xref: /openbmc/linux/arch/powerpc/kernel/rtas.c (revision e160bf64)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Procedures for interfacing to the RTAS on CHRP machines.
5  *
6  * Peter Bergner, IBM	March 2001.
7  * Copyright (C) 2001 IBM.
8  */
9 
10 #define pr_fmt(fmt)	"rtas: " fmt
11 
12 #include <linux/bsearch.h>
13 #include <linux/capability.h>
14 #include <linux/delay.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/kconfig.h>
18 #include <linux/kernel.h>
19 #include <linux/lockdep.h>
20 #include <linux/memblock.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/reboot.h>
24 #include <linux/sched.h>
25 #include <linux/security.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/stdarg.h>
29 #include <linux/syscalls.h>
30 #include <linux/types.h>
31 #include <linux/uaccess.h>
32 #include <linux/xarray.h>
33 
34 #include <asm/delay.h>
35 #include <asm/firmware.h>
36 #include <asm/interrupt.h>
37 #include <asm/machdep.h>
38 #include <asm/mmu.h>
39 #include <asm/page.h>
40 #include <asm/rtas-work-area.h>
41 #include <asm/rtas.h>
42 #include <asm/time.h>
43 #include <asm/trace.h>
44 #include <asm/udbg.h>
45 
46 struct rtas_filter {
47 	/* Indexes into the args buffer, -1 if not used */
48 	const int buf_idx1;
49 	const int size_idx1;
50 	const int buf_idx2;
51 	const int size_idx2;
52 	/*
53 	 * Assumed buffer size per the spec if the function does not
54 	 * have a size parameter, e.g. ibm,errinjct. 0 if unused.
55 	 */
56 	const int fixed_size;
57 };
58 
59 /**
60  * struct rtas_function - Descriptor for RTAS functions.
61  *
62  * @token: Value of @name if it exists under the /rtas node.
63  * @name: Function name.
64  * @filter: If non-NULL, invoking this function via the rtas syscall is
65  *          generally allowed, and @filter describes constraints on the
66  *          arguments. See also @banned_for_syscall_on_le.
67  * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
68  *                            but specifically restricted on ppc64le. Such
69  *                            functions are believed to have no users on
70  *                            ppc64le, and we want to keep it that way. It does
71  *                            not make sense for this to be set when @filter
72  *                            is NULL.
73  */
74 struct rtas_function {
75 	s32 token;
76 	const bool banned_for_syscall_on_le:1;
77 	const char * const name;
78 	const struct rtas_filter *filter;
79 };
80 
81 static struct rtas_function rtas_function_table[] __ro_after_init = {
82 	[RTAS_FNIDX__CHECK_EXCEPTION] = {
83 		.name = "check-exception",
84 	},
85 	[RTAS_FNIDX__DISPLAY_CHARACTER] = {
86 		.name = "display-character",
87 		.filter = &(const struct rtas_filter) {
88 			.buf_idx1 = -1, .size_idx1 = -1,
89 			.buf_idx2 = -1, .size_idx2 = -1,
90 		},
91 	},
92 	[RTAS_FNIDX__EVENT_SCAN] = {
93 		.name = "event-scan",
94 	},
95 	[RTAS_FNIDX__FREEZE_TIME_BASE] = {
96 		.name = "freeze-time-base",
97 	},
98 	[RTAS_FNIDX__GET_POWER_LEVEL] = {
99 		.name = "get-power-level",
100 		.filter = &(const struct rtas_filter) {
101 			.buf_idx1 = -1, .size_idx1 = -1,
102 			.buf_idx2 = -1, .size_idx2 = -1,
103 		},
104 	},
105 	[RTAS_FNIDX__GET_SENSOR_STATE] = {
106 		.name = "get-sensor-state",
107 		.filter = &(const struct rtas_filter) {
108 			.buf_idx1 = -1, .size_idx1 = -1,
109 			.buf_idx2 = -1, .size_idx2 = -1,
110 		},
111 	},
112 	[RTAS_FNIDX__GET_TERM_CHAR] = {
113 		.name = "get-term-char",
114 	},
115 	[RTAS_FNIDX__GET_TIME_OF_DAY] = {
116 		.name = "get-time-of-day",
117 		.filter = &(const struct rtas_filter) {
118 			.buf_idx1 = -1, .size_idx1 = -1,
119 			.buf_idx2 = -1, .size_idx2 = -1,
120 		},
121 	},
122 	[RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
123 		.name = "ibm,activate-firmware",
124 		.filter = &(const struct rtas_filter) {
125 			.buf_idx1 = -1, .size_idx1 = -1,
126 			.buf_idx2 = -1, .size_idx2 = -1,
127 		},
128 	},
129 	[RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
130 		.name = "ibm,cbe-start-ptcal",
131 	},
132 	[RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
133 		.name = "ibm,cbe-stop-ptcal",
134 	},
135 	[RTAS_FNIDX__IBM_CHANGE_MSI] = {
136 		.name = "ibm,change-msi",
137 	},
138 	[RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
139 		.name = "ibm,close-errinjct",
140 		.filter = &(const struct rtas_filter) {
141 			.buf_idx1 = -1, .size_idx1 = -1,
142 			.buf_idx2 = -1, .size_idx2 = -1,
143 		},
144 	},
145 	[RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
146 		.name = "ibm,configure-bridge",
147 	},
148 	[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
149 		.name = "ibm,configure-connector",
150 		.filter = &(const struct rtas_filter) {
151 			.buf_idx1 = 0, .size_idx1 = -1,
152 			.buf_idx2 = 1, .size_idx2 = -1,
153 			.fixed_size = 4096,
154 		},
155 	},
156 	[RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
157 		.name = "ibm,configure-kernel-dump",
158 	},
159 	[RTAS_FNIDX__IBM_CONFIGURE_PE] = {
160 		.name = "ibm,configure-pe",
161 	},
162 	[RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
163 		.name = "ibm,create-pe-dma-window",
164 	},
165 	[RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
166 		.name = "ibm,display-message",
167 		.filter = &(const struct rtas_filter) {
168 			.buf_idx1 = 0, .size_idx1 = -1,
169 			.buf_idx2 = -1, .size_idx2 = -1,
170 		},
171 	},
172 	[RTAS_FNIDX__IBM_ERRINJCT] = {
173 		.name = "ibm,errinjct",
174 		.filter = &(const struct rtas_filter) {
175 			.buf_idx1 = 2, .size_idx1 = -1,
176 			.buf_idx2 = -1, .size_idx2 = -1,
177 			.fixed_size = 1024,
178 		},
179 	},
180 	[RTAS_FNIDX__IBM_EXTI2C] = {
181 		.name = "ibm,exti2c",
182 	},
183 	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
184 		.name = "ibm,get-config-addr-info",
185 	},
186 	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
187 		.name = "ibm,get-config-addr-info2",
188 		.filter = &(const struct rtas_filter) {
189 			.buf_idx1 = -1, .size_idx1 = -1,
190 			.buf_idx2 = -1, .size_idx2 = -1,
191 		},
192 	},
