xref: /openbmc/linux/arch/powerpc/kernel/security.c (revision 941518d6)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Security related flags and so on.
4 //
5 // Copyright 2018, Michael Ellerman, IBM Corporation.
6 
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/device.h>
10 #include <linux/memblock.h>
11 #include <linux/nospec.h>
12 #include <linux/prctl.h>
13 #include <linux/seq_buf.h>
14 #include <linux/debugfs.h>
15 
16 #include <asm/asm-prototypes.h>
17 #include <asm/code-patching.h>
18 #include <asm/security_features.h>
19 #include <asm/setup.h>
20 #include <asm/inst.h>
21 
22 #include "setup.h"
23 
24 u64 powerpc_security_features __read_mostly = SEC_FTR_DEFAULT;
25 
26 enum branch_cache_flush_type {
27 	BRANCH_CACHE_FLUSH_NONE	= 0x1,
28 	BRANCH_CACHE_FLUSH_SW	= 0x2,
29 	BRANCH_CACHE_FLUSH_HW	= 0x4,
30 };
31 static enum branch_cache_flush_type count_cache_flush_type = BRANCH_CACHE_FLUSH_NONE;
32 static enum branch_cache_flush_type link_stack_flush_type = BRANCH_CACHE_FLUSH_NONE;
33 
34 bool barrier_nospec_enabled;
35 static bool no_nospec;
36 static bool btb_flush_enabled;
37 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_BOOK3S_64)
38 static bool no_spectrev2;
39 #endif
40 
41 static void enable_barrier_nospec(bool enable)
42 {
43 	barrier_nospec_enabled = enable;
44 	do_barrier_nospec_fixups(enable);
45 }
46 
47 void __init setup_barrier_nospec(void)
48 {
49 	bool enable;
50 
51 	/*
52 	 * It would make sense to check SEC_FTR_SPEC_BAR_ORI31 below as well.
53 	 * But there's a good reason not to. The two flags we check below are
54 	 * both are enabled by default in the kernel, so if the hcall is not
55 	 * functional they will be enabled.
56 	 * On a system where the host firmware has been updated (so the ori
57 	 * functions as a barrier), but on which the hypervisor (KVM/Qemu) has
58 	 * not been updated, we would like to enable the barrier. Dropping the
59 	 * check for SEC_FTR_SPEC_BAR_ORI31 achieves that. The only downside is
60 	 * we potentially enable the barrier on systems where the host firmware
61 	 * is not updated, but that's harmless as it's a no-op.
62 	 */
63 	enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) &&
64 		 security_ftr_enabled(SEC_FTR_BNDS_CHK_SPEC_BAR);
65 
66 	if (!no_nospec && !cpu_mitigations_off())
67 		enable_barrier_nospec(enable);
68 }
69 
70 static int __init handle_nospectre_v1(char *p)
71 {
72 	no_nospec = true;
73 
74 	return 0;
75 }
76 early_param("nospectre_v1", handle_nospectre_v1);
77 
78 #ifdef CONFIG_DEBUG_FS
79 static int barrier_nospec_set(void *data, u64 val)
80 {
81 	switch (val) {
82 	case 0:
83 	case 1:
84 		break;
85 	default:
86 		return -EINVAL;
87 	}
88 
89 	if (!!val == !!barrier_nospec_enabled)
90 		return 0;
91 
92 	enable_barrier_nospec(!!val);
93 
94 	return 0;
95 }
96 
97 static int barrier_nospec_get(void *data, u64 *val)
98 {
99 	*val = barrier_nospec_enabled ? 1 : 0;
100 	return 0;
101 }
102 
103 DEFINE_DEBUGFS_ATTRIBUTE(fops_barrier_nospec, barrier_nospec_get,
104 			 barrier_nospec_set, "%llu\n");
105 
106 static __init int barrier_nospec_debugfs_init(void)
107 {
108 	debugfs_create_file_unsafe("barrier_nospec", 0600,
109 				   arch_debugfs_dir, NULL,
110 				   &fops_barrier_nospec);
111 	return 0;
112 }
113 device_initcall(barrier_nospec_debugfs_init);
114 
115 static __init int security_feature_debugfs_init(void)
116 {
117 	debugfs_create_x64("security_features", 0400, arch_debugfs_dir,
118 			   &powerpc_security_features);
119 	return 0;
120 }
121 device_initcall(security_feature_debugfs_init);
122 #endif /* CONFIG_DEBUG_FS */
123 
