xref: /openbmc/linux/arch/powerpc/kernel/security.c (revision cc24f656)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Security related flags and so on.
4 //
5 // Copyright 2018, Michael Ellerman, IBM Corporation.
6 
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/device.h>
10 #include <linux/memblock.h>
11 #include <linux/nospec.h>
12 #include <linux/prctl.h>
13 #include <linux/seq_buf.h>
14 #include <linux/debugfs.h>
15 
16 #include <asm/asm-prototypes.h>
17 #include <asm/code-patching.h>
18 #include <asm/security_features.h>
19 #include <asm/sections.h>
20 #include <asm/setup.h>
21 #include <asm/inst.h>
22 
23 #include "setup.h"
24 
25 u64 powerpc_security_features __read_mostly = SEC_FTR_DEFAULT;
26 
27 enum branch_cache_flush_type {
28 	BRANCH_CACHE_FLUSH_NONE	= 0x1,
29 	BRANCH_CACHE_FLUSH_SW	= 0x2,
30 	BRANCH_CACHE_FLUSH_HW	= 0x4,
31 };
32 static enum branch_cache_flush_type count_cache_flush_type = BRANCH_CACHE_FLUSH_NONE;
33 static enum branch_cache_flush_type link_stack_flush_type = BRANCH_CACHE_FLUSH_NONE;
34 
35 bool barrier_nospec_enabled;
36 static bool no_nospec;
37 static bool btb_flush_enabled;
38 #if defined(CONFIG_PPC_E500) || defined(CONFIG_PPC_BOOK3S_64)
39 static bool no_spectrev2;
40 #endif
41 
42 static void enable_barrier_nospec(bool enable)
43 {
44 	barrier_nospec_enabled = enable;
45 	do_barrier_nospec_fixups(enable);
46 }
47 
48 void __init setup_barrier_nospec(void)
49 {
50 	bool enable;
51 
52 	/*
53 	 * It would make sense to check SEC_FTR_SPEC_BAR_ORI31 below as well.
54 	 * But there's a good reason not to. The two flags we check below are
55 	 * both are enabled by default in the kernel, so if the hcall is not
56 	 * functional they will be enabled.
57 	 * On a system where the host firmware has been updated (so the ori
58 	 * functions as a barrier), but on which the hypervisor (KVM/Qemu) has
59 	 * not been updated, we would like to enable the barrier. Dropping the
60 	 * check for SEC_FTR_SPEC_BAR_ORI31 achieves that. The only downside is
61 	 * we potentially enable the barrier on systems where the host firmware
62 	 * is not updated, but that's harmless as it's a no-op.
63 	 */
64 	enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) &&
65 		 security_ftr_enabled(SEC_FTR_BNDS_CHK_SPEC_BAR);
66 
67 	if (!no_nospec && !cpu_mitigations_off())
68 		enable_barrier_nospec(enable);
69 }
70 
71 static int __init handle_nospectre_v1(char *p)
72 {
73 	no_nospec = true;
74 
75 	return 0;
76 }
77 early_param("nospectre_v1", handle_nospectre_v1);
78 
79 #ifdef CONFIG_DEBUG_FS
80 static int barrier_nospec_set(void *data, u64 val)
81 {
82 	switch (val) {
83 	case 0:
84 	case 1:
85 		break;
86 	default:
87 		return -EINVAL;
88 	}
89 
90 	if (!!val == !!barrier_nospec_enabled)
91 		return 0;
92 
93 	enable_barrier_nospec(!!val);
94 
95 	return 0;
96 }
97 
98 static int barrier_nospec_get(void *data, u64 *val)
99 {
100 	*val = barrier_nospec_enabled ? 1 : 0;
101 	return 0;
102 }
103 
104 DEFINE_DEBUGFS_ATTRIBUTE(fops_barrier_nospec, barrier_nospec_get,
105 			 barrier_nospec_set, "%llu\n");
106 
107 static __init int barrier_nospec_debugfs_init(void)
108 {
109 	debugfs_create_file_unsafe("barrier_nospec", 0600,
110 				   arch_debugfs_dir, NULL,
111 				   &fops_barrier_nospec);
112 	return 0;
113 }
114 device_initcall(barrier_nospec_debugfs_init);
115 
116 static __init int security_feature_debugfs_init(void)
117 {
118 	debugfs_create_x64("security_features", 0400, arch_debugfs_dir,
119 			   &powerpc_security_features);
120 	return 0;
121 }
122 device_initcall(security_feature_debugfs_init);
123 #endif /* CONFIG_DEBUG_FS */
