1 /* 2 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Communication to userspace based on kernel/printk.c 10 */ 11 12 #include <linux/types.h> 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/kernel.h> 16 #include <linux/poll.h> 17 #include <linux/proc_fs.h> 18 #include <linux/init.h> 19 #include <linux/vmalloc.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpu.h> 22 #include <linux/workqueue.h> 23 #include <linux/slab.h> 24 25 #include <asm/uaccess.h> 26 #include <asm/io.h> 27 #include <asm/rtas.h> 28 #include <asm/prom.h> 29 #include <asm/nvram.h> 30 #include <linux/atomic.h> 31 #include <asm/machdep.h> 32 #include <asm/topology.h> 33 34 35 static DEFINE_SPINLOCK(rtasd_log_lock); 36 37 static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait); 38 39 static char *rtas_log_buf; 40 static unsigned long rtas_log_start; 41 static unsigned long rtas_log_size; 42 43 static int surveillance_timeout = -1; 44 45 static unsigned int rtas_error_log_max; 46 static unsigned int rtas_error_log_buffer_max; 47 48 /* RTAS service tokens */ 49 static unsigned int event_scan; 50 static unsigned int rtas_event_scan_rate; 51 52 static bool full_rtas_msgs; 53 54 /* Stop logging to nvram after first fatal error */ 55 static int logging_enabled; /* Until we initialize everything, 56 * make sure we don't try logging 57 * anything */ 58 static int error_log_cnt; 59 60 /* 61 * Since we use 32 bit RTAS, the physical address of this must be below 62 * 4G or else bad things happen. Allocate this in the kernel data and 63 * make it big enough. 64 */ 65 static unsigned char logdata[RTAS_ERROR_LOG_MAX]; 66 67 static char *rtas_type[] = { 68 "Unknown", "Retry", "TCE Error", "Internal Device Failure", 69 "Timeout", "Data Parity", "Address Parity", "Cache Parity", 70 "Address Invalid", "ECC Uncorrected", "ECC Corrupted", 71 }; 72 73 static char *rtas_event_type(int type) 74 { 75 if ((type > 0) && (type < 11)) 76 return rtas_type[type]; 77 78 switch (type) { 79 case RTAS_TYPE_EPOW: 80 return "EPOW"; 81 case RTAS_TYPE_PLATFORM: 82 return "Platform Error"; 83 case RTAS_TYPE_IO: 84 return "I/O Event"; 85 case RTAS_TYPE_INFO: 86 return "Platform Information Event"; 87 case RTAS_TYPE_DEALLOC: 88 return "Resource Deallocation Event"; 89 case RTAS_TYPE_DUMP: 90 return "Dump Notification Event"; 91 case RTAS_TYPE_PRRN: 92 return "Platform Resource Reassignment Event"; 93 } 94 95 return rtas_type[0]; 96 } 97 98 /* To see this info, grep RTAS /var/log/messages and each entry 99 * will be collected together with obvious begin/end. 100 * There will be a unique identifier on the begin and end lines. 101 * This will persist across reboots. 102 * 103 * format of error logs returned from RTAS: 104 * bytes (size) : contents 105 * -------------------------------------------------------- 106 * 0-7 (8) : rtas_error_log 107 * 8-47 (40) : extended info 108 * 48-51 (4) : vendor id 109 * 52-1023 (vendor specific) : location code and debug data 110 */ 111 static void printk_log_rtas(char *buf, int len) 112 { 113 114 int i,j,n = 0; 115 int perline = 16; 116 char buffer[64]; 117 char * str = "RTAS event"; 118 119 if (full_rtas_msgs) { 120 printk(RTAS_DEBUG "%d -------- %s begin --------\n", 121 error_log_cnt, str); 122 123 /* 124 * Print perline bytes on each line, each line will start 125 * with RTAS and a changing number, so syslogd will 126 * print lines that are otherwise the same. Separate every 127 * 4 bytes with a space. 