193 	[RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
194 		.name = "ibm,get-dynamic-sensor-state",
195 		.filter = &(const struct rtas_filter) {
196 			.buf_idx1 = 1, .size_idx1 = -1,
197 			.buf_idx2 = -1, .size_idx2 = -1,
198 		},
199 	},
200 	[RTAS_FNIDX__IBM_GET_INDICES] = {
201 		.name = "ibm,get-indices",
202 		.filter = &(const struct rtas_filter) {
203 			.buf_idx1 = 2, .size_idx1 = 3,
204 			.buf_idx2 = -1, .size_idx2 = -1,
205 		},
206 	},
207 	[RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
208 		.name = "ibm,get-rio-topology",
209 	},
210 	[RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
211 		.name = "ibm,get-system-parameter",
212 		.filter = &(const struct rtas_filter) {
213 			.buf_idx1 = 1, .size_idx1 = 2,
214 			.buf_idx2 = -1, .size_idx2 = -1,
215 		},
216 	},
217 	[RTAS_FNIDX__IBM_GET_VPD] = {
218 		.name = "ibm,get-vpd",
219 		.filter = &(const struct rtas_filter) {
220 			.buf_idx1 = 0, .size_idx1 = -1,
221 			.buf_idx2 = 1, .size_idx2 = 2,
222 		},
223 	},
224 	[RTAS_FNIDX__IBM_GET_XIVE] = {
225 		.name = "ibm,get-xive",
226 	},
227 	[RTAS_FNIDX__IBM_INT_OFF] = {
228 		.name = "ibm,int-off",
229 	},
230 	[RTAS_FNIDX__IBM_INT_ON] = {
231 		.name = "ibm,int-on",
232 	},
233 	[RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
234 		.name = "ibm,io-quiesce-ack",
235 	},
236 	[RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
237 		.name = "ibm,lpar-perftools",
238 		.filter = &(const struct rtas_filter) {
239 			.buf_idx1 = 2, .size_idx1 = 3,
240 			.buf_idx2 = -1, .size_idx2 = -1,
241 		},
242 	},
243 	[RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
244 		.name = "ibm,manage-flash-image",
245 	},
246 	[RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
247 		.name = "ibm,manage-storage-preservation",
248 	},
249 	[RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
250 		.name = "ibm,nmi-interlock",
251 	},
252 	[RTAS_FNIDX__IBM_NMI_REGISTER] = {
253 		.name = "ibm,nmi-register",
254 	},
255 	[RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
256 		.name = "ibm,open-errinjct",
257 		.filter = &(const struct rtas_filter) {
258 			.buf_idx1 = -1, .size_idx1 = -1,
259 			.buf_idx2 = -1, .size_idx2 = -1,
260 		},
261 	},
262 	[RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
263 		.name = "ibm,open-sriov-allow-unfreeze",
264 	},
265 	[RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
266 		.name = "ibm,open-sriov-map-pe-number",
267 	},
268 	[RTAS_FNIDX__IBM_OS_TERM] = {
269 		.name = "ibm,os-term",
270 	},
271 	[RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
272 		.name = "ibm,partner-control",
273 	},
274 	[RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
275 		.name = "ibm,physical-attestation",
276 		.filter = &(const struct rtas_filter) {
277 			.buf_idx1 = 0, .size_idx1 = 1,
278 			.buf_idx2 = -1, .size_idx2 = -1,
279 		},
280 	},
281 	[RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
282 		.name = "ibm,platform-dump",
283 		.filter = &(const struct rtas_filter) {
284 			.buf_idx1 = 4, .size_idx1 = 5,
285 			.buf_idx2 = -1, .size_idx2 = -1,
286 		},
287 	},
288 	[RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
289 		.name = "ibm,power-off-ups",
290 	},
291 	[RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
292 		.name = "ibm,query-interrupt-source-number",
293 	},
294 	[RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
295 		.name = "ibm,query-pe-dma-window",
296 	},
297 	[RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
298 		.name = "ibm,read-pci-config",
299 	},
300 	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
301 		.name = "ibm,read-slot-reset-state",
302 		.filter = &(const struct rtas_filter) {
303 			.buf_idx1 = -1, .size_idx1 = -1,
304 			.buf_idx2 = -1, .size_idx2 = -1,
305 		},
306 	},
307 	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
308 		.name = "ibm,read-slot-reset-state2",
309 	},
310 	[RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
311 		.name = "ibm,remove-pe-dma-window",
312 	},
313 	[RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOWS] = {
314 		.name = "ibm,reset-pe-dma-windows",
315 	},
316 	[RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
317 		.name = "ibm,scan-log-dump",
318 		.filter = &(const struct rtas_filter) {
319 			.buf_idx1 = 0, .size_idx1 = 1,
320 			.buf_idx2 = -1, .size_idx2 = -1,
321 		},
322 	},
323 	[RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
324 		.name = "ibm,set-dynamic-indicator",
325 		.filter = &(const struct rtas_filter) {
326 			.buf_idx1 = 2, .size_idx1 = -1,
327 			.buf_idx2 = -1, .size_idx2 = -1,
328 		},
329 	},
330 	[RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
331 		.name = "ibm,set-eeh-option",
332 		.filter = &(const struct rtas_filter) {
333 			.buf_idx1 = -1, .size_idx1 = -1,
334 			.buf_idx2 = -1, .size_idx2 = -1,
335 		},
336 	},
337 	[RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
338 		.name = "ibm,set-slot-reset",
339 	},
340 	[RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
341 		.name = "ibm,set-system-parameter",
342 		.filter = &(const struct rtas_filter) {
343 			.buf_idx1 = 1, .size_idx1 = -1,
344 			.buf_idx2 = -1, .size_idx2 = -1,
345 		},
346 	},
347 	[RTAS_FNIDX__IBM_SET_XIVE] = {
348 		.name = "ibm,set-xive",
349 	},
350 	[RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
351 		.name = "ibm,slot-error-detail",
352 	},
353 	[RTAS_FNIDX__IBM_SUSPEND_ME] = {
354 		.name = "ibm,suspend-me",
355 		.banned_for_syscall_on_le = true,
356 		.filter = &(const struct rtas_filter) {
357 			.buf_idx1 = -1, .size_idx1 = -1,
358 			.buf_idx2 = -1, .size_idx2 = -1,
359 		},
360 	},
361 	[RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
362 		.name = "ibm,tune-dma-parms",
363 	},
364 	[RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
365 		.name = "ibm,update-flash-64-and-reboot",
366 	},
367 	[RTAS_FNIDX__IBM_UPDATE_NODES] = {
368 		.name = "ibm,update-nodes",
369 		.banned_for_syscall_on_le = true,
370 		.filter = &(const struct rtas_filter) {
371 			.buf_idx1 = 0, .size_idx1 = -1,