124 
125 #if defined(CONFIG_PPC_E500) || defined(CONFIG_PPC_BOOK3S_64)
126 static int __init handle_nospectre_v2(char *p)
127 {
128 	no_spectrev2 = true;
129 
130 	return 0;
131 }
132 early_param("nospectre_v2", handle_nospectre_v2);
133 #endif /* CONFIG_PPC_E500 || CONFIG_PPC_BOOK3S_64 */
134 
135 #ifdef CONFIG_PPC_E500
136 void __init setup_spectre_v2(void)
137 {
138 	if (no_spectrev2 || cpu_mitigations_off())
139 		do_btb_flush_fixups();
140 	else
141 		btb_flush_enabled = true;
142 }
143 #endif /* CONFIG_PPC_E500 */
144 
145 #ifdef CONFIG_PPC_BOOK3S_64
146 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
147 {
148 	bool thread_priv;
149 
150 	thread_priv = security_ftr_enabled(SEC_FTR_L1D_THREAD_PRIV);
151 
152 	if (rfi_flush) {
153 		struct seq_buf s;
154 		seq_buf_init(&s, buf, PAGE_SIZE - 1);
155 
156 		seq_buf_printf(&s, "Mitigation: RFI Flush");
157 		if (thread_priv)
158 			seq_buf_printf(&s, ", L1D private per thread");
159 
160 		seq_buf_printf(&s, "\n");
161 
162 		return s.len;
163 	}
164 
165 	if (thread_priv)
166 		return sprintf(buf, "Vulnerable: L1D private per thread\n");
167 
168 	if (!security_ftr_enabled(SEC_FTR_L1D_FLUSH_HV) &&
169 	    !security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR))
170 		return sprintf(buf, "Not affected\n");
171 
172 	return sprintf(buf, "Vulnerable\n");
173 }
174 
175 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
176 {
177 	return cpu_show_meltdown(dev, attr, buf);
178 }
179 #endif
180 
181 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
182 {
183 	struct seq_buf s;
184 
185 	seq_buf_init(&s, buf, PAGE_SIZE - 1);
186 
187 	if (security_ftr_enabled(SEC_FTR_BNDS_CHK_SPEC_BAR)) {
188 		if (barrier_nospec_enabled)
189 			seq_buf_printf(&s, "Mitigation: __user pointer sanitization");
190 		else
191 			seq_buf_printf(&s, "Vulnerable");
192 
193 		if (security_ftr_enabled(SEC_FTR_SPEC_BAR_ORI31))
194 			seq_buf_printf(&s, ", ori31 speculation barrier enabled");
195 
196 		seq_buf_printf(&s, "\n");
197 	} else
198 		seq_buf_printf(&s, "Not affected\n");
199 
200 	return s.len;
201 }
202 
203 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
204 {
205 	struct seq_buf s;
206 	bool bcs, ccd;
207 
208 	seq_buf_init(&s, buf, PAGE_SIZE - 1);
209 
210 	bcs = security_ftr_enabled(SEC_FTR_BCCTRL_SERIALISED);
211 	ccd = security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED);
212 
213 	if (bcs || ccd) {
214 		seq_buf_printf(&s, "Mitigation: ");
215 
216 		if (bcs)
217 			seq_buf_printf(&s, "Indirect branch serialisation (kernel only)");
218 
219 		if (bcs && ccd)
220 			seq_buf_printf(&s, ", ");
221 
222 		if (ccd)
223 			seq_buf_printf(&s, "Indirect branch cache disabled");
224 
225 	} else if (count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) {
226 		seq_buf_printf(&s, "Mitigation: Software count cache flush");
227 
228 		if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW)
229 			seq_buf_printf(&s, " (hardware accelerated)");
230 
231 	} else if (btb_flush_enabled) {
232 		seq_buf_printf(&s, "Mitigation: Branch predictor state flush");
233 	} else {
234 		seq_buf_printf(&s, "Vulnerable");
235 	}
236 
237 	if (bcs || ccd || count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) {
238 		if (link_stack_flush_type != BRANCH_CACHE_FLUSH_NONE)
239 			seq_buf_printf(&s, ", Software link stack flush");
240 		if (link_stack_flush_type == BRANCH_CACHE_FLUSH_HW)
241 			seq_buf_printf(&s, " (hardware accelerated)");
242 	}
243 
244 	seq_buf_printf(&s, "\n");
245 
246 	return s.len;
247 }
248 
249 #ifdef CONFIG_PPC_BOOK3S_64
250 /*
251  * Store-forwarding barrier support.