128 */ 129 for (i = 0; i < len; i++) { 130 j = i % perline; 131 if (j == 0) { 132 memset(buffer, 0, sizeof(buffer)); 133 n = sprintf(buffer, "RTAS %d:", i/perline); 134 } 135 136 if ((i % 4) == 0) 137 n += sprintf(buffer+n, " "); 138 139 n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]); 140 141 if (j == (perline-1)) 142 printk(KERN_DEBUG "%s\n", buffer); 143 } 144 if ((i % perline) != 0) 145 printk(KERN_DEBUG "%s\n", buffer); 146 147 printk(RTAS_DEBUG "%d -------- %s end ----------\n", 148 error_log_cnt, str); 149 } else { 150 struct rtas_error_log *errlog = (struct rtas_error_log *)buf; 151 152 printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n", 153 error_log_cnt, rtas_event_type(rtas_error_type(errlog)), 154 rtas_error_severity(errlog)); 155 } 156 } 157 158 static int log_rtas_len(char * buf) 159 { 160 int len; 161 struct rtas_error_log *err; 162 uint32_t extended_log_length; 163 164 /* rtas fixed header */ 165 len = 8; 166 err = (struct rtas_error_log *)buf; 167 extended_log_length = rtas_error_extended_log_length(err); 168 if (rtas_error_extended(err) && extended_log_length) { 169 170 /* extended header */ 171 len += extended_log_length; 172 } 173 174 if (rtas_error_log_max == 0) 175 rtas_error_log_max = rtas_get_error_log_max(); 176 177 if (len > rtas_error_log_max) 178 len = rtas_error_log_max; 179 180 return len; 181 } 182 183 /* 184 * First write to nvram, if fatal error, that is the only 185 * place we log the info. The error will be picked up 186 * on the next reboot by rtasd. If not fatal, run the 187 * method for the type of error. Currently, only RTAS 188 * errors have methods implemented, but in the future 189 * there might be a need to store data in nvram before a 190 * call to panic(). 191 * 192 * XXX We write to nvram periodically, to indicate error has 193 * been written and sync'd, but there is a possibility 194 * that if we don't shutdown correctly, a duplicate error 195 * record will be created on next reboot. 196 */ 197 void pSeries_log_error(char *buf, unsigned int err_type, int fatal) 198 { 199 unsigned long offset; 200 unsigned long s; 201 int len = 0; 202 203 pr_debug("rtasd: logging event\n"); 204 if (buf == NULL) 205 return; 206 207 spin_lock_irqsave(&rtasd_log_lock, s); 208 209 /* get length and increase count */ 210 switch (err_type & ERR_TYPE_MASK) { 211 case ERR_TYPE_RTAS_LOG: 212 len = log_rtas_len(buf); 213 if (!(err_type & ERR_FLAG_BOOT)) 214 error_log_cnt++; 215 break; 216 case ERR_TYPE_KERNEL_PANIC: 217 default: 218 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ 219 spin_unlock_irqrestore(&rtasd_log_lock, s); 220 return; 221 } 222 223 #ifdef CONFIG_PPC64 224 /* Write error to NVRAM */ 225 if (logging_enabled && !(err_type & ERR_FLAG_BOOT)) 226 nvram_write_error_log(buf, len, err_type, error_log_cnt); 227 #endif /* CONFIG_PPC64 */ 228 229 /* 230 * rtas errors can occur during boot, and we do want to capture 231 * those somewhere, even if nvram isn't ready (why not?), and even 232 * if rtasd isn't ready. Put them into the boot log, at least. 233 */ 234 if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG) 235 printk_log_rtas(buf, len); 236 237 /* Check to see if we need to or have stopped logging */ 238 if (fatal || !logging_enabled) { 239 logging_enabled = 0; 240 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ 241 spin_unlock_irqrestore(&rtasd_log_lock, s); 242 return; 243 } 244 245 /* call type specific method for error */ 246 switch (err_type & ERR_TYPE_MASK) { 247 case ERR_TYPE_RTAS_LOG: 248 offset = rtas_error_log_buffer_max * 249 ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK); 250 251 /* First copy over sequence number */ 252 memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int)); 253 254 /* Second copy over error log data */ 255 offset += sizeof(int); 256 memcpy(&rtas_log_buf[offset], buf, len); 257 258 if (rtas_log_size < LOG_NUMBER) 259 rtas_log_size += 1; 260 else 261 rtas_log_start += 1; 262 263 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ 264 spin_unlock_irqrestore(&rtasd_log_lock, s); 265 wake_up_interruptible(&rtas_log_wait); 266 break; 267 case ERR_TYPE_KERNEL_PANIC: 268 default: 269 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ 270 spin_unlock_irqrestore(&rtasd_log_lock, s); 271 return; 272 } 273 } 274 275 #ifdef CONFIG_PPC_PSERIES 276 static s32 prrn_update_scope; 277 278 static void prrn_work_fn(struct work_struct *work) 279 { 280 /* 281 * For PRRN, we must pass the negative of the scope value in 282 * the RTAS event. 