xref: /openbmc/linux/arch/powerpc/kernel/rtasd.c (revision 7cf74d51)
1 /*
2  * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  *
9  * Communication to userspace based on kernel/printk.c
10  */
11 
12 #include <linux/types.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/init.h>
19 #include <linux/vmalloc.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpu.h>
22 #include <linux/workqueue.h>
23 #include <linux/slab.h>
24 #include <linux/topology.h>
25 
26 #include <linux/uaccess.h>
27 #include <asm/io.h>
28 #include <asm/rtas.h>
29 #include <asm/prom.h>
30 #include <asm/nvram.h>
31 #include <linux/atomic.h>
32 #include <asm/machdep.h>
33 #include <asm/topology.h>
34 
35 
36 static DEFINE_SPINLOCK(rtasd_log_lock);
37 
38 static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
39 
40 static char *rtas_log_buf;
41 static unsigned long rtas_log_start;
42 static unsigned long rtas_log_size;
43 
44 static int surveillance_timeout = -1;
45 
46 static unsigned int rtas_error_log_max;
47 static unsigned int rtas_error_log_buffer_max;
48 
49 /* RTAS service tokens */
50 static unsigned int event_scan;
51 static unsigned int rtas_event_scan_rate;
52 
53 static bool full_rtas_msgs;
54 
55 /* Stop logging to nvram after first fatal error */
56 static int logging_enabled; /* Until we initialize everything,
57                              * make sure we don't try logging
58                              * anything */
59 static int error_log_cnt;
60 
61 /*
62  * Since we use 32 bit RTAS, the physical address of this must be below
63  * 4G or else bad things happen. Allocate this in the kernel data and
64  * make it big enough.
65  */
66 static unsigned char logdata[RTAS_ERROR_LOG_MAX];
67 
68 static char *rtas_type[] = {
69 	"Unknown", "Retry", "TCE Error", "Internal Device Failure",
70 	"Timeout", "Data Parity", "Address Parity", "Cache Parity",
71 	"Address Invalid", "ECC Uncorrected", "ECC Corrupted",
72 };
73 
74 static char *rtas_event_type(int type)
75 {
76 	if ((type > 0) && (type < 11))
77 		return rtas_type[type];
78 
79 	switch (type) {
80 		case RTAS_TYPE_EPOW:
81 			return "EPOW";
82 		case RTAS_TYPE_PLATFORM:
83 			return "Platform Error";
84 		case RTAS_TYPE_IO:
85 			return "I/O Event";
86 		case RTAS_TYPE_INFO:
87 			return "Platform Information Event";
88 		case RTAS_TYPE_DEALLOC:
89 			return "Resource Deallocation Event";
90 		case RTAS_TYPE_DUMP:
91 			return "Dump Notification Event";
92 		case RTAS_TYPE_PRRN:
93 			return "Platform Resource Reassignment Event";
94 		case RTAS_TYPE_HOTPLUG:
95 			return "Hotplug Event";
96 	}
97 
98 	return rtas_type[0];
99 }
100 
101 /* To see this info, grep RTAS /var/log/messages and each entry
102  * will be collected together with obvious begin/end.
103  * There will be a unique identifier on the begin and end lines.
104  * This will persist across reboots.
105  *
106  * format of error logs returned from RTAS:
107  * bytes	(size)	: contents
108  * --------------------------------------------------------
109  * 0-7		(8)	: rtas_error_log
110  * 8-47		(40)	: extended info
111  * 48-51	(4)	: vendor id
112  * 52-1023 (vendor specific) : location code and debug data
113  */
114 static void printk_log_rtas(char *buf, int len)
115 {
116 
117 	int i,j,n = 0;
118 	int perline = 16;
119 	char buffer[64];
120 	char * str = "RTAS event";
121 
122 	if (full_rtas_msgs) {
123 		printk(RTAS_DEBUG "%d -------- %s begin --------\n",
124 		       error_log_cnt, str);
125 
126 		/*
127 		 * Print perline bytes on each line, each line will start
128 		 * with RTAS and a changing number, so syslogd will
129 		 * print lines that are otherwise the same.  Separate every
130 		 * 4 bytes with a space.