372 			.buf_idx2 = -1, .size_idx2 = -1,
373 			.fixed_size = 4096,
374 		},
375 	},
376 	[RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
377 		.name = "ibm,update-properties",
378 		.banned_for_syscall_on_le = true,
379 		.filter = &(const struct rtas_filter) {
380 			.buf_idx1 = 0, .size_idx1 = -1,
381 			.buf_idx2 = -1, .size_idx2 = -1,
382 			.fixed_size = 4096,
383 		},
384 	},
385 	[RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
386 		.name = "ibm,validate-flash-image",
387 	},
388 	[RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
389 		.name = "ibm,write-pci-config",
390 	},
391 	[RTAS_FNIDX__NVRAM_FETCH] = {
392 		.name = "nvram-fetch",
393 	},
394 	[RTAS_FNIDX__NVRAM_STORE] = {
395 		.name = "nvram-store",
396 	},
397 	[RTAS_FNIDX__POWER_OFF] = {
398 		.name = "power-off",
399 	},
400 	[RTAS_FNIDX__PUT_TERM_CHAR] = {
401 		.name = "put-term-char",
402 	},
403 	[RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
404 		.name = "query-cpu-stopped-state",
405 	},
406 	[RTAS_FNIDX__READ_PCI_CONFIG] = {
407 		.name = "read-pci-config",
408 	},
409 	[RTAS_FNIDX__RTAS_LAST_ERROR] = {
410 		.name = "rtas-last-error",
411 	},
412 	[RTAS_FNIDX__SET_INDICATOR] = {
413 		.name = "set-indicator",
414 		.filter = &(const struct rtas_filter) {
415 			.buf_idx1 = -1, .size_idx1 = -1,
416 			.buf_idx2 = -1, .size_idx2 = -1,
417 		},
418 	},
419 	[RTAS_FNIDX__SET_POWER_LEVEL] = {
420 		.name = "set-power-level",
421 		.filter = &(const struct rtas_filter) {
422 			.buf_idx1 = -1, .size_idx1 = -1,
423 			.buf_idx2 = -1, .size_idx2 = -1,
424 		},
425 	},
426 	[RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
427 		.name = "set-time-for-power-on",
428 		.filter = &(const struct rtas_filter) {
429 			.buf_idx1 = -1, .size_idx1 = -1,
430 			.buf_idx2 = -1, .size_idx2 = -1,
431 		},
432 	},
433 	[RTAS_FNIDX__SET_TIME_OF_DAY] = {
434 		.name = "set-time-of-day",
435 		.filter = &(const struct rtas_filter) {
436 			.buf_idx1 = -1, .size_idx1 = -1,
437 			.buf_idx2 = -1, .size_idx2 = -1,
438 		},
439 	},
440 	[RTAS_FNIDX__START_CPU] = {
441 		.name = "start-cpu",
442 	},
443 	[RTAS_FNIDX__STOP_SELF] = {
444 		.name = "stop-self",
445 	},
446 	[RTAS_FNIDX__SYSTEM_REBOOT] = {
447 		.name = "system-reboot",
448 	},
449 	[RTAS_FNIDX__THAW_TIME_BASE] = {
450 		.name = "thaw-time-base",
451 	},
452 	[RTAS_FNIDX__WRITE_PCI_CONFIG] = {
453 		.name = "write-pci-config",
454 	},
455 };
456 
457 /*
458  * Nearly all RTAS calls need to be serialized. All uses of the
459  * default rtas_args block must hold rtas_lock.
460  *
461  * Exceptions to the RTAS serialization requirement (e.g. stop-self)
462  * must use a separate rtas_args structure.
463  */
464 static DEFINE_RAW_SPINLOCK(rtas_lock);
465 static struct rtas_args rtas_args;
466 
467 /**
468  * rtas_function_token() - RTAS function token lookup.
469  * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
470  *
471  * Context: Any context.
472  * Return: the token value for the function if implemented by this platform,
473  *         otherwise RTAS_UNKNOWN_SERVICE.
474  */
475 s32 rtas_function_token(const rtas_fn_handle_t handle)
476 {
477 	const size_t index = handle.index;
478 	const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
479 
480 	if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
481 		return RTAS_UNKNOWN_SERVICE;
482 	/*
483 	 * Various drivers attempt token lookups on non-RTAS
484 	 * platforms.
485 	 */
486 	if (!rtas.dev)
487 		return RTAS_UNKNOWN_SERVICE;
488 
489 	return rtas_function_table[index].token;
490 }
491 EXPORT_SYMBOL_GPL(rtas_function_token);
492 
493 static int rtas_function_cmp(const void *a, const void *b)
494 {
495 	const struct rtas_function *f1 = a;
496 	const struct rtas_function *f2 = b;
497 
498 	return strcmp(f1->name, f2->name);
499 }
500 
501 /*
502  * Boot-time initialization of the function table needs the lookup to
503  * return a non-const-qualified object. Use rtas_name_to_function()
504  * in all other contexts.
505  */
506 static struct rtas_function *__rtas_name_to_function(const char *name)
507 {
508 	const struct rtas_function key = {
509 		.name = name,
510 	};
511 	struct rtas_function *found;
512 
513 	found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
514 			sizeof(rtas_function_table[0]), rtas_function_cmp);
515 
516 	return found;
517 }
518 
519 static const struct rtas_function *rtas_name_to_function(const char *name)
520 {
521 	return __rtas_name_to_function(name);
522 }
523 
524 static DEFINE_XARRAY(rtas_token_to_function_xarray);
525 
526 static int __init rtas_token_to_function_xarray_init(void)
527 {
528 	int err = 0;
529 
530 	for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
531 		const struct rtas_function *func = &rtas_function_table[i];
532 		const s32 token = func->token;
533 
534 		if (token == RTAS_UNKNOWN_SERVICE)
535 			continue;
536 
537 		err = xa_err(xa_store(&rtas_token_to_function_xarray,
538 				      token, (void *)func, GFP_KERNEL));
539 		if (err)
540 			break;
541 	}
542 
543 	return err;
544 }
545 arch_initcall(rtas_token_to_function_xarray_init);
546 
547 static const struct rtas_function *rtas_token_to_function(s32 token)
548 {
549 	const struct rtas_function *func;
550 
551 	if (WARN_ONCE(token < 0, "invalid token %d", token))
552 		return NULL;
553 
554 	func = xa_load(&rtas_token_to_function_xarray, token);
555 
556 	if (WARN_ONCE(!func, "unexpected failed lookup for token %d", token))
557 		return NULL;
558 
559 	return func;
560 }
561 
562 /* This is here deliberately so it's only used in this file */
563 void enter_rtas(unsigned long);
564 
565 static void __do_enter_rtas(struct rtas_args *args)
566 {
567 	enter_rtas(__pa(args));
568 	srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
569 }
570 
571 static void __do_enter_rtas_trace(struct rtas_args *args)
572 {
573 	const char *name = NULL;
574 
575 	if (args == &rtas_args)
576 		lockdep_assert_held(&rtas_lock);
577 	/*
578 	 * If the tracepoints that consume the function name aren't
579 	 * active, avoid the lookup.
