debugfs_create_file_unsafe("stf_barrier", 0600, powerpc_debugfs_root,
424 				   NULL, &fops_stf_barrier);
425 	return 0;
426 }
427 device_initcall(stf_barrier_debugfs_init);
428 #endif /* CONFIG_DEBUG_FS */
429 
430 static void update_branch_cache_flush(void)
431 {
432 	u32 *site, __maybe_unused *site2;
433 
434 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
435 	site = &patch__call_kvm_flush_link_stack;
436 	site2 = &patch__call_kvm_flush_link_stack_p9;
437 	// This controls the branch from guest_exit_cont to kvm_flush_link_stack
438 	if (link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) {
439 		patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
440 		patch_instruction_site(site2, ppc_inst(PPC_RAW_NOP()));
441 	} else {
442 		// Could use HW flush, but that could also flush count cache
443 		patch_branch_site(site, (u64)&kvm_flush_link_stack, BRANCH_SET_LINK);
444 		patch_branch_site(site2, (u64)&kvm_flush_link_stack, BRANCH_SET_LINK);
445 	}
446 #endif
447 
448 	// Patch out the bcctr first, then nop the rest
449 	site = &patch__call_flush_branch_caches3;
450 	patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
451 	site = &patch__call_flush_branch_caches2;
452 	patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
453 	site = &patch__call_flush_branch_caches1;
454 	patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
455 
456 	// This controls the branch from _switch to flush_branch_caches
457 	if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE &&
458 	    link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) {
459 		// Nothing to be done
460 
461 	} else if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW &&
462 		   link_stack_flush_type == BRANCH_CACHE_FLUSH_HW) {
463 		// Patch in the bcctr last
464 		site = &patch__call_flush_branch_caches1;
465 		patch_instruction_site(site, ppc_inst(0x39207fff)); // li r9,0x7fff
466 		site = &patch__call_flush_branch_caches2;
467 		patch_instruction_site(site, ppc_inst(0x7d2903a6)); // mtctr r9
468 		site = &patch__call_flush_branch_caches3;
469 		patch_instruction_site(site, ppc_inst(PPC_INST_BCCTR_FLUSH));
470 
471 	} else {
472 		patch_branch_site(site, (u64)&flush_branch_caches, BRANCH_SET_LINK);
473 
474 		// If we just need to flush the link stack, early return
475 		if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE) {
476 			patch_instruction_site(&patch__flush_link_stack_return,
477 					       ppc_inst(PPC_RAW_BLR()));
478 
479 		// If we have flush instruction, early return
480 		} else if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW) {
481 			patch_instruction_site(&patch__flush_count_cache_return,
482 					       ppc_inst(PPC_RAW_BLR()));
483 		}
484 	}
485 }
486 
487 static void toggle_branch_cache_flush(bool enable)
488 {
489 	if (!enable || !security_ftr_enabled(SEC_FTR_FLUSH_COUNT_CACHE)) {
490 		if (count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE)
491 			count_cache_flush_type = BRANCH_CACHE_FLUSH_NONE;
492 
493 		pr_info("count-cache-flush: flush disabled.\n");
494 	} else {
495 		if (security_ftr_enabled(SEC_FTR_BCCTR_FLUSH_ASSIST)) {
496 			count_cache_flush_type = BRANCH_CACHE_FLUSH_HW;
497 			pr_info("count-cache-flush: hardware flush enabled.\n");
498 		} else {
499 			count_cache_flush_type = BRANCH_CACHE_FLUSH_SW;
500 			pr_info("count-cache-flush: software flush enabled.\n");
501 		}
502 	}
503 
504 	if (!enable || !security_ftr_enabled(SEC_FTR_FLUSH_LINK_STACK)) {
505 		if (link_stack_flush_type != BRANCH_CACHE_FLUSH_NONE)
506 			link_stack_flush_type = BRANCH_CACHE_FLUSH_NONE;
507 
508 		pr_info("link-stack-flush: flush disabled.\n");
509 	} else {
510 		if (security_ftr_enabled(SEC_FTR_BCCTR_LINK_FLUSH_ASSIST)) {
511 			link_stack_flush_type = BRANCH_CACHE_FLUSH_HW;
512 			pr_info("link-stack-flush: hardware flush enabled.\n");
513 		} else {
514 			link_stack_flush_type = BRANCH_CACHE_FLUSH_SW;
515 			pr_info("link-stack-flush: software flush enabled.\n");
516 		}
517 	}
518 
519 	update_branch_cache_flush();
520 }
521 
522 void setup_count_cache_flush(void)
523 {
524 	bool enable = true;
525 
526 	if (no_spectrev2 || cpu_mitigations_off()) {
527 		if (security_ftr_enabled(SEC_FTR_BCCTRL_SERIALISED) ||
528 		    security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED))
529 			pr_warn("Spectre v2 mitigations not fully under software control, can't disable\n");
530 
531 		enable = false;
532 	}
533 
534 	/*
535 	 * There's no firmware feature flag/hypervisor bit to tell us we need to
536 	 * flush the link stack on context switch. So we set it here if we see
537 	 * either of the Spectre v2 mitigations that aim to protect userspace.