124 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_BOOK3S_64)
125 static int __init handle_nospectre_v2(char *p)
126 {
127 	no_spectrev2 = true;
128 
129 	return 0;
130 }
131 early_param("nospectre_v2", handle_nospectre_v2);
132 #endif /* CONFIG_PPC_FSL_BOOK3E || CONFIG_PPC_BOOK3S_64 */
133 
134 #ifdef CONFIG_PPC_FSL_BOOK3E
135 void __init setup_spectre_v2(void)
136 {
137 	if (no_spectrev2 || cpu_mitigations_off())
138 		do_btb_flush_fixups();
139 	else
140 		btb_flush_enabled = true;
141 }
142 #endif /* CONFIG_PPC_FSL_BOOK3E */
143 
144 #ifdef CONFIG_PPC_BOOK3S_64
145 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
146 {
147 	bool thread_priv;
148 
149 	thread_priv = security_ftr_enabled(SEC_FTR_L1D_THREAD_PRIV);
150 
151 	if (rfi_flush) {
152 		struct seq_buf s;
153 		seq_buf_init(&s, buf, PAGE_SIZE - 1);
154 
155 		seq_buf_printf(&s, "Mitigation: RFI Flush");
156 		if (thread_priv)
157 			seq_buf_printf(&s, ", L1D private per thread");
158 
159 		seq_buf_printf(&s, "\n");
160 
161 		return s.len;
162 	}
163 
164 	if (thread_priv)
165 		return sprintf(buf, "Vulnerable: L1D private per thread\n");
166 
167 	if (!security_ftr_enabled(SEC_FTR_L1D_FLUSH_HV) &&
168 	    !security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR))
169 		return sprintf(buf, "Not affected\n");
170 
171 	return sprintf(buf, "Vulnerable\n");
172 }
173 
174 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
175 {
176 	return cpu_show_meltdown(dev, attr, buf);
177 }
178 #endif
179 
180 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
181 {
182 	struct seq_buf s;
183 
184 	seq_buf_init(&s, buf, PAGE_SIZE - 1);
185 
186 	if (security_ftr_enabled(SEC_FTR_BNDS_CHK_SPEC_BAR)) {
187 		if (barrier_nospec_enabled)
188 			seq_buf_printf(&s, "Mitigation: __user pointer sanitization");
189 		else
190 			seq_buf_printf(&s, "Vulnerable");
191 
192 		if (security_ftr_enabled(SEC_FTR_SPEC_BAR_ORI31))
193 			seq_buf_printf(&s, ", ori31 speculation barrier enabled");
194 
195 		seq_buf_printf(&s, "\n");
196 	} else
197 		seq_buf_printf(&s, "Not affected\n");
198 
199 	return s.len;
200 }
201 
202 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
203 {
204 	struct seq_buf s;
205 	bool bcs, ccd;
206 
207 	seq_buf_init(&s, buf, PAGE_SIZE - 1);
208 
209 	bcs = security_ftr_enabled(SEC_FTR_BCCTRL_SERIALISED);
210 	ccd = security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED);
211 
212 	if (bcs || ccd) {
213 		seq_buf_printf(&s, "Mitigation: ");
214 
215 		if (bcs)
216 			seq_buf_printf(&s, "Indirect branch serialisation (kernel only)");
217 
218 		if (bcs && ccd)
219 			seq_buf_printf(&s, ", ");
220 
221 		if (ccd)
222 			seq_buf_printf(&s, "Indirect branch cache disabled");
223 
224 	} else if (count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) {
225 		seq_buf_printf(&s, "Mitigation: Software count cache flush");
226 
227 		if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW)
228 			seq_buf_printf(&s, " (hardware accelerated)");
229 
230 	} else if (btb_flush_enabled) {
231 		seq_buf_printf(&s, "Mitigation: Branch predictor state flush");
232 	} else {
233 		seq_buf_printf(&s, "Vulnerable");
234 	}
235 
236 	if (bcs || ccd || count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) {
237 		if (link_stack_flush_type != BRANCH_CACHE_FLUSH_NONE)
238 			seq_buf_printf(&s, ", Software link stack flush");
239 		if (link_stack_flush_type == BRANCH_CACHE_FLUSH_HW)
240 			seq_buf_printf(&s, " (hardware accelerated)");
241 	}
242 
243 	seq_buf_printf(&s, "\n");
244 
245 	return s.len;
246 }
247 
248 #ifdef CONFIG_PPC_BOOK3S_64
249 /*
250  * Store-forwarding barrier support.