580 	 */
581 	if ((trace_rtas_input_enabled() || trace_rtas_output_enabled())) {
582 		const s32 token = be32_to_cpu(args->token);
583 		const struct rtas_function *func = rtas_token_to_function(token);
584 
585 		name = func->name;
586 	}
587 
588 	trace_rtas_input(args, name);
589 	trace_rtas_ll_entry(args);
590 
591 	__do_enter_rtas(args);
592 
593 	trace_rtas_ll_exit(args);
594 	trace_rtas_output(args, name);
595 }
596 
597 static void do_enter_rtas(struct rtas_args *args)
598 {
599 	const unsigned long msr = mfmsr();
600 	/*
601 	 * Situations where we want to skip any active tracepoints for
602 	 * safety reasons:
603 	 *
604 	 * 1. The last code executed on an offline CPU as it stops,
605 	 *    i.e. we're about to call stop-self. The tracepoints'
606 	 *    function name lookup uses xarray, which uses RCU, which
607 	 *    isn't valid to call on an offline CPU.  Any events
608 	 *    emitted on an offline CPU will be discarded anyway.
609 	 *
610 	 * 2. In real mode, as when invoking ibm,nmi-interlock from
611 	 *    the pseries MCE handler. We cannot count on trace
612 	 *    buffers or the entries in rtas_token_to_function_xarray
613 	 *    to be contained in the RMO.
614 	 */
615 	const unsigned long mask = MSR_IR | MSR_DR;
616 	const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
617 				      (msr & mask) == mask);
618 	/*
619 	 * Make sure MSR[RI] is currently enabled as it will be forced later
620 	 * in enter_rtas.
621 	 */
622 	BUG_ON(!(msr & MSR_RI));
623 
624 	BUG_ON(!irqs_disabled());
625 
626 	hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
627 
628 	if (can_trace)
629 		__do_enter_rtas_trace(args);
630 	else
631 		__do_enter_rtas(args);
632 }
633 
634 struct rtas_t rtas;
635 
636 DEFINE_SPINLOCK(rtas_data_buf_lock);
637 EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
638 
639 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
640 EXPORT_SYMBOL_GPL(rtas_data_buf);
641 
642 unsigned long rtas_rmo_buf;
643 
644 /*
645  * If non-NULL, this gets called when the kernel terminates.
646  * This is done like this so rtas_flash can be a module.
647  */
648 void (*rtas_flash_term_hook)(int);
649 EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
650 
651 /*
652  * call_rtas_display_status and call_rtas_display_status_delay
653  * are designed only for very early low-level debugging, which
654  * is why the token is hard-coded to 10.
655  */
656 static void call_rtas_display_status(unsigned char c)
657 {
658 	unsigned long flags;
659 
660 	if (!rtas.base)
661 		return;
662 
663 	raw_spin_lock_irqsave(&rtas_lock, flags);
664 	rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
665 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
666 }
667 
668 static void call_rtas_display_status_delay(char c)
669 {
670 	static int pending_newline = 0;  /* did last write end with unprinted newline? */
671 	static int width = 16;
672 
673 	if (c == '\n') {
674 		while (width-- > 0)
675 			call_rtas_display_status(' ');
676 		width = 16;
677 		mdelay(500);
678 		pending_newline = 1;
679 	} else {
680 		if (pending_newline) {
681 			call_rtas_display_status('\r');
682 			call_rtas_display_status('\n');
683 		}
684 		pending_newline = 0;
685 		if (width--) {
686 			call_rtas_display_status(c);
687 			udelay(10000);
688 		}
689 	}
690 }
691 
692 void __init udbg_init_rtas_panel(void)
693 {
694 	udbg_putc = call_rtas_display_status_delay;
695 }
696 
697 #ifdef CONFIG_UDBG_RTAS_CONSOLE
698 
699 /* If you think you're dying before early_init_dt_scan_rtas() does its
700  * work, you can hard code the token values for your firmware here and
701  * hardcode rtas.base/entry etc.
702  */
703 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
704 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
705 
706 static void udbg_rtascon_putc(char c)
707 {
708 	int tries;
709 
710 	if (!rtas.base)
711 		return;
712 
713 	/* Add CRs before LFs */
714 	if (c == '\n')
715 		udbg_rtascon_putc('\r');
716 
717 	/* if there is more than one character to be displayed, wait a bit */
718 	for (tries = 0; tries < 16; tries++) {
719 		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
720 			break;
721 		udelay(1000);
722 	}
723 }
724 
725 static int udbg_rtascon_getc_poll(void)
726 {
727 	int c;
728 
729 	if (!rtas.base)
730 		return -1;
731 
732 	if (rtas_call(rtas_getchar_token, 0, 2, &c))
733 		return -1;
734 
735 	return c;
736 }
737 
738 static int udbg_rtascon_getc(void)
739 {
740 	int c;
741 
742 	while ((c = udbg_rtascon_getc_poll()) == -1)
743 		;
744 
745 	return c;
746 }
747 
748 
749 void __init udbg_init_rtas_console(void)
750 {
751 	udbg_putc = udbg_rtascon_putc;
752 	udbg_getc = udbg_rtascon_getc;
753 	udbg_getc_poll = udbg_rtascon_getc_poll;
754 }
755 #endif /* CONFIG_UDBG_RTAS_CONSOLE */
756 
757 void rtas_progress(char *s, unsigned short hex)
758 {
759 	struct device_node *root;
760 	int width;
761 	const __be32 *p;
762 	char *os;
763 	static int display_character, set_indicator;
764 	static int display_width, display_lines, form_feed;
765 	static const int *row_width;
766 	static DEFINE_SPINLOCK(progress_lock);
767 	static int current_line;
768 	static int pending_newline = 0;  /* did last write end with unprinted newline? */
769 
770 	if (!rtas.base)
771 		return;
772 
773 	if (display_width == 0) {
774 		display_width = 0x10;
775 		if ((root = of_find_node_by_path("/rtas"))) {
776 			if ((p = of_get_property(root,
777 					"ibm,display-line-length", NULL)))
778 				display_width = be32_to_cpu(*p);
779 			if ((p = of_get_property(root,
780 					"ibm,form-feed", NULL)))
781 				form_feed = be32_to_cpu(*p);
782 			if ((p = of_get_property(root,
783 					"ibm,display-number-of-lines", NULL)))
784 				display_lines = be32_to_cpu(*p);
785 			row_width = of_get_property(root,
786 					"ibm,display-truncation-length", NULL);
787 			of_node_put(root);
788 		}
789 		display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
790 		set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
791 	}
792 
793 	if (display_character == RTAS_UNKNOWN_SERVICE) {
794 		/* use hex display if available */
795 		if (set_indicator != RTAS_UNKNOWN_SERVICE)
796 			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
797 		return;
798 	}
799 
800 	spin_lock(&progress_lock);
801 
802 	/*
803 	 * Last write ended with newline, but we didn't print it since
804 	 * it would just clear the bottom line of output. Print it now
805 	 * instead.
806 	 *
807 	 * If no newline is pending and form feed is supported, clear the
808 	 * display with a form feed; otherwise, print a CR to start output
809 	 * at the beginning of the line.
810 	 */
811 	if (pending_newline) {
812 		rtas_call(display_character, 1, 1, NULL, '\r');
813 		rtas_call(display_character, 1, 1, NULL, '\n');
814 		pending_newline = 0;
815 	} else {
816 		current_line = 0;
817 		if (form_feed)
818 			rtas_call(display_character, 1, 1, NULL,
819 				  (char)form_feed);
820 		else
821 			rtas_call(display_character, 1, 1, NULL, '\r');
822 	}
823 
824 	if (row_width)
825 		width = row_width[current_line];
826 	else
827 		width = display_width;
828 	os = s;
829 	while (*os) {
830 		if (*os == '\n' || *os == '\r') {
831 			/* If newline is the last character, save it
832 			 * until next call to avoid bumping up the
833 			 * display output.