538 	 */
539 	if (security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED) ||
540 	    security_ftr_enabled(SEC_FTR_FLUSH_COUNT_CACHE))
541 		security_ftr_set(SEC_FTR_FLUSH_LINK_STACK);
542 
543 	toggle_branch_cache_flush(enable);
544 }
545 
546 static enum l1d_flush_type enabled_flush_types;
547 static void *l1d_flush_fallback_area;
548 static bool no_rfi_flush;
549 static bool no_entry_flush;
550 static bool no_uaccess_flush;
551 bool rfi_flush;
552 static bool entry_flush;
553 static bool uaccess_flush;
554 DEFINE_STATIC_KEY_FALSE(uaccess_flush_key);
555 EXPORT_SYMBOL(uaccess_flush_key);
556 
557 static int __init handle_no_rfi_flush(char *p)
558 {
559 	pr_info("rfi-flush: disabled on command line.");
560 	no_rfi_flush = true;
561 	return 0;
562 }
563 early_param("no_rfi_flush", handle_no_rfi_flush);
564 
565 static int __init handle_no_entry_flush(char *p)
566 {
567 	pr_info("entry-flush: disabled on command line.");
568 	no_entry_flush = true;
569 	return 0;
570 }
571 early_param("no_entry_flush", handle_no_entry_flush);
572 
573 static int __init handle_no_uaccess_flush(char *p)
574 {
575 	pr_info("uaccess-flush: disabled on command line.");
576 	no_uaccess_flush = true;
577 	return 0;
578 }
579 early_param("no_uaccess_flush", handle_no_uaccess_flush);
580 
581 /*
582  * The RFI flush is not KPTI, but because users will see doco that says to use
583  * nopti we hijack that option here to also disable the RFI flush.
584  */
585 static int __init handle_no_pti(char *p)
586 {
587 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
588 	handle_no_rfi_flush(NULL);
589 	return 0;
590 }
591 early_param("nopti", handle_no_pti);
592 
593 static void do_nothing(void *unused)
594 {
595 	/*
596 	 * We don't need to do the flush explicitly, just enter+exit kernel is
597 	 * sufficient, the RFI exit handlers will do the right thing.
598 	 */
599 }
600 
601 void rfi_flush_enable(bool enable)
602 {
603 	if (enable) {
604 		do_rfi_flush_fixups(enabled_flush_types);
605 		on_each_cpu(do_nothing, NULL, 1);
606 	} else
607 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
608 
609 	rfi_flush = enable;
610 }
611 
612 static void entry_flush_enable(bool enable)
613 {
614 	if (enable) {
615 		do_entry_flush_fixups(enabled_flush_types);
616 		on_each_cpu(do_nothing, NULL, 1);
617 	} else {
618 		do_entry_flush_fixups(L1D_FLUSH_NONE);
619 	}
620 
621 	entry_flush = enable;
622 }
623 
624 static void uaccess_flush_enable(bool enable)
625 {
626 	if (enable) {
627 		do_uaccess_flush_fixups(enabled_flush_types);
628 		static_branch_enable(&uaccess_flush_key);
629 		on_each_cpu(do_nothing, NULL, 1);
630 	} else {
631 		static_branch_disable(&uaccess_flush_key);
632 		do_uaccess_flush_fixups(L1D_FLUSH_NONE);
633 	}
634 
635 	uaccess_flush = enable;
636 }
637 
638 static void __ref init_fallback_flush(void)
639 {
640 	u64 l1d_size, limit;
641 	int cpu;
642 
643 	/* Only allocate the fallback flush area once (at boot time). */
644 	if (l1d_flush_fallback_area)
645 		return;
646 
647 	l1d_size = ppc64_caches.l1d.size;
648 
649 	/*
650 	 * If there is no d-cache-size property in the device tree, l1d_size
651 	 * could be zero. That leads to the loop in the asm wrapping around to
652 	 * 2^64-1, and then walking off the end of the fallback area and
653 	 * eventually causing a page fault which is fatal. Just default to
654 	 * something vaguely sane.
655 	 */
656 	if (!l1d_size)
657 		l1d_size = (64 * 1024);
658 
659 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
660 
661 	/*
662 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
663 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
664 	 * reliably avoid the prefetcher.