252  */
253 
254 static enum stf_barrier_type stf_enabled_flush_types;
255 static bool no_stf_barrier;
256 static bool stf_barrier;
257 
258 static int __init handle_no_stf_barrier(char *p)
259 {
260 	pr_info("stf-barrier: disabled on command line.");
261 	no_stf_barrier = true;
262 	return 0;
263 }
264 
265 early_param("no_stf_barrier", handle_no_stf_barrier);
266 
267 enum stf_barrier_type stf_barrier_type_get(void)
268 {
269 	return stf_enabled_flush_types;
270 }
271 
272 /* This is the generic flag used by other architectures */
273 static int __init handle_ssbd(char *p)
274 {
275 	if (!p || strncmp(p, "auto", 5) == 0 || strncmp(p, "on", 2) == 0 ) {
276 		/* Until firmware tells us, we have the barrier with auto */
277 		return 0;
278 	} else if (strncmp(p, "off", 3) == 0) {
279 		handle_no_stf_barrier(NULL);
280 		return 0;
281 	} else
282 		return 1;
283 
284 	return 0;
285 }
286 early_param("spec_store_bypass_disable", handle_ssbd);
287 
288 /* This is the generic flag used by other architectures */
289 static int __init handle_no_ssbd(char *p)
290 {
291 	handle_no_stf_barrier(NULL);
292 	return 0;
293 }
294 early_param("nospec_store_bypass_disable", handle_no_ssbd);
295 
296 static void stf_barrier_enable(bool enable)
297 {
298 	if (enable)
299 		do_stf_barrier_fixups(stf_enabled_flush_types);
300 	else
301 		do_stf_barrier_fixups(STF_BARRIER_NONE);
302 
303 	stf_barrier = enable;
304 }
305 
306 void setup_stf_barrier(void)
307 {
308 	enum stf_barrier_type type;
309 	bool enable;
310 
311 	/* Default to fallback in case fw-features are not available */
312 	if (cpu_has_feature(CPU_FTR_ARCH_300))
313 		type = STF_BARRIER_EIEIO;
314 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
315 		type = STF_BARRIER_SYNC_ORI;
316 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
317 		type = STF_BARRIER_FALLBACK;
318 	else
319 		type = STF_BARRIER_NONE;
320 
321 	enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) &&
322 		 security_ftr_enabled(SEC_FTR_STF_BARRIER);
323 
324 	if (type == STF_BARRIER_FALLBACK) {
325 		pr_info("stf-barrier: fallback barrier available\n");
326 	} else if (type == STF_BARRIER_SYNC_ORI) {
327 		pr_info("stf-barrier: hwsync barrier available\n");
328 	} else if (type == STF_BARRIER_EIEIO) {
329 		pr_info("stf-barrier: eieio barrier available\n");
330 	}
331 
332 	stf_enabled_flush_types = type;
333 
334 	if (!no_stf_barrier && !cpu_mitigations_off())
335 		stf_barrier_enable(enable);
336 }
337 
338 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
339 {
340 	if (stf_barrier && stf_enabled_flush_types != STF_BARRIER_NONE) {
341 		const char *type;
342 		switch (stf_enabled_flush_types) {
343 		case STF_BARRIER_EIEIO:
344 			type = "eieio";
345 			break;
346 		case STF_BARRIER_SYNC_ORI:
347 			type = "hwsync";
348 			break;
349 		case STF_BARRIER_FALLBACK:
350 			type = "fallback";
351 			break;
352 		default:
353 			type = "unknown";
354 		}
355 		return sprintf(buf, "Mitigation: Kernel entry/exit barrier (%s)\n", type);
356 	}
357 
358 	if (!security_ftr_enabled(SEC_FTR_L1D_FLUSH_HV) &&
359 	    !security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR))
360 		return sprintf(buf, "Not affected\n");
361 
362 	return sprintf(buf, "Vulnerable\n");
363 }
364 
365 static int ssb_prctl_get(struct task_struct *task)
366 {
367 	/*
368 	 * The STF_BARRIER feature is on by default, so if it's off that means
369 	 * firmware has explicitly said the CPU is not vulnerable via either
370 	 * the hypercall or device tree.