251  */
252 
253 static enum stf_barrier_type stf_enabled_flush_types;
254 static bool no_stf_barrier;
255 static bool stf_barrier;
256 
257 static int __init handle_no_stf_barrier(char *p)
258 {
259 	pr_info("stf-barrier: disabled on command line.");
260 	no_stf_barrier = true;
261 	return 0;
262 }
263 
264 early_param("no_stf_barrier", handle_no_stf_barrier);
265 
266 enum stf_barrier_type stf_barrier_type_get(void)
267 {
268 	return stf_enabled_flush_types;
269 }
270 
271 /* This is the generic flag used by other architectures */
272 static int __init handle_ssbd(char *p)
273 {
274 	if (!p || strncmp(p, "auto", 5) == 0 || strncmp(p, "on", 2) == 0 ) {
275 		/* Until firmware tells us, we have the barrier with auto */
276 		return 0;
277 	} else if (strncmp(p, "off", 3) == 0) {
278 		handle_no_stf_barrier(NULL);
279 		return 0;
280 	} else
281 		return 1;
282 
283 	return 0;
284 }
285 early_param("spec_store_bypass_disable", handle_ssbd);
286 
287 /* This is the generic flag used by other architectures */
288 static int __init handle_no_ssbd(char *p)
289 {
290 	handle_no_stf_barrier(NULL);
291 	return 0;
292 }
293 early_param("nospec_store_bypass_disable", handle_no_ssbd);
294 
295 static void stf_barrier_enable(bool enable)
296 {
297 	if (enable)
298 		do_stf_barrier_fixups(stf_enabled_flush_types);
299 	else
300 		do_stf_barrier_fixups(STF_BARRIER_NONE);
301 
302 	stf_barrier = enable;
303 }
304 
305 void setup_stf_barrier(void)
306 {
307 	enum stf_barrier_type type;
308 	bool enable;
309 
310 	/* Default to fallback in case fw-features are not available */
311 	if (cpu_has_feature(CPU_FTR_ARCH_300))
312 		type = STF_BARRIER_EIEIO;
313 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
314 		type = STF_BARRIER_SYNC_ORI;
315 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
316 		type = STF_BARRIER_FALLBACK;
317 	else
318 		type = STF_BARRIER_NONE;
319 
320 	enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) &&
321 		 security_ftr_enabled(SEC_FTR_STF_BARRIER);
322 
323 	if (type == STF_BARRIER_FALLBACK) {
324 		pr_info("stf-barrier: fallback barrier available\n");
325 	} else if (type == STF_BARRIER_SYNC_ORI) {
326 		pr_info("stf-barrier: hwsync barrier available\n");
327 	} else if (type == STF_BARRIER_EIEIO) {
328 		pr_info("stf-barrier: eieio barrier available\n");
329 	}
330 
331 	stf_enabled_flush_types = type;
332 
333 	if (!no_stf_barrier && !cpu_mitigations_off())
334 		stf_barrier_enable(enable);
335 }
336 
337 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
338 {
339 	if (stf_barrier && stf_enabled_flush_types != STF_BARRIER_NONE) {
340 		const char *type;
341 		switch (stf_enabled_flush_types) {
342 		case STF_BARRIER_EIEIO:
343 			type = "eieio";
344 			break;
345 		case STF_BARRIER_SYNC_ORI:
346 			type = "hwsync";
347 			break;
348 		case STF_BARRIER_FALLBACK:
349 			type = "fallback";
350 			break;
351 		default:
352 			type = "unknown";
353 		}
354 		return sprintf(buf, "Mitigation: Kernel entry/exit barrier (%s)\n", type);
355 	}
356 
357 	if (!security_ftr_enabled(SEC_FTR_L1D_FLUSH_HV) &&
358 	    !security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR))
359 		return sprintf(buf, "Not affected\n");
360 
361 	return sprintf(buf, "Vulnerable\n");
362 }
363 
364 static int ssb_prctl_get(struct task_struct *task)
365 {
366 	if (stf_enabled_flush_types == STF_BARRIER_NONE)
367 		/*
368 		 * We don't have an explicit signal from firmware that we're
369 		 * vulnerable or not, we only have certain CPU revisions that
370 		 * are known to be vulnerable.
