1 /* 2 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Communication to userspace based on kernel/printk.c 10 */ 11 12 #include <linux/types.h> 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/kernel.h> 16 #include <linux/poll.h> 17 #include <linux/proc_fs.h> 18 #include <linux/init.h> 19 #include <linux/vmalloc.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpu.h> 22 #include <linux/workqueue.h> 23 #include <linux/slab.h> 24 25 #include <asm/uaccess.h> 26 #include <asm/io.h> 27 #include <asm/rtas.h> 28 #include <asm/prom.h> 29 #include <asm/nvram.h> 30 #include <asm/atomic.h> 31 #include <asm/machdep.h> 32 33 34 static DEFINE_SPINLOCK(rtasd_log_lock); 35 36 static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait); 37 38 static char *rtas_log_buf; 39 static unsigned long rtas_log_start; 40 static unsigned long rtas_log_size; 41 42 static int surveillance_timeout = -1; 43 44 static unsigned int rtas_error_log_max; 45 static unsigned int rtas_error_log_buffer_max; 46 47 /* RTAS service tokens */ 48 static unsigned int event_scan; 49 static unsigned int rtas_event_scan_rate; 50 51 static int full_rtas_msgs = 0; 52 53 /* Stop logging to nvram after first fatal error */ 54 static int logging_enabled; /* Until we initialize everything, 55 * make sure we don't try logging 56 * anything */ 57 static int error_log_cnt; 58 59 /* 60 * Since we use 32 bit RTAS, the physical address of this must be below 61 * 4G or else bad things happen. Allocate this in the kernel data and 62 * make it big enough. 63 */ 64 static unsigned char logdata[RTAS_ERROR_LOG_MAX]; 65 66 static char *rtas_type[] = { 67 "Unknown", "Retry", "TCE Error", "Internal Device Failure", 68 "Timeout", "Data Parity", "Address Parity", "Cache Parity", 69 "Address Invalid", "ECC Uncorrected", "ECC Corrupted", 70 }; 71 72 static char *rtas_event_type(int type) 73 { 74 if ((type > 0) && (type < 11)) 75 return rtas_type[type]; 76 77 switch (type) { 78 case RTAS_TYPE_EPOW: 79 return "EPOW"; 80 case RTAS_TYPE_PLATFORM: 81 return "Platform Error"; 82 case RTAS_TYPE_IO: 83 return "I/O Event"; 84 case RTAS_TYPE_INFO: 85 return "Platform Information Event"; 86 case RTAS_TYPE_DEALLOC: 87 return "Resource Deallocation Event"; 88 case RTAS_TYPE_DUMP: 89 return "Dump Notification Event"; 90 } 91 92 return rtas_type[0]; 93 } 94 95 /* To see this info, grep RTAS /var/log/messages and each entry 96 * will be collected together with obvious begin/end. 97 * There will be a unique identifier on the begin and end lines. 98 * This will persist across reboots. 99 * 100 * format of error logs returned from RTAS: 101 * bytes (size) : contents 102 * -------------------------------------------------------- 103 * 0-7 (8) : rtas_error_log 104 * 8-47 (40) : extended info 105 * 48-51 (4) : vendor id 106 * 52-1023 (vendor specific) : location code and debug data 107 */ 108 static void printk_log_rtas(char *buf, int len) 109 { 110 111 int i,j,n = 0; 112 int perline = 16; 113 char buffer[64]; 114 char * str = "RTAS event"; 115 116 if (full_rtas_msgs) { 117 printk(RTAS_DEBUG "%d -------- %s begin --------\n", 118 error_log_cnt, str); 119 120 /* 121 * Print perline bytes on each line, each line will start 122 * with RTAS and a changing number, so syslogd will 123 * print lines that are otherwise the same. Separate every 124 * 4 bytes with a space. 