371 	 */
372 	if (!security_ftr_enabled(SEC_FTR_STF_BARRIER))
373 		return PR_SPEC_NOT_AFFECTED;
374 
375 	/*
376 	 * If the system's CPU has no known barrier (see setup_stf_barrier())
377 	 * then assume that the CPU is not vulnerable.
378 	 */
379 	if (stf_enabled_flush_types == STF_BARRIER_NONE)
380 		return PR_SPEC_NOT_AFFECTED;
381 
382 	/*
383 	 * Otherwise the CPU is vulnerable. The barrier is not a global or
384 	 * per-process mitigation, so the only value that can be reported here
385 	 * is PR_SPEC_ENABLE, which appears as "vulnerable" in /proc.
386 	 */
387 	return PR_SPEC_ENABLE;
388 }
389 
390 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
391 {
392 	switch (which) {
393 	case PR_SPEC_STORE_BYPASS:
394 		return ssb_prctl_get(task);
395 	default:
396 		return -ENODEV;
397 	}
398 }
399 
400 #ifdef CONFIG_DEBUG_FS
401 static int stf_barrier_set(void *data, u64 val)
402 {
403 	bool enable;
404 
405 	if (val == 1)
406 		enable = true;
407 	else if (val == 0)
408 		enable = false;
409 	else
410 		return -EINVAL;
411 
412 	/* Only do anything if we're changing state */
413 	if (enable != stf_barrier)
414 		stf_barrier_enable(enable);
415 
416 	return 0;
417 }
418 
419 static int stf_barrier_get(void *data, u64 *val)
420 {
421 	*val = stf_barrier ? 1 : 0;
422 	return 0;
423 }
424 
425 DEFINE_DEBUGFS_ATTRIBUTE(fops_stf_barrier, stf_barrier_get, stf_barrier_set,
426 			 "%llu\n");
427 
428 static __init int stf_barrier_debugfs_init(void)
429 {
430 	debugfs_create_file_unsafe("stf_barrier", 0600, arch_debugfs_dir,
431 				   NULL, &fops_stf_barrier);
432 	return 0;
433 }
434 device_initcall(stf_barrier_debugfs_init);
435 #endif /* CONFIG_DEBUG_FS */
436 
437 static void update_branch_cache_flush(void)
438 {
439 	u32 *site, __maybe_unused *site2;
440 
441 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
442 	site = &patch__call_kvm_flush_link_stack;
443 	site2 = &patch__call_kvm_flush_link_stack_p9;
444 	// This controls the branch from guest_exit_cont to kvm_flush_link_stack
445 	if (link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) {
446 		patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
447 		patch_instruction_site(site2, ppc_inst(PPC_RAW_NOP()));
448 	} else {
449 		// Could use HW flush, but that could also flush count cache
450 		patch_branch_site(site, (u64)&kvm_flush_link_stack, BRANCH_SET_LINK);
451 		patch_branch_site(site2, (u64)&kvm_flush_link_stack, BRANCH_SET_LINK);
452 	}
453 #endif
454 
455 	// Patch out the bcctr first, then nop the rest
456 	site = &patch__call_flush_branch_caches3;
457 	patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
458 	site = &patch__call_flush_branch_caches2;
459 	patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
460 	site = &patch__call_flush_branch_caches1;
461 	patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
462 
463 	// This controls the branch from _switch to flush_branch_caches
464 	if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE &&
465 	    link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) {
466 		// Nothing to be done
467 
468 	} else if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW &&
469 		   link_stack_flush_type == BRANCH_CACHE_FLUSH_HW) {
470 		// Patch in the bcctr last
471 		site = &patch__call_flush_branch_caches1;
472 		patch_instruction_site(site, ppc_inst(0x39207fff)); // li r9,0x7fff
473 		site = &patch__call_flush_branch_caches2;
474 		patch_instruction_site(site, ppc_inst(0x7d2903a6)); // mtctr r9
475 		site = &patch__call_flush_branch_caches3;
476 		patch_instruction_site(site, ppc_inst(PPC_INST_BCCTR_FLUSH));
477 
478 	} else {
479 		patch_branch_site(site, (u64)&flush_branch_caches, BRANCH_SET_LINK);
480 
481 		// If we just need to flush the link stack, early return