834 			 */
835 			if (*os == '\n' && !os[1]) {
836 				pending_newline = 1;
837 				current_line++;
838 				if (current_line > display_lines-1)
839 					current_line = display_lines-1;
840 				spin_unlock(&progress_lock);
841 				return;
842 			}
843 
844 			/* RTAS wants CR-LF, not just LF */
845 
846 			if (*os == '\n') {
847 				rtas_call(display_character, 1, 1, NULL, '\r');
848 				rtas_call(display_character, 1, 1, NULL, '\n');
849 			} else {
850 				/* CR might be used to re-draw a line, so we'll
851 				 * leave it alone and not add LF.
852 				 */
853 				rtas_call(display_character, 1, 1, NULL, *os);
854 			}
855 
856 			if (row_width)
857 				width = row_width[current_line];
858 			else
859 				width = display_width;
860 		} else {
861 			width--;
862 			rtas_call(display_character, 1, 1, NULL, *os);
863 		}
864 
865 		os++;
866 
867 		/* if we overwrite the screen length */
868 		if (width <= 0)
869 			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
870 				os++;
871 	}
872 
873 	spin_unlock(&progress_lock);
874 }
875 EXPORT_SYMBOL_GPL(rtas_progress);		/* needed by rtas_flash module */
876 
877 int rtas_token(const char *service)
878 {
879 	const struct rtas_function *func;
880 	const __be32 *tokp;
881 
882 	if (rtas.dev == NULL)
883 		return RTAS_UNKNOWN_SERVICE;
884 
885 	func = rtas_name_to_function(service);
886 	if (func)
887 		return func->token;
888 	/*
889 	 * The caller is looking up a name that is not known to be an
890 	 * RTAS function. Either it's a function that needs to be
891 	 * added to the table, or they're misusing rtas_token() to
892 	 * access non-function properties of the /rtas node. Warn and
893 	 * fall back to the legacy behavior.
894 	 */
895 	WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
896 		  service);
897 
898 	tokp = of_get_property(rtas.dev, service, NULL);
899 	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
900 }
901 EXPORT_SYMBOL_GPL(rtas_token);
902 
903 int rtas_service_present(const char *service)
904 {
905 	return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
906 }
907 
908 #ifdef CONFIG_RTAS_ERROR_LOGGING
909 
910 static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
911 
912 /*
913  * Return the firmware-specified size of the error log buffer
914  *  for all rtas calls that require an error buffer argument.
915  *  This includes 'check-exception' and 'rtas-last-error'.
916  */
917 int rtas_get_error_log_max(void)
918 {
919 	return rtas_error_log_max;
920 }
921 
922 static void __init init_error_log_max(void)
923 {
924 	static const char propname[] __initconst = "rtas-error-log-max";
925 	u32 max;
926 
927 	if (of_property_read_u32(rtas.dev, propname, &max)) {
928 		pr_warn("%s not found, using default of %u\n",
929 			propname, RTAS_ERROR_LOG_MAX);
930 		max = RTAS_ERROR_LOG_MAX;
931 	}
932 
933 	if (max > RTAS_ERROR_LOG_MAX) {
934 		pr_warn("%s = %u, clamping max error log size to %u\n",
935 			propname, max, RTAS_ERROR_LOG_MAX);
936 		max = RTAS_ERROR_LOG_MAX;
937 	}
938 
939 	rtas_error_log_max = max;
940 }
941 
942 
943 static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
944 
945 /** Return a copy of the detailed error text associated with the
946  *  most recent failed call to rtas.  Because the error text
947  *  might go stale if there are any other intervening rtas calls,
948  *  this routine must be called atomically with whatever produced
949  *  the error (i.e. with rtas_lock still held from the previous call).
950  */
951 static char *__fetch_rtas_last_error(char *altbuf)
952 {
953 	const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
954 	struct rtas_args err_args, save_args;
955 	u32 bufsz;
956 	char *buf = NULL;
957 
958 	lockdep_assert_held(&rtas_lock);
959 
960 	if (token == -1)
961 		return NULL;
962 
963 	bufsz = rtas_get_error_log_max();
964 
965 	err_args.token = cpu_to_be32(token);
966 	err_args.nargs = cpu_to_be32(2);
967 	err_args.nret = cpu_to_be32(1);
968 	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
969 	err_args.args[1] = cpu_to_be32(bufsz);
970 	err_args.args[2] = 0;
971 
972 	save_args = rtas_args;
973 	rtas_args = err_args;
974 
975 	do_enter_rtas(&rtas_args);
976 
977 	err_args = rtas_args;
978 	rtas_args = save_args;
979 
980 	/* Log the error in the unlikely case that there was one. */
981 	if (unlikely(err_args.args[2] == 0)) {
982 		if (altbuf) {
983 			buf = altbuf;
984 		} else {
985 			buf = rtas_err_buf;
986 			if (slab_is_available())
987 				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
988 		}
989 		if (buf)
990 			memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
991 	}
992 
993 	return buf;
994 }
995 
996 #define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
997 
998 #else /* CONFIG_RTAS_ERROR_LOGGING */
999 #define __fetch_rtas_last_error(x)	NULL
1000 #define get_errorlog_buffer()		NULL
1001 static void __init init_error_log_max(void) {}
1002 #endif
1003 
1004 
1005 static void
1006 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
1007 		      va_list list)
1008 {
1009 	int i;
1010 
1011 	args->token = cpu_to_be32(token);
1012 	args->nargs = cpu_to_be32(nargs);
1013 	args->nret  = cpu_to_be32(nret);
1014 	args->rets  = &(args->args[nargs]);
1015 
1016 	for (i = 0; i < nargs; ++i)
1017 		args->args[i] = cpu_to_be32(va_arg(list, __u32));
1018 
1019 	for (i = 0; i < nret; ++i)
1020 		args->rets[i] = 0;
1021 
1022 	do_enter_rtas(args);
1023 }
1024 
1025 /**
1026  * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
1027  * @args: RTAS parameter block to be used for the call, must obey RTAS addressing
1028  *        constraints.
1029  * @token: Identifies the function being invoked.
1030  * @nargs: Number of input parameters. Does not include token.
1031  * @nret: Number of output parameters, including the call status.
1032  * @....: List of @nargs input parameters.
1033  *
1034  * Invokes the RTAS function indicated by @token, which the caller
1035  * should obtain via rtas_function_token().
1036  *
1037  * This function is similar to rtas_call(), but must be used with a
1038  * limited set of RTAS calls specifically exempted from the general
1039  * requirement that only one RTAS call may be in progress at any
1040  * time. Examples include stop-self and ibm,nmi-interlock.