371 		 *
372 		 * We assume that if we're on another CPU, where the barrier is
373 		 * NONE, then we are not vulnerable.
374 		 */
375 		return PR_SPEC_NOT_AFFECTED;
376 	else
377 		/*
378 		 * If we do have a barrier type then we are vulnerable. The
379 		 * barrier is not a global or per-process mitigation, so the
380 		 * only value we can report here is PR_SPEC_ENABLE, which
381 		 * appears as "vulnerable" in /proc.
382 		 */
383 		return PR_SPEC_ENABLE;
384 
385 	return -EINVAL;
386 }
387 
388 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
389 {
390 	switch (which) {
391 	case PR_SPEC_STORE_BYPASS:
392 		return ssb_prctl_get(task);
393 	default:
394 		return -ENODEV;
395 	}
396 }
397 
398 #ifdef CONFIG_DEBUG_FS
399 static int stf_barrier_set(void *data, u64 val)
400 {
401 	bool enable;
402 
403 	if (val == 1)
404 		enable = true;
405 	else if (val == 0)
406 		enable = false;
407 	else
408 		return -EINVAL;
409 
410 	/* Only do anything if we're changing state */
411 	if (enable != stf_barrier)
412 		stf_barrier_enable(enable);
413 
414 	return 0;
415 }
416 
417 static int stf_barrier_get(void *data, u64 *val)
418 {
419 	*val = stf_barrier ? 1 : 0;
420 	return 0;
421 }
422 
423 DEFINE_DEBUGFS_ATTRIBUTE(fops_stf_barrier, stf_barrier_get, stf_barrier_set,
424 			 "%llu\n");
425 
426 static __init int stf_barrier_debugfs_init(void)
427 {
428 	debugfs_create_file_unsafe("stf_barrier", 0600, arch_debugfs_dir,
429 				   NULL, &fops_stf_barrier);
430 	return 0;
431 }
432 device_initcall(stf_barrier_debugfs_init);
433 #endif /* CONFIG_DEBUG_FS */
434 
435 static void update_branch_cache_flush(void)
436 {
437 	u32 *site, __maybe_unused *site2;
438 
439 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
440 	site = &patch__call_kvm_flush_link_stack;
441 	site2 = &patch__call_kvm_flush_link_stack_p9;
442 	// This controls the branch from guest_exit_cont to kvm_flush_link_stack
443 	if (link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) {
444 		patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
445 		patch_instruction_site(site2, ppc_inst(PPC_RAW_NOP()));
446 	} else {
447 		// Could use HW flush, but that could also flush count cache
448 		patch_branch_site(site, (u64)&kvm_flush_link_stack, BRANCH_SET_LINK);
449 		patch_branch_site(site2, (u64)&kvm_flush_link_stack, BRANCH_SET_LINK);
450 	}
451 #endif
452 
453 	// Patch out the bcctr first, then nop the rest
454 	site = &patch__call_flush_branch_caches3;
455 	patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
456 	site = &patch__call_flush_branch_caches2;
457 	patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
458 	site = &patch__call_flush_branch_caches1;
459 	patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
460 
461 	// This controls the branch from _switch to flush_branch_caches
462 	if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE &&
463 	    link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) {
464 		// Nothing to be done
465 
466 	} else if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW &&
467 		   link_stack_flush_type == BRANCH_CACHE_FLUSH_HW) {
468 		// Patch in the bcctr last
469 		site = &patch__call_flush_branch_caches1;
470 		patch_instruction_site(site, ppc_inst(0x39207fff)); // li r9,0x7fff
471 		site = &patch__call_flush_branch_caches2;
472 		patch_instruction_site(site, ppc_inst(0x7d2903a6)); // mtctr r9
473 		site = &patch__call_flush_branch_caches3;
474 		patch_instruction_site(site, ppc_inst(PPC_INST_BCCTR_FLUSH));
475 
476 	} else {
477 		patch_branch_site(site, (u64)&flush_branch_caches, BRANCH_SET_LINK);
478 
479 		// If we just need to flush the link stack, early return
480 		if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE) {