665 	 */
666 	l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
667 						l1d_size, MEMBLOCK_LOW_LIMIT,
668 						limit, NUMA_NO_NODE);
669 	if (!l1d_flush_fallback_area)
670 		panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
671 		      __func__, l1d_size * 2, l1d_size, &limit);
672 
673 
674 	for_each_possible_cpu(cpu) {
675 		struct paca_struct *paca = paca_ptrs[cpu];
676 		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
677 		paca->l1d_flush_size = l1d_size;
678 	}
679 }
680 
681 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
682 {
683 	if (types & L1D_FLUSH_FALLBACK) {
684 		pr_info("rfi-flush: fallback displacement flush available\n");
685 		init_fallback_flush();
686 	}
687 
688 	if (types & L1D_FLUSH_ORI)
689 		pr_info("rfi-flush: ori type flush available\n");
690 
691 	if (types & L1D_FLUSH_MTTRIG)
692 		pr_info("rfi-flush: mttrig type flush available\n");
693 
694 	enabled_flush_types = types;
695 
696 	if (!cpu_mitigations_off() && !no_rfi_flush)
697 		rfi_flush_enable(enable);
698 }
699 
700 void setup_entry_flush(bool enable)
701 {
702 	if (cpu_mitigations_off())
703 		return;
704 
705 	if (!no_entry_flush)
706 		entry_flush_enable(enable);
707 }
708 
709 void setup_uaccess_flush(bool enable)
710 {
711 	if (cpu_mitigations_off())
712 		return;
713 
714 	if (!no_uaccess_flush)
715 		uaccess_flush_enable(enable);
716 }
717 
718 #ifdef CONFIG_DEBUG_FS
719 static int count_cache_flush_set(void *data, u64 val)
720 {
721 	bool enable;
722 
723 	if (val == 1)
724 		enable = true;
725 	else if (val == 0)
726 		enable = false;
727 	else
728 		return -EINVAL;
729 
730 	toggle_branch_cache_flush(enable);
731 
732 	return 0;
733 }
734 
735 static int count_cache_flush_get(void *data, u64 *val)
736 {
737 	if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE)
738 		*val = 0;
739 	else
740 		*val = 1;
741 
742 	return 0;
743 }
744 
745 DEFINE_DEBUGFS_ATTRIBUTE(fops_count_cache_flush, count_cache_flush_get,
746 			 count_cache_flush_set, "%llu\n");
747 
748 static __init int count_cache_flush_debugfs_init(void)
749 {
750 	debugfs_create_file_unsafe("count_cache_flush", 0600,
751 				   powerpc_debugfs_root, NULL,
752 				   &fops_count_cache_flush);
753 	return 0;
754 }
755 device_initcall(count_cache_flush_debugfs_init);
756 
757 static int rfi_flush_set(void *data, u64 val)
758 {
759 	bool enable;
760 
761 	if (val == 1)
762 		enable = true;
763 	else if (val == 0)
764 		enable = false;
765 	else
766 		return -EINVAL;
767 
768 	/* Only do anything if we're changing state */
769 	if (enable != rfi_flush)
770 		rfi_flush_enable(enable);
771 
772 	return 0;
773 }
774 
775 static int rfi_flush_get(void *data, u64 *val)
776 {
777 	*val = rfi_flush ? 1 : 0;
778 	return 0;
779 }
780 
781 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
782 
783 static int entry_flush_set(void *data, u64 val)
784 {
785 	bool enable;
786 
787 	if (val == 1)
788 		enable = true;
789 	else if (val == 0)
790 		enable = false;
791 	else
792 		return -EINVAL;
793 
794 	/* Only do anything if we're changing state */
795 	if (enable != entry_flush)
796 		entry_flush_enable(enable);
797 
798 	return 0;
799 }
800 
801 static int entry_flush_get(void *data, u64 *val)
802 {
803 	*val = entry_flush ? 1 : 0;
804 	return 0;
805 }
806 
807 DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n");
808 
809 static int uaccess_flush_set(void *data, u64 val)
810 {
811 	bool enable;
812 
813 	if (val == 1)
814 		enable = true;
815 	else if (val == 0)
816 		enable = false;
817 	else
818 		return -EINVAL;
819 
820 	/* Only do anything if we're changing state */
821 	if (enable != uaccess_flush)
822 		uaccess_flush_enable(enable);
823 
824 	return 0;
825 }
826 
827 static int uaccess_flush_get(void *data, u64 *val)
828 {
829 	*val = uaccess_flush ? 1 : 0;
830 	return 0;
831 }
832 
833 DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n");
834 
835 static __init int rfi_flush_debugfs_init(void)
836 {
837 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
838 	debugfs_create_file("entry_flush", 0600, powerpc_debugfs_root, NULL, &fops_entry_flush);
839 	debugfs_create_file("uaccess_flush", 0600, powerpc_debugfs_root, NULL, &fops_uaccess_flush);
840 	return 0;
841 }
842 device_initcall(rfi_flush_debugfs_init);
843 #endif /* CONFIG_DEBUG_FS */
844 #endif /* CONFIG_PPC_BOOK3S_64 */
845