1041  */
1042 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
1043 {
1044 	va_list list;
1045 
1046 	va_start(list, nret);
1047 	va_rtas_call_unlocked(args, token, nargs, nret, list);
1048 	va_end(list);
1049 }
1050 
1051 static bool token_is_restricted_errinjct(s32 token)
1052 {
1053 	return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
1054 	       token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
1055 }
1056 
1057 /**
1058  * rtas_call() - Invoke an RTAS firmware function.
1059  * @token: Identifies the function being invoked.
1060  * @nargs: Number of input parameters. Does not include token.
1061  * @nret: Number of output parameters, including the call status.
1062  * @outputs: Array of @nret output words.
1063  * @....: List of @nargs input parameters.
1064  *
1065  * Invokes the RTAS function indicated by @token, which the caller
1066  * should obtain via rtas_function_token().
1067  *
1068  * The @nargs and @nret arguments must match the number of input and
1069  * output parameters specified for the RTAS function.
1070  *
1071  * rtas_call() returns RTAS status codes, not conventional Linux errno
1072  * values. Callers must translate any failure to an appropriate errno
1073  * in syscall context. Most callers of RTAS functions that can return
1074  * -2 or 990x should use rtas_busy_delay() to correctly handle those
1075  * statuses before calling again.
1076  *
1077  * The return value descriptions are adapted from 7.2.8 [RTAS] Return
1078  * Codes of the PAPR and CHRP specifications.
1079  *
1080  * Context: Process context preferably, interrupt context if
1081  *          necessary.  Acquires an internal spinlock and may perform
1082  *          GFP_ATOMIC slab allocation in error path. Unsafe for NMI
1083  *          context.
1084  * Return:
1085  * *                          0 - RTAS function call succeeded.
1086  * *                         -1 - RTAS function encountered a hardware or
1087  *                                platform error, or the token is invalid,
1088  *                                or the function is restricted by kernel policy.
1089  * *                         -2 - Specs say "A necessary hardware device was busy,
1090  *                                and the requested function could not be
1091  *                                performed. The operation should be retried at
1092  *                                a later time." This is misleading, at least with
1093  *                                respect to current RTAS implementations. What it
1094  *                                usually means in practice is that the function
1095  *                                could not be completed while meeting RTAS's
1096  *                                deadline for returning control to the OS (250us
1097  *                                for PAPR/PowerVM, typically), but the call may be
1098  *                                immediately reattempted to resume work on it.
1099  * *                         -3 - Parameter error.
1100  * *                         -7 - Unexpected state change.
1101  * *                9000...9899 - Vendor-specific success codes.
1102  * *                9900...9905 - Advisory extended delay. Caller should try
1103  *                                again after ~10^x ms has elapsed, where x is
1104  *                                the last digit of the status [0-5]. Again going
1105  *                                beyond the PAPR text, 990x on PowerVM indicates
1106  *                                contention for RTAS-internal resources. Other
1107  *                                RTAS call sequences in progress should be
1108  *                                allowed to complete before reattempting the
1109  *                                call.
1110  * *                      -9000 - Multi-level isolation error.
1111  * *              -9999...-9004 - Vendor-specific error codes.
1112  * * Additional negative values - Function-specific error.
1113  * * Additional positive values - Function-specific success.
1114  */
1115 int rtas_call(int token, int nargs, int nret, int *outputs, ...)
1116 {
1117 	struct pin_cookie cookie;
1118 	va_list list;
1119 	int i;
1120 	unsigned long flags;
1121 	struct rtas_args *args;
1122 	char *buff_copy = NULL;
1123 	int ret;
1124 
1125 	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
1126 		return -1;
1127 
1128 	if (token_is_restricted_errinjct(token)) {
1129 		/*
1130 		 * It would be nicer to not discard the error value
1131 		 * from security_locked_down(), but callers expect an
1132 		 * RTAS status, not an errno.
1133 		 */
1134 		if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
1135 			return -1;
1136 	}
1137 
1138 	if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
1139 		WARN_ON_ONCE(1);
1140 		return -1;
1141 	}
1142 
1143 	raw_spin_lock_irqsave(&rtas_lock, flags);
1144 	cookie = lockdep_pin_lock(&rtas_lock);
1145 
1146 	/* We use the global rtas args buffer */
1147 	args = &rtas_args;
1148 
1149 	va_start(list, outputs);
1150 	va_rtas_call_unlocked(args, token, nargs, nret, list);
1151 	va_end(list);
1152 
1153 	/* A -1 return code indicates that the last command couldn't
1154 	   be completed due to a hardware error. */
1155 	if (be32_to_cpu(args->rets[0]) == -1)
1156 		buff_copy = __fetch_rtas_last_error(NULL);
1157 
1158 	if (nret > 1 && outputs != NULL)
1159 		for (i = 0; i < nret-1; ++i)
1160 			outputs[i] = be32_to_cpu(args->rets[i + 1]);
1161 	ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
1162 
1163 	lockdep_unpin_lock(&rtas_lock, cookie);
1164 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1165 
1166 	if (buff_copy) {
1167 		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
1168 		if (slab_is_available())
1169 			kfree(buff_copy);
1170 	}
1171 	return ret;
1172 }
1173 EXPORT_SYMBOL_GPL(rtas_call);
1174 
1175 /**
1176  * rtas_busy_delay_time() - From an RTAS status value, calculate the
1177  *                          suggested delay time in milliseconds.
1178  *
1179  * @status: a value returned from rtas_call() or similar APIs which return
1180  *          the status of a RTAS function call.
1181  *
1182  * Context: Any context.
1183  *
1184  * Return:
1185  * * 100000 - If @status is 9905.
1186  * * 10000  - If @status is 9904.
1187  * * 1000   - If @status is 9903.
1188  * * 100    - If @status is 9902.
1189  * * 10     - If @status is 9901.
1190  * * 1      - If @status is either 9900 or -2. This is "wrong" for -2, but
1191  *            some callers depend on this behavior, and the worst outcome
1192  *            is that they will delay for longer than necessary.
1193  * * 0      - If @status is not a busy or extended delay value.
1194  */
1195 unsigned int rtas_busy_delay_time(int status)
1196 {
1197 	int order;
1198 	unsigned int ms = 0;
1199 
1200 	if (status == RTAS_BUSY) {
1201 		ms = 1;
1202 	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
1203 		   status <= RTAS_EXTENDED_DELAY_MAX) {
1204 		order = status - RTAS_EXTENDED_DELAY_MIN;
1205 		for (ms = 1; order > 0; order--)
1206 			ms *= 10;
1207 	}
1208 
1209 	return ms;
1210 }
1211 
1212 /*
1213  * Early boot fallback for rtas_busy_delay().
1214  */
1215 static bool __init rtas_busy_delay_early(int status)
1216 {
1217 	static size_t successive_ext_delays __initdata;
1218 	bool retry;
1219 
1220 	switch (status) {
1221 	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1222 		/*
1223 		 * In the unlikely case that we receive an extended
1224 		 * delay status in early boot, the OS is probably not
1225 		 * the cause, and there's nothing we can do to clear
1226 		 * the condition. Best we can do is delay for a bit
1227 		 * and hope it's transient. Lie to the caller if it
1228 		 * seems like we're stuck in a retry loop.