482 		if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE) {
483 			patch_instruction_site(&patch__flush_link_stack_return,
484 					       ppc_inst(PPC_RAW_BLR()));
485 
486 		// If we have flush instruction, early return
487 		} else if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW) {
488 			patch_instruction_site(&patch__flush_count_cache_return,
489 					       ppc_inst(PPC_RAW_BLR()));
490 		}
491 	}
492 }
493 
494 static void toggle_branch_cache_flush(bool enable)
495 {
496 	if (!enable || !security_ftr_enabled(SEC_FTR_FLUSH_COUNT_CACHE)) {
497 		if (count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE)
498 			count_cache_flush_type = BRANCH_CACHE_FLUSH_NONE;
499 
500 		pr_info("count-cache-flush: flush disabled.\n");
501 	} else {
502 		if (security_ftr_enabled(SEC_FTR_BCCTR_FLUSH_ASSIST)) {
503 			count_cache_flush_type = BRANCH_CACHE_FLUSH_HW;
504 			pr_info("count-cache-flush: hardware flush enabled.\n");
505 		} else {
506 			count_cache_flush_type = BRANCH_CACHE_FLUSH_SW;
507 			pr_info("count-cache-flush: software flush enabled.\n");
508 		}
509 	}
510 
511 	if (!enable || !security_ftr_enabled(SEC_FTR_FLUSH_LINK_STACK)) {
512 		if (link_stack_flush_type != BRANCH_CACHE_FLUSH_NONE)
513 			link_stack_flush_type = BRANCH_CACHE_FLUSH_NONE;
514 
515 		pr_info("link-stack-flush: flush disabled.\n");
516 	} else {
517 		if (security_ftr_enabled(SEC_FTR_BCCTR_LINK_FLUSH_ASSIST)) {
518 			link_stack_flush_type = BRANCH_CACHE_FLUSH_HW;
519 			pr_info("link-stack-flush: hardware flush enabled.\n");
520 		} else {
521 			link_stack_flush_type = BRANCH_CACHE_FLUSH_SW;
522 			pr_info("link-stack-flush: software flush enabled.\n");
523 		}
524 	}
525 
526 	update_branch_cache_flush();
527 }
528 
529 void setup_count_cache_flush(void)
530 {
531 	bool enable = true;
532 
533 	if (no_spectrev2 || cpu_mitigations_off()) {
534 		if (security_ftr_enabled(SEC_FTR_BCCTRL_SERIALISED) ||
535 		    security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED))
536 			pr_warn("Spectre v2 mitigations not fully under software control, can't disable\n");
537 
538 		enable = false;
539 	}
540 
541 	/*
542 	 * There's no firmware feature flag/hypervisor bit to tell us we need to
543 	 * flush the link stack on context switch. So we set it here if we see
544 	 * either of the Spectre v2 mitigations that aim to protect userspace.
545 	 */
546 	if (security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED) ||
547 	    security_ftr_enabled(SEC_FTR_FLUSH_COUNT_CACHE))
548 		security_ftr_set(SEC_FTR_FLUSH_LINK_STACK);
549 
550 	toggle_branch_cache_flush(enable);
551 }
552 
553 static enum l1d_flush_type enabled_flush_types;
554 static void *l1d_flush_fallback_area;
555 static bool no_rfi_flush;
556 static bool no_entry_flush;
557 static bool no_uaccess_flush;
558 bool rfi_flush;
559 static bool entry_flush;
560 static bool uaccess_flush;
561 DEFINE_STATIC_KEY_FALSE(uaccess_flush_key);
562 EXPORT_SYMBOL(uaccess_flush_key);
563 
564 static int __init handle_no_rfi_flush(char *p)
565 {
566 	pr_info("rfi-flush: disabled on command line.");
567 	no_rfi_flush = true;
568 	return 0;
569 }
570 early_param("no_rfi_flush", handle_no_rfi_flush);
571 
572 static int __init handle_no_entry_flush(char *p)
573 {
574 	pr_info("entry-flush: disabled on command line.");
575 	no_entry_flush = true;
576 	return 0;
577 }
578 early_param("no_entry_flush", handle_no_entry_flush);
579 
580 static int __init handle_no_uaccess_flush(char *p)
581 {
582 	pr_info("uaccess-flush: disabled on command line.");
583 	no_uaccess_flush = true;
584 	return 0;
585 }
586 early_param("no_uaccess_flush", handle_no_uaccess_flush);
587 
588 /*
589  * The RFI flush is not KPTI, but because users will see doco that says to use
590  * nopti we hijack that option here to also disable the RFI flush.