131 		 */
132 		for (i = 0; i < len; i++) {
133 			j = i % perline;
134 			if (j == 0) {
135 				memset(buffer, 0, sizeof(buffer));
136 				n = sprintf(buffer, "RTAS %d:", i/perline);
137 			}
138 
139 			if ((i % 4) == 0)
140 				n += sprintf(buffer+n, " ");
141 
142 			n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
143 
144 			if (j == (perline-1))
145 				printk(KERN_DEBUG "%s\n", buffer);
146 		}
147 		if ((i % perline) != 0)
148 			printk(KERN_DEBUG "%s\n", buffer);
149 
150 		printk(RTAS_DEBUG "%d -------- %s end ----------\n",
151 		       error_log_cnt, str);
152 	} else {
153 		struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
154 
155 		printk(RTAS_DEBUG "event: %d, Type: %s (%d), Severity: %d\n",
156 		       error_log_cnt,
157 		       rtas_event_type(rtas_error_type(errlog)),
158 		       rtas_error_type(errlog),
159 		       rtas_error_severity(errlog));
160 	}
161 }
162 
163 static int log_rtas_len(char * buf)
164 {
165 	int len;
166 	struct rtas_error_log *err;
167 	uint32_t extended_log_length;
168 
169 	/* rtas fixed header */
170 	len = 8;
171 	err = (struct rtas_error_log *)buf;
172 	extended_log_length = rtas_error_extended_log_length(err);
173 	if (rtas_error_extended(err) && extended_log_length) {
174 
175 		/* extended header */
176 		len += extended_log_length;
177 	}
178 
179 	if (rtas_error_log_max == 0)
180 		rtas_error_log_max = rtas_get_error_log_max();
181 
182 	if (len > rtas_error_log_max)
183 		len = rtas_error_log_max;
184 
185 	return len;
186 }
187 
188 /*
189  * First write to nvram, if fatal error, that is the only
190  * place we log the info.  The error will be picked up
191  * on the next reboot by rtasd.  If not fatal, run the
192  * method for the type of error.  Currently, only RTAS
193  * errors have methods implemented, but in the future
194  * there might be a need to store data in nvram before a
195  * call to panic().
196  *
197  * XXX We write to nvram periodically, to indicate error has
198  * been written and sync'd, but there is a possibility
199  * that if we don't shutdown correctly, a duplicate error
200  * record will be created on next reboot.
201  */
202 void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
203 {
204 	unsigned long offset;
205 	unsigned long s;
206 	int len = 0;
207 
208 	pr_debug("rtasd: logging event\n");
209 	if (buf == NULL)
210 		return;
211 
212 	spin_lock_irqsave(&rtasd_log_lock, s);
213 
214 	/* get length and increase count */
215 	switch (err_type & ERR_TYPE_MASK) {
216 	case ERR_TYPE_RTAS_LOG:
217 		len = log_rtas_len(buf);
218 		if (!(err_type & ERR_FLAG_BOOT))
219 			error_log_cnt++;
220 		break;
221 	case ERR_TYPE_KERNEL_PANIC:
222 	default:
223 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
224 		spin_unlock_irqrestore(&rtasd_log_lock, s);
225 		return;
226 	}
227 
228 #ifdef CONFIG_PPC64
229 	/* Write error to NVRAM */
230 	if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
231 		nvram_write_error_log(buf, len, err_type, error_log_cnt);
232 #endif /* CONFIG_PPC64 */
233 
234 	/*
235 	 * rtas errors can occur during boot, and we do want to capture
236 	 * those somewhere, even if nvram isn't ready (why not?), and even
237 	 * if rtasd isn't ready. Put them into the boot log, at least.