481 			patch_instruction_site(&patch__flush_link_stack_return,
482 					       ppc_inst(PPC_RAW_BLR()));
483 
484 		// If we have flush instruction, early return
485 		} else if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW) {
486 			patch_instruction_site(&patch__flush_count_cache_return,
487 					       ppc_inst(PPC_RAW_BLR()));
488 		}
489 	}
490 }
491 
492 static void toggle_branch_cache_flush(bool enable)
493 {
494 	if (!enable || !security_ftr_enabled(SEC_FTR_FLUSH_COUNT_CACHE)) {
495 		if (count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE)
496 			count_cache_flush_type = BRANCH_CACHE_FLUSH_NONE;
497 
498 		pr_info("count-cache-flush: flush disabled.\n");
499 	} else {
500 		if (security_ftr_enabled(SEC_FTR_BCCTR_FLUSH_ASSIST)) {
501 			count_cache_flush_type = BRANCH_CACHE_FLUSH_HW;
502 			pr_info("count-cache-flush: hardware flush enabled.\n");
503 		} else {
504 			count_cache_flush_type = BRANCH_CACHE_FLUSH_SW;
505 			pr_info("count-cache-flush: software flush enabled.\n");
506 		}
507 	}
508 
509 	if (!enable || !security_ftr_enabled(SEC_FTR_FLUSH_LINK_STACK)) {
510 		if (link_stack_flush_type != BRANCH_CACHE_FLUSH_NONE)
511 			link_stack_flush_type = BRANCH_CACHE_FLUSH_NONE;
512 
513 		pr_info("link-stack-flush: flush disabled.\n");
514 	} else {
515 		if (security_ftr_enabled(SEC_FTR_BCCTR_LINK_FLUSH_ASSIST)) {
516 			link_stack_flush_type = BRANCH_CACHE_FLUSH_HW;
517 			pr_info("link-stack-flush: hardware flush enabled.\n");
518 		} else {
519 			link_stack_flush_type = BRANCH_CACHE_FLUSH_SW;
520 			pr_info("link-stack-flush: software flush enabled.\n");
521 		}
522 	}
523 
524 	update_branch_cache_flush();
525 }
526 
527 void setup_count_cache_flush(void)
528 {
529 	bool enable = true;
530 
531 	if (no_spectrev2 || cpu_mitigations_off()) {
532 		if (security_ftr_enabled(SEC_FTR_BCCTRL_SERIALISED) ||
533 		    security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED))
534 			pr_warn("Spectre v2 mitigations not fully under software control, can't disable\n");
535 
536 		enable = false;
537 	}
538 
539 	/*
540 	 * There's no firmware feature flag/hypervisor bit to tell us we need to
541 	 * flush the link stack on context switch. So we set it here if we see
542 	 * either of the Spectre v2 mitigations that aim to protect userspace.
543 	 */
544 	if (security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED) ||
545 	    security_ftr_enabled(SEC_FTR_FLUSH_COUNT_CACHE))
546 		security_ftr_set(SEC_FTR_FLUSH_LINK_STACK);
547 
548 	toggle_branch_cache_flush(enable);
549 }
550 
551 static enum l1d_flush_type enabled_flush_types;
552 static void *l1d_flush_fallback_area;
553 static bool no_rfi_flush;
554 static bool no_entry_flush;
555 static bool no_uaccess_flush;
556 bool rfi_flush;
557 static bool entry_flush;
558 static bool uaccess_flush;
559 DEFINE_STATIC_KEY_FALSE(uaccess_flush_key);
560 EXPORT_SYMBOL(uaccess_flush_key);
561 
562 static int __init handle_no_rfi_flush(char *p)
563 {
564 	pr_info("rfi-flush: disabled on command line.");
565 	no_rfi_flush = true;
566 	return 0;
567 }
568 early_param("no_rfi_flush", handle_no_rfi_flush);
569 
570 static int __init handle_no_entry_flush(char *p)
571 {
572 	pr_info("entry-flush: disabled on command line.");
573 	no_entry_flush = true;
574 	return 0;
575 }
576 early_param("no_entry_flush", handle_no_entry_flush);
577 
578 static int __init handle_no_uaccess_flush(char *p)
579 {
580 	pr_info("uaccess-flush: disabled on command line.");
581 	no_uaccess_flush = true;
582 	return 0;
583 }
584 early_param("no_uaccess_flush", handle_no_uaccess_flush);
585 
586 /*
587  * The RFI flush is not KPTI, but because users will see doco that says to use
588  * nopti we hijack that option here to also disable the RFI flush.