283 */ 284 pseries_devicetree_update(-prrn_update_scope); 285 } 286 287 static DECLARE_WORK(prrn_work, prrn_work_fn); 288 289 static void prrn_schedule_update(u32 scope) 290 { 291 flush_work(&prrn_work); 292 prrn_update_scope = scope; 293 schedule_work(&prrn_work); 294 } 295 296 static void handle_rtas_event(const struct rtas_error_log *log) 297 { 298 if (rtas_error_type(log) != RTAS_TYPE_PRRN || !prrn_is_enabled()) 299 return; 300 301 /* For PRRN Events the extended log length is used to denote 302 * the scope for calling rtas update-nodes. 303 */ 304 prrn_schedule_update(rtas_error_extended_log_length(log)); 305 } 306 307 #else 308 309 static void handle_rtas_event(const struct rtas_error_log *log) 310 { 311 return; 312 } 313 314 #endif 315 316 static int rtas_log_open(struct inode * inode, struct file * file) 317 { 318 return 0; 319 } 320 321 static int rtas_log_release(struct inode * inode, struct file * file) 322 { 323 return 0; 324 } 325 326 /* This will check if all events are logged, if they are then, we 327 * know that we can safely clear the events in NVRAM. 328 * Next we'll sit and wait for something else to log. 329 */ 330 static ssize_t rtas_log_read(struct file * file, char __user * buf, 331 size_t count, loff_t *ppos) 332 { 333 int error; 334 char *tmp; 335 unsigned long s; 336 unsigned long offset; 337 338 if (!buf || count < rtas_error_log_buffer_max) 339 return -EINVAL; 340 341 count = rtas_error_log_buffer_max; 342 343 if (!access_ok(VERIFY_WRITE, buf, count)) 344 return -EFAULT; 345 346 tmp = kmalloc(count, GFP_KERNEL); 347 if (!tmp) 348 return -ENOMEM; 349 350 spin_lock_irqsave(&rtasd_log_lock, s); 351 352 /* if it's 0, then we know we got the last one (the one in NVRAM) */ 353 while (rtas_log_size == 0) { 354 if (file->f_flags & O_NONBLOCK) { 355 spin_unlock_irqrestore(&rtasd_log_lock, s); 356 error = -EAGAIN; 357 goto out; 358 } 359 360 if (!logging_enabled) { 361 spin_unlock_irqrestore(&rtasd_log_lock, s); 362 error = -ENODATA; 363 goto out; 364 } 365 #ifdef CONFIG_PPC64 366 nvram_clear_error_log(); 367 #endif /* CONFIG_PPC64 */ 368 369 spin_unlock_irqrestore(&rtasd_log_lock, s); 370 error = wait_event_interruptible(rtas_log_wait, rtas_log_size); 371 if (error) 372 goto out; 373 spin_lock_irqsave(&rtasd_log_lock, s); 374 } 375 376 offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK); 377 memcpy(tmp, &rtas_log_buf[offset], count); 378 379 rtas_log_start += 1; 380 rtas_log_size -= 1; 381 spin_unlock_irqrestore(&rtasd_log_lock, s); 382 383 error = copy_to_user(buf, tmp, count) ? -EFAULT : count; 384 out: 385 kfree(tmp); 386 return error; 387 } 388 389 static unsigned int rtas_log_poll(struct file *file, poll_table * wait) 390 { 391 poll_wait(file, &rtas_log_wait, wait); 392 if (rtas_log_size) 393 return POLLIN | POLLRDNORM; 394 return 0; 395 } 396 397 static const struct file_operations proc_rtas_log_operations = { 398 .read = rtas_log_read, 399 .poll = rtas_log_poll, 400 .open = rtas_log_open, 401 .release = rtas_log_release, 402 .llseek = noop_llseek, 403 }; 404 405 static int enable_surveillance(int timeout) 406 { 407 int error; 408 409 error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout); 410 411 if (error == 0) 412 return 0; 413 414 if (error == -EINVAL) { 415 printk(KERN_DEBUG "rtasd: surveillance not supported\n"); 416 return 0; 417 } 418 419 printk(KERN_ERR "rtasd: could not update surveillance\n"); 420 return -1; 421 } 422 423 static void do_event_scan(void) 424 { 425 int error; 426 do { 427 memset(logdata, 0, rtas_error_log_max); 428 error = rtas_call(event_scan, 4, 1, NULL, 429 RTAS_EVENT_SCAN_ALL_EVENTS, 0, 430 __pa(logdata), rtas_error_log_max); 431 if (error == -1) { 432 printk(KERN_ERR "event-scan failed\n"); 433 break; 434 } 435 436 if (error == 0) { 437 pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0); 438 handle_rtas_event((struct rtas_error_log *)logdata); 439 } 440 441 } while(error == 0); 442 } 443 444 static void rtas_event_scan(struct work_struct *w); 445 static DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan); 446 447 /* 448 * Delay should be at least one second since some machines have problems if 449 * we call event-scan too quickly. 