238 	 */
239 	if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
240 		printk_log_rtas(buf, len);
241 
242 	/* Check to see if we need to or have stopped logging */
243 	if (fatal || !logging_enabled) {
244 		logging_enabled = 0;
245 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
246 		spin_unlock_irqrestore(&rtasd_log_lock, s);
247 		return;
248 	}
249 
250 	/* call type specific method for error */
251 	switch (err_type & ERR_TYPE_MASK) {
252 	case ERR_TYPE_RTAS_LOG:
253 		offset = rtas_error_log_buffer_max *
254 			((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
255 
256 		/* First copy over sequence number */
257 		memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
258 
259 		/* Second copy over error log data */
260 		offset += sizeof(int);
261 		memcpy(&rtas_log_buf[offset], buf, len);
262 
263 		if (rtas_log_size < LOG_NUMBER)
264 			rtas_log_size += 1;
265 		else
266 			rtas_log_start += 1;
267 
268 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
269 		spin_unlock_irqrestore(&rtasd_log_lock, s);
270 		wake_up_interruptible(&rtas_log_wait);
271 		break;
272 	case ERR_TYPE_KERNEL_PANIC:
273 	default:
274 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
275 		spin_unlock_irqrestore(&rtasd_log_lock, s);
276 		return;
277 	}
278 }
279 
280 #ifdef CONFIG_PPC_PSERIES
281 static void handle_prrn_event(s32 scope)
282 {
283 	/*
284 	 * For PRRN, we must pass the negative of the scope value in
285 	 * the RTAS event.
286 	 */
287 	pseries_devicetree_update(-scope);
288 	numa_update_cpu_topology(false);
289 }
290 
291 static void handle_rtas_event(const struct rtas_error_log *log)
292 {
293 	if (rtas_error_type(log) != RTAS_TYPE_PRRN || !prrn_is_enabled())
294 		return;
295 
296 	/* For PRRN Events the extended log length is used to denote
297 	 * the scope for calling rtas update-nodes.
298 	 */
299 	handle_prrn_event(rtas_error_extended_log_length(log));
300 }
301 
302 #else
303 
304 static void handle_rtas_event(const struct rtas_error_log *log)
305 {
306 	return;
307 }
308 
309 #endif
310 
311 static int rtas_log_open(struct inode * inode, struct file * file)
312 {
313 	return 0;
314 }
315 
316 static int rtas_log_release(struct inode * inode, struct file * file)
317 {
318 	return 0;
319 }
320 
321 /* This will check if all events are logged, if they are then, we
322  * know that we can safely clear the events in NVRAM.
323  * Next we'll sit and wait for something else to log.
324  */
325 static ssize_t rtas_log_read(struct file * file, char __user * buf,
326 			 size_t count, loff_t *ppos)
327 {
328 	int error;
329 	char *tmp;
330 	unsigned long s;
331 	unsigned long offset;
332 
333 	if (!buf || count < rtas_error_log_buffer_max)
334 		return -EINVAL;
335 
336 	count = rtas_error_log_buffer_max;
337 
338 	if (!access_ok(buf, count))
339 		return -EFAULT;
340 
341 	tmp = kmalloc(count, GFP_KERNEL);
342 	if (!tmp)
343 		return -ENOMEM;
344 
345 	spin_lock_irqsave(&rtasd_log_lock, s);
346 
347 	/* if it's 0, then we know we got the last one (the one in NVRAM) */
348 	while (rtas_log_size == 0) {
349 		if (file->f_flags & O_NONBLOCK) {
350 			spin_unlock_irqrestore(&rtasd_log_lock, s);
351 			error = -EAGAIN;
352 			goto out;
353 		}
354 
355 		if (!logging_enabled) {
356 			spin_unlock_irqrestore(&rtasd_log_lock, s);
357 			error = -ENODATA;
358 			goto out;
359 		}