589  */
590 static int __init handle_no_pti(char *p)
591 {
592 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
593 	handle_no_rfi_flush(NULL);
594 	return 0;
595 }
596 early_param("nopti", handle_no_pti);
597 
598 static void do_nothing(void *unused)
599 {
600 	/*
601 	 * We don't need to do the flush explicitly, just enter+exit kernel is
602 	 * sufficient, the RFI exit handlers will do the right thing.
603 	 */
604 }
605 
606 void rfi_flush_enable(bool enable)
607 {
608 	if (enable) {
609 		do_rfi_flush_fixups(enabled_flush_types);
610 		on_each_cpu(do_nothing, NULL, 1);
611 	} else
612 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
613 
614 	rfi_flush = enable;
615 }
616 
617 static void entry_flush_enable(bool enable)
618 {
619 	if (enable) {
620 		do_entry_flush_fixups(enabled_flush_types);
621 		on_each_cpu(do_nothing, NULL, 1);
622 	} else {
623 		do_entry_flush_fixups(L1D_FLUSH_NONE);
624 	}
625 
626 	entry_flush = enable;
627 }
628 
629 static void uaccess_flush_enable(bool enable)
630 {
631 	if (enable) {
632 		do_uaccess_flush_fixups(enabled_flush_types);
633 		static_branch_enable(&uaccess_flush_key);
634 		on_each_cpu(do_nothing, NULL, 1);
635 	} else {
636 		static_branch_disable(&uaccess_flush_key);
637 		do_uaccess_flush_fixups(L1D_FLUSH_NONE);
638 	}
639 
640 	uaccess_flush = enable;
641 }
642 
643 static void __ref init_fallback_flush(void)
644 {
645 	u64 l1d_size, limit;
646 	int cpu;
647 
648 	/* Only allocate the fallback flush area once (at boot time). */
649 	if (l1d_flush_fallback_area)
650 		return;
651 
652 	l1d_size = ppc64_caches.l1d.size;
653 
654 	/*
655 	 * If there is no d-cache-size property in the device tree, l1d_size
656 	 * could be zero. That leads to the loop in the asm wrapping around to
657 	 * 2^64-1, and then walking off the end of the fallback area and
658 	 * eventually causing a page fault which is fatal. Just default to
659 	 * something vaguely sane.
660 	 */
661 	if (!l1d_size)
662 		l1d_size = (64 * 1024);
663 
664 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
665 
666 	/*
667 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
668 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
669 	 * reliably avoid the prefetcher.