125 */ 126 for (i = 0; i < len; i++) { 127 j = i % perline; 128 if (j == 0) { 129 memset(buffer, 0, sizeof(buffer)); 130 n = sprintf(buffer, "RTAS %d:", i/perline); 131 } 132 133 if ((i % 4) == 0) 134 n += sprintf(buffer+n, " "); 135 136 n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]); 137 138 if (j == (perline-1)) 139 printk(KERN_DEBUG "%s\n", buffer); 140 } 141 if ((i % perline) != 0) 142 printk(KERN_DEBUG "%s\n", buffer); 143 144 printk(RTAS_DEBUG "%d -------- %s end ----------\n", 145 error_log_cnt, str); 146 } else { 147 struct rtas_error_log *errlog = (struct rtas_error_log *)buf; 148 149 printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n", 150 error_log_cnt, rtas_event_type(errlog->type), 151 errlog->severity); 152 } 153 } 154 155 static int log_rtas_len(char * buf) 156 { 157 int len; 158 struct rtas_error_log *err; 159 160 /* rtas fixed header */ 161 len = 8; 162 err = (struct rtas_error_log *)buf; 163 if (err->extended && err->extended_log_length) { 164 165 /* extended header */ 166 len += err->extended_log_length; 167 } 168 169 if (rtas_error_log_max == 0) 170 rtas_error_log_max = rtas_get_error_log_max(); 171 172 if (len > rtas_error_log_max) 173 len = rtas_error_log_max; 174 175 return len; 176 } 177 178 /* 179 * First write to nvram, if fatal error, that is the only 180 * place we log the info. The error will be picked up 181 * on the next reboot by rtasd. If not fatal, run the 182 * method for the type of error. Currently, only RTAS 183 * errors have methods implemented, but in the future 184 * there might be a need to store data in nvram before a 185 * call to panic(). 186 * 187 * XXX We write to nvram periodically, to indicate error has 188 * been written and sync'd, but there is a possibility 189 * that if we don't shutdown correctly, a duplicate error 190 * record will be created on next reboot. 191 */ 192 void pSeries_log_error(char *buf, unsigned int err_type, int fatal) 193 { 194 unsigned long offset; 195 unsigned long s; 196 int len = 0; 197 198 pr_debug("rtasd: logging event\n"); 199 if (buf == NULL) 200 return; 201 202 spin_lock_irqsave(&rtasd_log_lock, s); 203 204 /* get length and increase count */ 205 switch (err_type & ERR_TYPE_MASK) { 206 case ERR_TYPE_RTAS_LOG: 207 len = log_rtas_len(buf); 208 if (!(err_type & ERR_FLAG_BOOT)) 209 error_log_cnt++; 210 break; 211 case ERR_TYPE_KERNEL_PANIC: 212 default: 213 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ 214 spin_unlock_irqrestore(&rtasd_log_lock, s); 215 return; 216 } 217 218 #ifdef CONFIG_PPC64 219 /* Write error to NVRAM */ 220 if (logging_enabled && !(err_type & ERR_FLAG_BOOT)) 221 nvram_write_error_log(buf, len, err_type, error_log_cnt); 222 #endif /* CONFIG_PPC64 */ 223 224 /* 225 * rtas errors can occur during boot, and we do want to capture 226 * those somewhere, even if nvram isn't ready (why not?), and even 227 * if rtasd isn't ready. Put them into the boot log, at least. 228 */ 229 if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG) 230 printk_log_rtas(buf, len); 231 232 /* Check to see if we need to or have stopped logging */ 233 if (fatal || !logging_enabled) { 234 logging_enabled = 0; 235 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ 236 spin_unlock_irqrestore(&rtasd_log_lock, s); 237 return; 238 } 239 240 /* call type specific method for error */ 241 switch (err_type & ERR_TYPE_MASK) { 242 case ERR_TYPE_RTAS_LOG: 243 offset = rtas_error_log_buffer_max * 244 ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK); 245 246 /* First copy over sequence number */ 247 memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int)); 248 249 /* Second copy over error log data */ 250 offset += sizeof(int); 251 memcpy(&rtas_log_buf[offset], buf, len); 252 253 if (rtas_log_size < LOG_NUMBER) 254 rtas_log_size += 1; 255 else 256 rtas_log_start += 1; 257 258 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ 259 spin_unlock_irqrestore(&rtasd_log_lock, s); 260 wake_up_interruptible(&rtas_log_wait); 261 break; 262 case ERR_TYPE_KERNEL_PANIC: 263 default: 264 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ 265 spin_unlock_irqrestore(&rtasd_log_lock, s); 266 return; 267 } 268 269 } 270 271 static int rtas_log_open(struct inode * inode, struct file * file) 272 { 273 return 0; 274 } 275 276 static int rtas_log_release(struct inode * inode, struct file * file) 277 { 278 return 0; 279 } 280 281 /* This will check if all events are logged, if they are then, we 282 * know that we can safely clear the events in NVRAM. 