360 #ifdef CONFIG_PPC64
361 		nvram_clear_error_log();
362 #endif /* CONFIG_PPC64 */
363 
364 		spin_unlock_irqrestore(&rtasd_log_lock, s);
365 		error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
366 		if (error)
367 			goto out;
368 		spin_lock_irqsave(&rtasd_log_lock, s);
369 	}
370 
371 	offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
372 	memcpy(tmp, &rtas_log_buf[offset], count);
373 
374 	rtas_log_start += 1;
375 	rtas_log_size -= 1;
376 	spin_unlock_irqrestore(&rtasd_log_lock, s);
377 
378 	error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
379 out:
380 	kfree(tmp);
381 	return error;
382 }
383 
384 static __poll_t rtas_log_poll(struct file *file, poll_table * wait)
385 {
386 	poll_wait(file, &rtas_log_wait, wait);
387 	if (rtas_log_size)
388 		return EPOLLIN | EPOLLRDNORM;
389 	return 0;
390 }
391 
392 static const struct file_operations proc_rtas_log_operations = {
393 	.read =		rtas_log_read,
394 	.poll =		rtas_log_poll,
395 	.open =		rtas_log_open,
396 	.release =	rtas_log_release,
397 	.llseek =	noop_llseek,
398 };
399 
400 static int enable_surveillance(int timeout)
401 {
402 	int error;
403 
404 	error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
405 
406 	if (error == 0)
407 		return 0;
408 
409 	if (error == -EINVAL) {
410 		printk(KERN_DEBUG "rtasd: surveillance not supported\n");
411 		return 0;
412 	}
413 
414 	printk(KERN_ERR "rtasd: could not update surveillance\n");
415 	return -1;
416 }
417 
418 static void do_event_scan(void)
419 {
420 	int error;
421 	do {
422 		memset(logdata, 0, rtas_error_log_max);
423 		error = rtas_call(event_scan, 4, 1, NULL,
424 				  RTAS_EVENT_SCAN_ALL_EVENTS, 0,
425 				  __pa(logdata), rtas_error_log_max);
426 		if (error == -1) {
427 			printk(KERN_ERR "event-scan failed\n");
428 			break;
429 		}
430 
431 		if (error == 0) {
432 			if (rtas_error_type((struct rtas_error_log *)logdata) !=
433 			    RTAS_TYPE_PRRN)
434 				pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG,
435 						  0);
436 			handle_rtas_event((struct rtas_error_log *)logdata);
437 		}
438 
439 	} while(error == 0);
440 }
441 
442 static void rtas_event_scan(struct work_struct *w);
443 static DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
444 
445 /*
446  * Delay should be at least one second since some machines have problems if
447  * we call event-scan too quickly.
448  */
449 static unsigned long event_scan_delay = 1*HZ;
450 static int first_pass = 1;
451 
452 static void rtas_event_scan(struct work_struct *w)
453 {
454 	unsigned int cpu;
455 
456 	do_event_scan();
457 
458 	get_online_cpus();
459 
460 	/* raw_ OK because just using CPU as starting point. */
461 	cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
462         if (cpu >= nr_cpu_ids) {
463 		cpu = cpumask_first(cpu_online_mask);
464 
465 		if (first_pass) {
466 			first_pass = 0;
467 			event_scan_delay = 30*HZ/rtas_event_scan_rate;
468 
469 			if (surveillance_timeout != -1) {
470 				pr_debug("rtasd: enabling surveillance\n");
471 				enable_surveillance(surveillance_timeout);
472 				pr_debug("rtasd: surveillance enabled\n");
473 			}
474 		}
475 	}
476 
477 	schedule_delayed_work_on(cpu, &event_scan_work,
478 		__round_jiffies_relative(event_scan_delay, cpu));
479 
480 	put_online_cpus();
481 }
482 
483 #ifdef CONFIG_PPC64
484 static void retrieve_nvram_error_log(void)