591  */
592 static int __init handle_no_pti(char *p)
593 {
594 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
595 	handle_no_rfi_flush(NULL);
596 	return 0;
597 }
598 early_param("nopti", handle_no_pti);
599 
600 static void do_nothing(void *unused)
601 {
602 	/*
603 	 * We don't need to do the flush explicitly, just enter+exit kernel is
604 	 * sufficient, the RFI exit handlers will do the right thing.
605 	 */
606 }
607 
608 void rfi_flush_enable(bool enable)
609 {
610 	if (enable) {
611 		do_rfi_flush_fixups(enabled_flush_types);
612 		on_each_cpu(do_nothing, NULL, 1);
613 	} else
614 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
615 
616 	rfi_flush = enable;
617 }
618 
619 static void entry_flush_enable(bool enable)
620 {
621 	if (enable) {
622 		do_entry_flush_fixups(enabled_flush_types);
623 		on_each_cpu(do_nothing, NULL, 1);
624 	} else {
625 		do_entry_flush_fixups(L1D_FLUSH_NONE);
626 	}
627 
628 	entry_flush = enable;
629 }
630 
631 static void uaccess_flush_enable(bool enable)
632 {
633 	if (enable) {
634 		do_uaccess_flush_fixups(enabled_flush_types);
635 		static_branch_enable(&uaccess_flush_key);
636 		on_each_cpu(do_nothing, NULL, 1);
637 	} else {
638 		static_branch_disable(&uaccess_flush_key);
639 		do_uaccess_flush_fixups(L1D_FLUSH_NONE);
640 	}
641 
642 	uaccess_flush = enable;
643 }
644 
645 static void __ref init_fallback_flush(void)
646 {
647 	u64 l1d_size, limit;
648 	int cpu;
649 
650 	/* Only allocate the fallback flush area once (at boot time). */
651 	if (l1d_flush_fallback_area)
652 		return;
653 
654 	l1d_size = ppc64_caches.l1d.size;
655 
656 	/*
657 	 * If there is no d-cache-size property in the device tree, l1d_size
658 	 * could be zero. That leads to the loop in the asm wrapping around to
659 	 * 2^64-1, and then walking off the end of the fallback area and
660 	 * eventually causing a page fault which is fatal. Just default to
661 	 * something vaguely sane.
662 	 */
663 	if (!l1d_size)
664 		l1d_size = (64 * 1024);
665 
666 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
667 
668 	/*
669 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
670 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
671 	 * reliably avoid the prefetcher.
672 	 */
673 	l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
674 						l1d_size, MEMBLOCK_LOW_LIMIT,
675 						limit, NUMA_NO_NODE);
676 	if (!l1d_flush_fallback_area)
677 		panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
678 		      __func__, l1d_size * 2, l1d_size, &limit);
679 
680 
681 	for_each_possible_cpu(cpu) {
682 		struct paca_struct *paca = paca_ptrs[cpu];
683 		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
684 		paca->l1d_flush_size = l1d_size;
685 	}
686 }
687 
688 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
689 {
690 	if (types & L1D_FLUSH_FALLBACK) {
691 		pr_info("rfi-flush: fallback displacement flush available\n");
692 		init_fallback_flush();
693 	}
694 
695 	if (types & L1D_FLUSH_ORI)
696 		pr_info("rfi-flush: ori type flush available\n");
697 
698 	if (types & L1D_FLUSH_MTTRIG)
699 		pr_info("rfi-flush: mttrig type flush available\n");
700 
701 	enabled_flush_types = types;
702 
703 	if (!cpu_mitigations_off() && !no_rfi_flush)
704 		rfi_flush_enable(enable);
705 }
706 
707 void setup_entry_flush(bool enable)
708 {
709 	if (cpu_mitigations_off())
710 		return;
711 
712 	if (!no_entry_flush)
713 		entry_flush_enable(enable);
714 }
715 
716 void setup_uaccess_flush(bool enable)
717 {
718 	if (cpu_mitigations_off())