450 */ 451 static unsigned long event_scan_delay = 1*HZ; 452 static int first_pass = 1; 453 454 static void rtas_event_scan(struct work_struct *w) 455 { 456 unsigned int cpu; 457 458 do_event_scan(); 459 460 get_online_cpus(); 461 462 /* raw_ OK because just using CPU as starting point. */ 463 cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); 464 if (cpu >= nr_cpu_ids) { 465 cpu = cpumask_first(cpu_online_mask); 466 467 if (first_pass) { 468 first_pass = 0; 469 event_scan_delay = 30*HZ/rtas_event_scan_rate; 470 471 if (surveillance_timeout != -1) { 472 pr_debug("rtasd: enabling surveillance\n"); 473 enable_surveillance(surveillance_timeout); 474 pr_debug("rtasd: surveillance enabled\n"); 475 } 476 } 477 } 478 479 schedule_delayed_work_on(cpu, &event_scan_work, 480 __round_jiffies_relative(event_scan_delay, cpu)); 481 482 put_online_cpus(); 483 } 484 485 #ifdef CONFIG_PPC64 486 static void retreive_nvram_error_log(void) 487 { 488 unsigned int err_type ; 489 int rc ; 490 491 /* See if we have any error stored in NVRAM */ 492 memset(logdata, 0, rtas_error_log_max); 493 rc = nvram_read_error_log(logdata, rtas_error_log_max, 494 &err_type, &error_log_cnt); 495 /* We can use rtas_log_buf now */ 496 logging_enabled = 1; 497 if (!rc) { 498 if (err_type != ERR_FLAG_ALREADY_LOGGED) { 499 pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0); 500 } 501 } 502 } 503 #else /* CONFIG_PPC64 */ 504 static void retreive_nvram_error_log(void) 505 { 506 } 507 #endif /* CONFIG_PPC64 */ 508 509 static void start_event_scan(void) 510 { 511 printk(KERN_DEBUG "RTAS daemon started\n"); 512 pr_debug("rtasd: will sleep for %d milliseconds\n", 513 (30000 / rtas_event_scan_rate)); 514 515 /* Retrieve errors from nvram if any */ 516 retreive_nvram_error_log(); 517 518 schedule_delayed_work_on(cpumask_first(cpu_online_mask), 519 &event_scan_work, event_scan_delay); 520 } 521 522 /* Cancel the rtas event scan work */ 523 void rtas_cancel_event_scan(void) 524 { 525 cancel_delayed_work_sync(&event_scan_work); 526 } 527 EXPORT_SYMBOL_GPL(rtas_cancel_event_scan); 528 529 static int __init rtas_init(void) 530 { 531 struct proc_dir_entry *entry; 532 533 if (!machine_is(pseries) && !machine_is(chrp)) 534 return 0; 535 536 /* No RTAS */ 537 event_scan = rtas_token("event-scan"); 538 if (event_scan == RTAS_UNKNOWN_SERVICE) { 539 printk(KERN_INFO "rtasd: No event-scan on system\n"); 540 return -ENODEV; 541 } 542 543 rtas_event_scan_rate = rtas_token("rtas-event-scan-rate"); 544 if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) { 545 printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n"); 546 return -ENODEV; 547 } 548 549 if (!rtas_event_scan_rate) { 550 /* Broken firmware: take a rate of zero to mean don't scan */ 551 printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n"); 552 return 0; 553 } 554 555 /* Make room for the sequence number */ 556 rtas_error_log_max = rtas_get_error_log_max(); 557 rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int); 558 559 rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER); 560 if (!rtas_log_buf) { 561 printk(KERN_ERR "rtasd: no memory\n"); 562 return -ENOMEM; 563 } 564 565 entry = proc_create("powerpc/rtas/error_log", S_IRUSR, NULL, 566 &proc_rtas_log_operations); 567 if (!entry) 568 printk(KERN_ERR "Failed to create error_log proc entry\n"); 569 570 start_event_scan(); 571 572 return 0; 573 } 574 __initcall(rtas_init); 575 576 static int __init surveillance_setup(char *str) 577 { 578 int i; 579 580 /* We only do surveillance on pseries */ 581 if (!machine_is(pseries)) 582 return 0; 583 584 if (get_option(&str,&i)) { 585 if (i >= 0 && i <= 255) 586 surveillance_timeout = i; 587 } 588 589 return 1; 590 } 591 __setup("surveillance=", surveillance_setup); 592 593 static int __init rtasmsgs_setup(char *str) 594 { 595 return (kstrtobool(str, &full_rtas_msgs) == 0); 596 } 597 __setup("rtasmsgs=", rtasmsgs_setup); 598