283 * Next we'll sit and wait for something else to log. 284 */ 285 static ssize_t rtas_log_read(struct file * file, char __user * buf, 286 size_t count, loff_t *ppos) 287 { 288 int error; 289 char *tmp; 290 unsigned long s; 291 unsigned long offset; 292 293 if (!buf || count < rtas_error_log_buffer_max) 294 return -EINVAL; 295 296 count = rtas_error_log_buffer_max; 297 298 if (!access_ok(VERIFY_WRITE, buf, count)) 299 return -EFAULT; 300 301 tmp = kmalloc(count, GFP_KERNEL); 302 if (!tmp) 303 return -ENOMEM; 304 305 spin_lock_irqsave(&rtasd_log_lock, s); 306 307 /* if it's 0, then we know we got the last one (the one in NVRAM) */ 308 while (rtas_log_size == 0) { 309 if (file->f_flags & O_NONBLOCK) { 310 spin_unlock_irqrestore(&rtasd_log_lock, s); 311 error = -EAGAIN; 312 goto out; 313 } 314 315 if (!logging_enabled) { 316 spin_unlock_irqrestore(&rtasd_log_lock, s); 317 error = -ENODATA; 318 goto out; 319 } 320 #ifdef CONFIG_PPC64 321 nvram_clear_error_log(); 322 #endif /* CONFIG_PPC64 */ 323 324 spin_unlock_irqrestore(&rtasd_log_lock, s); 325 error = wait_event_interruptible(rtas_log_wait, rtas_log_size); 326 if (error) 327 goto out; 328 spin_lock_irqsave(&rtasd_log_lock, s); 329 } 330 331 offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK); 332 memcpy(tmp, &rtas_log_buf[offset], count); 333 334 rtas_log_start += 1; 335 rtas_log_size -= 1; 336 spin_unlock_irqrestore(&rtasd_log_lock, s); 337 338 error = copy_to_user(buf, tmp, count) ? -EFAULT : count; 339 out: 340 kfree(tmp); 341 return error; 342 } 343 344 static unsigned int rtas_log_poll(struct file *file, poll_table * wait) 345 { 346 poll_wait(file, &rtas_log_wait, wait); 347 if (rtas_log_size) 348 return POLLIN | POLLRDNORM; 349 return 0; 350 } 351 352 static const struct file_operations proc_rtas_log_operations = { 353 .read = rtas_log_read, 354 .poll = rtas_log_poll, 355 .open = rtas_log_open, 356 .release = rtas_log_release, 357 .llseek = noop_llseek, 358 }; 359 360 static int enable_surveillance(int timeout) 361 { 362 int error; 363 364 error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout); 365 366 if (error == 0) 367 return 0; 368 369 if (error == -EINVAL) { 370 printk(KERN_DEBUG "rtasd: surveillance not supported\n"); 371 return 0; 372 } 373 374 printk(KERN_ERR "rtasd: could not update surveillance\n"); 375 return -1; 376 } 377 378 static void do_event_scan(void) 379 { 380 int error; 381 do { 382 memset(logdata, 0, rtas_error_log_max); 383 error = rtas_call(event_scan, 4, 1, NULL, 384 RTAS_EVENT_SCAN_ALL_EVENTS, 0, 385 __pa(logdata), rtas_error_log_max); 386 if (error == -1) { 387 printk(KERN_ERR "event-scan failed\n"); 388 break; 389 } 390 391 if (error == 0) 392 pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0); 393 394 } while(error == 0); 395 } 396 397 static void rtas_event_scan(struct work_struct *w); 398 DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan); 399 400 /* 401 * Delay should be at least one second since some machines have problems if 402 * we call event-scan too quickly. 