719 		return;
720 
721 	if (!no_uaccess_flush)
722 		uaccess_flush_enable(enable);
723 }
724 
725 #ifdef CONFIG_DEBUG_FS
726 static int count_cache_flush_set(void *data, u64 val)
727 {
728 	bool enable;
729 
730 	if (val == 1)
731 		enable = true;
732 	else if (val == 0)
733 		enable = false;
734 	else
735 		return -EINVAL;
736 
737 	toggle_branch_cache_flush(enable);
738 
739 	return 0;
740 }
741 
742 static int count_cache_flush_get(void *data, u64 *val)
743 {
744 	if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE)
745 		*val = 0;
746 	else
747 		*val = 1;
748 
749 	return 0;
750 }
751 
752 static int link_stack_flush_get(void *data, u64 *val)
753 {
754 	if (link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE)
755 		*val = 0;
756 	else
757 		*val = 1;
758 
759 	return 0;
760 }
761 
762 DEFINE_DEBUGFS_ATTRIBUTE(fops_count_cache_flush, count_cache_flush_get,
763 			 count_cache_flush_set, "%llu\n");
764 DEFINE_DEBUGFS_ATTRIBUTE(fops_link_stack_flush, link_stack_flush_get,
765 			 count_cache_flush_set, "%llu\n");
766 
767 static __init int count_cache_flush_debugfs_init(void)
768 {
769 	debugfs_create_file_unsafe("count_cache_flush", 0600,
770 				   arch_debugfs_dir, NULL,
771 				   &fops_count_cache_flush);
772 	debugfs_create_file_unsafe("link_stack_flush", 0600,
773 				   arch_debugfs_dir, NULL,
774 				   &fops_link_stack_flush);
775 	return 0;
776 }
777 device_initcall(count_cache_flush_debugfs_init);
778 
779 static int rfi_flush_set(void *data, u64 val)
780 {
781 	bool enable;
782 
783 	if (val == 1)
784 		enable = true;
785 	else if (val == 0)
786 		enable = false;
787 	else
788 		return -EINVAL;
789 
790 	/* Only do anything if we're changing state */
791 	if (enable != rfi_flush)
792 		rfi_flush_enable(enable);
793 
794 	return 0;
795 }
796 
797 static int rfi_flush_get(void *data, u64 *val)
798 {
799 	*val = rfi_flush ? 1 : 0;
800 	return 0;
801 }
802 
803 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
804 
805 static int entry_flush_set(void *data, u64 val)
806 {
807 	bool enable;
808 
809 	if (val == 1)
810 		enable = true;
811 	else if (val == 0)
812 		enable = false;
813 	else
814 		return -EINVAL;
815 
816 	/* Only do anything if we're changing state */
817 	if (enable != entry_flush)
818 		entry_flush_enable(enable);
819 
820 	return 0;
821 }
822 
823 static int entry_flush_get(void *data, u64 *val)
824 {
825 	*val = entry_flush ? 1 : 0;
826 	return 0;
827 }
828 
829 DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n");
830 
831 static int uaccess_flush_set(void *data, u64 val)
832 {
833 	bool enable;
834 
835 	if (val == 1)
836 		enable = true;
837 	else if (val == 0)
838 		enable = false;
839 	else
840 		return -EINVAL;
841 
842 	/* Only do anything if we're changing state */
843 	if (enable != uaccess_flush)
844 		uaccess_flush_enable(enable);
845 
846 	return 0;
847 }
848 
849 static int uaccess_flush_get(void *data, u64 *val)
850 {
851 	*val = uaccess_flush ? 1 : 0;
852 	return 0;
853 }
854 
855 DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n");
856 
857 static __init int rfi_flush_debugfs_init(void)
858 {
859 	debugfs_create_file("rfi_flush", 0600, arch_debugfs_dir, NULL, &fops_rfi_flush);
860 	debugfs_create_file("entry_flush", 0600, arch_debugfs_dir, NULL, &fops_entry_flush);
861 	debugfs_create_file("uaccess_flush", 0600, arch_debugfs_dir, NULL, &fops_uaccess_flush);
862 	return 0;
863 }
864 device_initcall(rfi_flush_debugfs_init);
865 #endif /* CONFIG_DEBUG_FS */
866 #endif /* CONFIG_PPC_BOOK3S_64 */
867