1229 		 */
1230 		mdelay(1);
1231 		retry = true;
1232 		successive_ext_delays += 1;
1233 		if (successive_ext_delays > 1000) {
1234 			pr_err("too many extended delays, giving up\n");
1235 			dump_stack();
1236 			retry = false;
1237 			successive_ext_delays = 0;
1238 		}
1239 		break;
1240 	case RTAS_BUSY:
1241 		retry = true;
1242 		successive_ext_delays = 0;
1243 		break;
1244 	default:
1245 		retry = false;
1246 		successive_ext_delays = 0;
1247 		break;
1248 	}
1249 
1250 	return retry;
1251 }
1252 
1253 /**
1254  * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
1255  *
1256  * @status: a value returned from rtas_call() or similar APIs which return
1257  *          the status of a RTAS function call.
1258  *
1259  * Context: Process context. May sleep or schedule.
1260  *
1261  * Return:
1262  * * true  - @status is RTAS_BUSY or an extended delay hint. The
1263  *           caller may assume that the CPU has been yielded if necessary,
1264  *           and that an appropriate delay for @status has elapsed.
1265  *           Generally the caller should reattempt the RTAS call which
1266  *           yielded @status.
1267  *
1268  * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
1269  *           caller is responsible for handling @status.
1270  */
1271 bool __ref rtas_busy_delay(int status)
1272 {
1273 	unsigned int ms;
1274 	bool ret;
1275 
1276 	/*
1277 	 * Can't do timed sleeps before timekeeping is up.
1278 	 */
1279 	if (system_state < SYSTEM_SCHEDULING)
1280 		return rtas_busy_delay_early(status);
1281 
1282 	switch (status) {
1283 	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1284 		ret = true;
1285 		ms = rtas_busy_delay_time(status);
1286 		/*
1287 		 * The extended delay hint can be as high as 100 seconds.
1288 		 * Surely any function returning such a status is either
1289 		 * buggy or isn't going to be significantly slowed by us
1290 		 * polling at 1HZ. Clamp the sleep time to one second.
1291 		 */
1292 		ms = clamp(ms, 1U, 1000U);
1293 		/*
1294 		 * The delay hint is an order-of-magnitude suggestion, not
1295 		 * a minimum. It is fine, possibly even advantageous, for
1296 		 * us to pause for less time than hinted. For small values,
1297 		 * use usleep_range() to ensure we don't sleep much longer
1298 		 * than actually needed.
1299 		 *
1300 		 * See Documentation/timers/timers-howto.rst for
1301 		 * explanation of the threshold used here. In effect we use
1302 		 * usleep_range() for 9900 and 9901, msleep() for
1303 		 * 9902-9905.
1304 		 */
1305 		if (ms <= 20)
1306 			usleep_range(ms * 100, ms * 1000);
1307 		else
1308 			msleep(ms);
1309 		break;
1310 	case RTAS_BUSY:
1311 		ret = true;
1312 		/*
1313 		 * We should call again immediately if there's no other
1314 		 * work to do.
1315 		 */
1316 		cond_resched();
1317 		break;
1318 	default:
1319 		ret = false;
1320 		/*
1321 		 * Not a busy or extended delay status; the caller should
1322 		 * handle @status itself. Ensure we warn on misuses in
1323 		 * atomic context regardless.
1324 		 */
1325 		might_sleep();
1326 		break;
1327 	}
1328 
1329 	return ret;
1330 }
1331 EXPORT_SYMBOL_GPL(rtas_busy_delay);
1332 
1333 int rtas_error_rc(int rtas_rc)
1334 {
1335 	int rc;
1336 
1337 	switch (rtas_rc) {
1338 	case RTAS_HARDWARE_ERROR:	/* Hardware Error */
1339 		rc = -EIO;
1340 		break;
1341 	case RTAS_INVALID_PARAMETER:	/* Bad indicator/domain/etc */
1342 		rc = -EINVAL;
1343 		break;
1344 	case -9000:			/* Isolation error */
1345 		rc = -EFAULT;
1346 		break;
1347 	case -9001:			/* Outstanding TCE/PTE */
1348 		rc = -EEXIST;
1349 		break;
1350 	case -9002:			/* No usable slot */
1351 		rc = -ENODEV;
1352 		break;
1353 	default:
1354 		pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
1355 		rc = -ERANGE;
1356 		break;
1357 	}
1358 	return rc;
1359 }
1360 EXPORT_SYMBOL_GPL(rtas_error_rc);
1361 
1362 int rtas_get_power_level(int powerdomain, int *level)
1363 {
1364 	int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
1365 	int rc;
1366 
1367 	if (token == RTAS_UNKNOWN_SERVICE)
1368 		return -ENOENT;
1369 
1370 	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
1371 		udelay(1);
1372 
1373 	if (rc < 0)
1374 		return rtas_error_rc(rc);
1375 	return rc;
1376 }
1377 EXPORT_SYMBOL_GPL(rtas_get_power_level);
1378 
1379 int rtas_set_power_level(int powerdomain, int level, int *setlevel)
1380 {
1381 	int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
1382 	int rc;
1383 
1384 	if (token == RTAS_UNKNOWN_SERVICE)
1385 		return -ENOENT;
1386 
1387 	do {
1388 		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
1389 	} while (rtas_busy_delay(rc));
1390 
1391 	if (rc < 0)
1392 		return rtas_error_rc(rc);
1393 	return rc;
1394 }
1395 EXPORT_SYMBOL_GPL(rtas_set_power_level);
1396 
1397 int rtas_get_sensor(int sensor, int index, int *state)
1398 {
1399 	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1400 	int rc;
1401 
1402 	if (token == RTAS_UNKNOWN_SERVICE)
1403 		return -ENOENT;
1404 
1405 	do {
1406 		rc = rtas_call(token, 2, 2, state, sensor, index);
1407 	} while (rtas_busy_delay(rc));
1408 
1409 	if (rc < 0)
1410 		return rtas_error_rc(rc);
1411 	return rc;
1412 }
1413 EXPORT_SYMBOL_GPL(rtas_get_sensor);
1414 
1415 int rtas_get_sensor_fast(int sensor, int index, int *state)
1416 {
1417 	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1418 	int rc;
1419 
1420 	if (token == RTAS_UNKNOWN_SERVICE)
1421 		return -ENOENT;
1422 
1423 	rc = rtas_call(token, 2, 2, state, sensor, index);
1424 	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1425 				    rc <= RTAS_EXTENDED_DELAY_MAX));
1426 
1427 	if (rc < 0)
1428 		return rtas_error_rc(rc);
1429 	return rc;
1430 }
1431 
1432 bool rtas_indicator_present(int token, int *maxindex)
1433 {
1434 	int proplen, count, i;
1435 	const struct indicator_elem {
1436 		__be32 token;
1437 		__be32 maxindex;
1438 	} *indicators;
1439 
1440 	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
1441 	if (!indicators)
1442 		return false;
1443 
1444 	count = proplen / sizeof(struct indicator_elem);
1445 
1446 	for (i = 0; i < count; i++) {
1447 		if (__be32_to_cpu(indicators[i].token) != token)
1448 			continue;
1449 		if (maxindex)
1450 			*maxindex = __be32_to_cpu(indicators[i].maxindex);
1451 		return true;
1452 	}
1453 
1454 	return false;
1455 }
1456 
1457 int rtas_set_indicator(int indicator, int index, int new_value)
1458 {
1459 	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1460 	int rc;
1461 
1462 	if (token == RTAS_UNKNOWN_SERVICE)
1463 		return -ENOENT;
1464 
1465 	do {
1466 		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1467 	} while (rtas_busy_delay(rc));
1468 
1469 	if (rc < 0)
1470 		return rtas_error_rc(rc);
1471 	return rc;
1472 }
1473 EXPORT_SYMBOL_GPL(rtas_set_indicator);
1474 
1475 /*
1476  * Ignoring RTAS extended delay
1477  */
1478 int rtas_set_indicator_fast(int indicator, int index, int new_value)
1479 {
1480 	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1481 	int rc;
1482 
1483 	if (token == RTAS_UNKNOWN_SERVICE)
1484 		return -ENOENT;
1485 
1486 	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1487 
1488 	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1489 				    rc <= RTAS_EXTENDED_DELAY_MAX));
1490 
1491 	if (rc < 0)
1492 		return rtas_error_rc(rc);
1493 
1494 	return rc;
1495 }
1496 
1497 /**
1498  * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
1499  *
1500  * @fw_status: RTAS call status will be placed here if not NULL.