403 */ 404 static unsigned long event_scan_delay = 1*HZ; 405 static int first_pass = 1; 406 407 static void rtas_event_scan(struct work_struct *w) 408 { 409 unsigned int cpu; 410 411 do_event_scan(); 412 413 get_online_cpus(); 414 415 cpu = cpumask_next(smp_processor_id(), cpu_online_mask); 416 if (cpu >= nr_cpu_ids) { 417 cpu = cpumask_first(cpu_online_mask); 418 419 if (first_pass) { 420 first_pass = 0; 421 event_scan_delay = 30*HZ/rtas_event_scan_rate; 422 423 if (surveillance_timeout != -1) { 424 pr_debug("rtasd: enabling surveillance\n"); 425 enable_surveillance(surveillance_timeout); 426 pr_debug("rtasd: surveillance enabled\n"); 427 } 428 } 429 } 430 431 schedule_delayed_work_on(cpu, &event_scan_work, 432 __round_jiffies_relative(event_scan_delay, cpu)); 433 434 put_online_cpus(); 435 } 436 437 #ifdef CONFIG_PPC64 438 static void retreive_nvram_error_log(void) 439 { 440 unsigned int err_type ; 441 int rc ; 442 443 /* See if we have any error stored in NVRAM */ 444 memset(logdata, 0, rtas_error_log_max); 445 rc = nvram_read_error_log(logdata, rtas_error_log_max, 446 &err_type, &error_log_cnt); 447 /* We can use rtas_log_buf now */ 448 logging_enabled = 1; 449 if (!rc) { 450 if (err_type != ERR_FLAG_ALREADY_LOGGED) { 451 pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0); 452 } 453 } 454 } 455 #else /* CONFIG_PPC64 */ 456 static void retreive_nvram_error_log(void) 457 { 458 } 459 #endif /* CONFIG_PPC64 */ 460 461 static void start_event_scan(void) 462 { 463 printk(KERN_DEBUG "RTAS daemon started\n"); 464 pr_debug("rtasd: will sleep for %d milliseconds\n", 465 (30000 / rtas_event_scan_rate)); 466 467 /* Retreive errors from nvram if any */ 468 retreive_nvram_error_log(); 469 470 schedule_delayed_work_on(cpumask_first(cpu_online_mask), 471 &event_scan_work, event_scan_delay); 472 } 473 474 static int __init rtas_init(void) 475 { 476 struct proc_dir_entry *entry; 477 478 if (!machine_is(pseries) && !machine_is(chrp)) 479 return 0; 480 481 /* No RTAS */ 482 event_scan = rtas_token("event-scan"); 483 if (event_scan == RTAS_UNKNOWN_SERVICE) { 484 printk(KERN_INFO "rtasd: No event-scan on system\n"); 485 return -ENODEV; 486 } 487 488 rtas_event_scan_rate = rtas_token("rtas-event-scan-rate"); 489 if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) { 490 printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n"); 491 return -ENODEV; 492 } 493 494 if (!rtas_event_scan_rate) { 495 /* Broken firmware: take a rate of zero to mean don't scan */ 496 printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n"); 497 return 0; 498 } 499 500 /* Make room for the sequence number */ 501 rtas_error_log_max = rtas_get_error_log_max(); 502 rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int); 503 504 rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER); 505 if (!rtas_log_buf) { 506 printk(KERN_ERR "rtasd: no memory\n"); 507 return -ENOMEM; 508 } 509 510 entry = proc_create("powerpc/rtas/error_log", S_IRUSR, NULL, 511 &proc_rtas_log_operations); 512 if (!entry) 513 printk(KERN_ERR "Failed to create error_log proc entry\n"); 514 515 start_event_scan(); 516 517 return 0; 518 } 519 __initcall(rtas_init); 520 521 static int __init surveillance_setup(char *str) 522 { 523 int i; 524 525 /* We only do surveillance on pseries */ 526 if (!machine_is(pseries)) 527 return 0; 528 529 if (get_option(&str,&i)) { 530 if (i >= 0 && i <= 255) 531 surveillance_timeout = i; 532 } 533 534 return 1; 535 } 536 __setup("surveillance=", surveillance_setup); 537 538 static int __init rtasmsgs_setup(char *str) 539 { 540 if (strcmp(str, "on") == 0) 541 full_rtas_msgs = 1; 542 else if (strcmp(str, "off") == 0) 543 full_rtas_msgs = 0; 544 545 return 1; 546 } 547 __setup("rtasmsgs=", rtasmsgs_setup); 548