670 	 */
671 	l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
672 						l1d_size, MEMBLOCK_LOW_LIMIT,
673 						limit, NUMA_NO_NODE);
674 	if (!l1d_flush_fallback_area)
675 		panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
676 		      __func__, l1d_size * 2, l1d_size, &limit);
677 
678 
679 	for_each_possible_cpu(cpu) {
680 		struct paca_struct *paca = paca_ptrs[cpu];
681 		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
682 		paca->l1d_flush_size = l1d_size;
683 	}
684 }
685 
686 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
687 {
688 	if (types & L1D_FLUSH_FALLBACK) {
689 		pr_info("rfi-flush: fallback displacement flush available\n");
690 		init_fallback_flush();
691 	}
692 
693 	if (types & L1D_FLUSH_ORI)
694 		pr_info("rfi-flush: ori type flush available\n");
695 
696 	if (types & L1D_FLUSH_MTTRIG)
697 		pr_info("rfi-flush: mttrig type flush available\n");
698 
699 	enabled_flush_types = types;
700 
701 	if (!cpu_mitigations_off() && !no_rfi_flush)
702 		rfi_flush_enable(enable);
703 }
704 
705 void setup_entry_flush(bool enable)
706 {
707 	if (cpu_mitigations_off())
708 		return;
709 
710 	if (!no_entry_flush)
711 		entry_flush_enable(enable);
712 }
713 
714 void setup_uaccess_flush(bool enable)
715 {
716 	if (cpu_mitigations_off())
717 		return;
718 
719 	if (!no_uaccess_flush)
720 		uaccess_flush_enable(enable);
721 }
722 
723 #ifdef CONFIG_DEBUG_FS
724 static int count_cache_flush_set(void *data, u64 val)
725 {
726 	bool enable;
727 
728 	if (val == 1)
729 		enable = true;
730 	else if (val == 0)
731 		enable = false;
732 	else
733 		return -EINVAL;
734 
735 	toggle_branch_cache_flush(enable);
736 
737 	return 0;
738 }
739 
740 static int count_cache_flush_get(void *data, u64 *val)
741 {
742 	if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE)
743 		*val = 0;
744 	else
745 		*val = 1;
746 
747 	return 0;
748 }
749 
750 DEFINE_DEBUGFS_ATTRIBUTE(fops_count_cache_flush, count_cache_flush_get,
751 			 count_cache_flush_set, "%llu\n");
752 
753 static __init int count_cache_flush_debugfs_init(void)
754 {
755 	debugfs_create_file_unsafe("count_cache_flush", 0600,
756 				   arch_debugfs_dir, NULL,
757 				   &fops_count_cache_flush);
758 	return 0;
759 }
760 device_initcall(count_cache_flush_debugfs_init);
761 
762 static int rfi_flush_set(void *data, u64 val)
763 {
764 	bool enable;
765 
766 	if (val == 1)
767 		enable = true;
768 	else if (val == 0)
769 		enable = false;
770 	else
771 		return -EINVAL;
772 
773 	/* Only do anything if we're changing state */
774 	if (enable != rfi_flush)
775 		rfi_flush_enable(enable);
776 
777 	return 0;
778 }
779 
780 static int rfi_flush_get(void *data, u64 *val)
781 {
782 	*val = rfi_flush ? 1 : 0;
783 	return 0;
784 }
785 
786 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
787 
788 static int entry_flush_set(void *data, u64 val)
789 {
790 	bool enable;
791 
792 	if (val == 1)
793 		enable = true;
794 	else if (val == 0)
795 		enable = false;
796 	else
797 		return -EINVAL;
798 
799 	/* Only do anything if we're changing state */
800 	if (enable != entry_flush)
801 		entry_flush_enable(enable);
802 
803 	return 0;
804 }
805 
806 static int entry_flush_get(void *data, u64 *val)
807 {
808 	*val = entry_flush ? 1 : 0;
809 	return 0;
810 }
811 
812 DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n");
813 
814 static int uaccess_flush_set(void *data, u64 val)
815 {
816 	bool enable;
817 
818 	if (val == 1)
819 		enable = true;
820 	else if (val == 0)
821 		enable = false;
822 	else
823 		return -EINVAL;
824 
825 	/* Only do anything if we're changing state */
826 	if (enable != uaccess_flush)
827 		uaccess_flush_enable(enable);
828 
829 	return 0;
830 }
831 
832 static int uaccess_flush_get(void *data, u64 *val)
833 {
834 	*val = uaccess_flush ? 1 : 0;
835 	return 0;
836 }
837 
838 DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n");
839 
840 static __init int rfi_flush_debugfs_init(void)
841 {
842 	debugfs_create_file("rfi_flush", 0600, arch_debugfs_dir, NULL, &fops_rfi_flush);
843 	debugfs_create_file("entry_flush", 0600, arch_debugfs_dir, NULL, &fops_entry_flush);
844 	debugfs_create_file("uaccess_flush", 0600, arch_debugfs_dir, NULL, &fops_uaccess_flush);
845 	return 0;
846 }
847 device_initcall(rfi_flush_debugfs_init);
848 #endif /* CONFIG_DEBUG_FS */
849 #endif /* CONFIG_PPC_BOOK3S_64 */
850