485 {
486 	unsigned int err_type ;
487 	int rc ;
488 
489 	/* See if we have any error stored in NVRAM */
490 	memset(logdata, 0, rtas_error_log_max);
491 	rc = nvram_read_error_log(logdata, rtas_error_log_max,
492 	                          &err_type, &error_log_cnt);
493 	/* We can use rtas_log_buf now */
494 	logging_enabled = 1;
495 	if (!rc) {
496 		if (err_type != ERR_FLAG_ALREADY_LOGGED) {
497 			pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
498 		}
499 	}
500 }
501 #else /* CONFIG_PPC64 */
502 static void retrieve_nvram_error_log(void)
503 {
504 }
505 #endif /* CONFIG_PPC64 */
506 
507 static void start_event_scan(void)
508 {
509 	printk(KERN_DEBUG "RTAS daemon started\n");
510 	pr_debug("rtasd: will sleep for %d milliseconds\n",
511 		 (30000 / rtas_event_scan_rate));
512 
513 	/* Retrieve errors from nvram if any */
514 	retrieve_nvram_error_log();
515 
516 	schedule_delayed_work_on(cpumask_first(cpu_online_mask),
517 				 &event_scan_work, event_scan_delay);
518 }
519 
520 /* Cancel the rtas event scan work */
521 void rtas_cancel_event_scan(void)
522 {
523 	cancel_delayed_work_sync(&event_scan_work);
524 }
525 EXPORT_SYMBOL_GPL(rtas_cancel_event_scan);
526 
527 static int __init rtas_event_scan_init(void)
528 {
529 	if (!machine_is(pseries) && !machine_is(chrp))
530 		return 0;
531 
532 	/* No RTAS */
533 	event_scan = rtas_token("event-scan");
534 	if (event_scan == RTAS_UNKNOWN_SERVICE) {
535 		printk(KERN_INFO "rtasd: No event-scan on system\n");
536 		return -ENODEV;
537 	}
538 
539 	rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
540 	if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
541 		printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
542 		return -ENODEV;
543 	}
544 
545 	if (!rtas_event_scan_rate) {
546 		/* Broken firmware: take a rate of zero to mean don't scan */
547 		printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
548 		return 0;
549 	}
550 
551 	/* Make room for the sequence number */
552 	rtas_error_log_max = rtas_get_error_log_max();
553 	rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
554 
555 	rtas_log_buf = vmalloc(array_size(LOG_NUMBER,
556 					  rtas_error_log_buffer_max));
557 	if (!rtas_log_buf) {
558 		printk(KERN_ERR "rtasd: no memory\n");
559 		return -ENOMEM;
560 	}
561 
562 	start_event_scan();
563 
564 	return 0;
565 }
566 arch_initcall(rtas_event_scan_init);
567 
568 static int __init rtas_init(void)
569 {
570 	struct proc_dir_entry *entry;
571 
572 	if (!machine_is(pseries) && !machine_is(chrp))
573 		return 0;
574 
575 	if (!rtas_log_buf)
576 		return -ENODEV;
577 
578 	entry = proc_create("powerpc/rtas/error_log", 0400, NULL,
579 			    &proc_rtas_log_operations);
580 	if (!entry)
581 		printk(KERN_ERR "Failed to create error_log proc entry\n");
582 
583 	return 0;
584 }
585 __initcall(rtas_init);
586 
587 static int __init surveillance_setup(char *str)
588 {
589 	int i;
590 
591 	/* We only do surveillance on pseries */
592 	if (!machine_is(pseries))
593 		return 0;
594 
595 	if (get_option(&str,&i)) {
596 		if (i >= 0 && i <= 255)
597 			surveillance_timeout = i;
598 	}
599 
600 	return 1;
601 }
602 __setup("surveillance=", surveillance_setup);
603 
604 static int __init rtasmsgs_setup(char *str)
605 {
606 	return (kstrtobool(str, &full_rtas_msgs) == 0);
607 }
608 __setup("rtasmsgs=", rtasmsgs_setup);
609