1501  *
1502  * rtas_ibm_suspend_me() should be called only on a CPU which has
1503  * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
1504  * should be waiting to return from H_JOIN.
1505  *
1506  * rtas_ibm_suspend_me() may suspend execution of the OS
1507  * indefinitely. Callers should take appropriate measures upon return, such as
1508  * resetting watchdog facilities.
1509  *
1510  * Callers may choose to retry this call if @fw_status is
1511  * %RTAS_THREADS_ACTIVE.
1512  *
1513  * Return:
1514  * 0          - The partition has resumed from suspend, possibly after
1515  *              migration to a different host.
1516  * -ECANCELED - The operation was aborted.
1517  * -EAGAIN    - There were other CPUs not in H_JOIN at the time of the call.
1518  * -EBUSY     - Some other condition prevented the suspend from succeeding.
1519  * -EIO       - Hardware/platform error.
1520  */
1521 int rtas_ibm_suspend_me(int *fw_status)
1522 {
1523 	int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
1524 	int fwrc;
1525 	int ret;
1526 
1527 	fwrc = rtas_call(token, 0, 1, NULL);
1528 
1529 	switch (fwrc) {
1530 	case 0:
1531 		ret = 0;
1532 		break;
1533 	case RTAS_SUSPEND_ABORTED:
1534 		ret = -ECANCELED;
1535 		break;
1536 	case RTAS_THREADS_ACTIVE:
1537 		ret = -EAGAIN;
1538 		break;
1539 	case RTAS_NOT_SUSPENDABLE:
1540 	case RTAS_OUTSTANDING_COPROC:
1541 		ret = -EBUSY;
1542 		break;
1543 	case -1:
1544 	default:
1545 		ret = -EIO;
1546 		break;
1547 	}
1548 
1549 	if (fw_status)
1550 		*fw_status = fwrc;
1551 
1552 	return ret;
1553 }
1554 
1555 void __noreturn rtas_restart(char *cmd)
1556 {
1557 	if (rtas_flash_term_hook)
1558 		rtas_flash_term_hook(SYS_RESTART);
1559 	pr_emerg("system-reboot returned %d\n",
1560 		 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
1561 	for (;;);
1562 }
1563 
1564 void rtas_power_off(void)
1565 {
1566 	if (rtas_flash_term_hook)
1567 		rtas_flash_term_hook(SYS_POWER_OFF);
1568 	/* allow power on only with power button press */
1569 	pr_emerg("power-off returned %d\n",
1570 		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1571 	for (;;);
1572 }
1573 
1574 void __noreturn rtas_halt(void)
1575 {
1576 	if (rtas_flash_term_hook)
1577 		rtas_flash_term_hook(SYS_HALT);
1578 	/* allow power on only with power button press */
1579 	pr_emerg("power-off returned %d\n",
1580 		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1581 	for (;;);
1582 }
1583 
1584 /* Must be in the RMO region, so we place it here */
1585 static char rtas_os_term_buf[2048];
1586 static bool ibm_extended_os_term;
1587 
1588 void rtas_os_term(char *str)
1589 {
1590 	s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
1591 	static struct rtas_args args;
1592 	int status;
1593 
1594 	/*
1595 	 * Firmware with the ibm,extended-os-term property is guaranteed
1596 	 * to always return from an ibm,os-term call. Earlier versions without
1597 	 * this property may terminate the partition which we want to avoid
1598 	 * since it interferes with panic_timeout.
1599 	 */
1600 
1601 	if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
1602 		return;
1603 
1604 	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
1605 
1606 	/*
1607 	 * Keep calling as long as RTAS returns a "try again" status,
1608 	 * but don't use rtas_busy_delay(), which potentially
1609 	 * schedules.
1610 	 */
1611 	do {
1612 		rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
1613 		status = be32_to_cpu(args.rets[0]);
1614 	} while (rtas_busy_delay_time(status));
1615 
1616 	if (status != 0)
1617 		pr_emerg("ibm,os-term call failed %d\n", status);
1618 }
1619 
1620 /**
1621  * rtas_activate_firmware() - Activate a new version of firmware.
1622  *
1623  * Context: This function may sleep.
1624  *
1625  * Activate a new version of partition firmware. The OS must call this
1626  * after resuming from a partition hibernation or migration in order
1627  * to maintain the ability to perform live firmware updates. It's not
1628  * catastrophic for this method to be absent or to fail; just log the
1629  * condition in that case.
1630  */
1631 void rtas_activate_firmware(void)
1632 {
1633 	int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
1634 	int fwrc;
1635 
1636 	if (token == RTAS_UNKNOWN_SERVICE) {
1637 		pr_notice("ibm,activate-firmware method unavailable\n");
1638 		return;
1639 	}
1640 
1641 	do {
1642 		fwrc = rtas_call(token, 0, 1, NULL);
1643 	} while (rtas_busy_delay(fwrc));
1644 
1645 	if (fwrc)
1646 		pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
1647 }
1648 
1649 /**
1650  * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1651  *                          extended event log.
1652  * @log: RTAS error/event log
1653  * @section_id: two character section identifier
1654  *
1655  * Return: A pointer to the specified errorlog or NULL if not found.
1656  */
1657 noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1658 						      uint16_t section_id)
1659 {
1660 	struct rtas_ext_event_log_v6 *ext_log =
1661 		(struct rtas_ext_event_log_v6 *)log->buffer;
1662 	struct pseries_errorlog *sect;
1663 	unsigned char *p, *log_end;
1664 	uint32_t ext_log_length = rtas_error_extended_log_length(log);
1665 	uint8_t log_format = rtas_ext_event_log_format(ext_log);
1666 	uint32_t company_id = rtas_ext_event_company_id(ext_log);
1667 
1668 	/* Check that we understand the format */
1669 	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1670 	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1671 	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1672 		return NULL;
1673 
1674 	log_end = log->buffer + ext_log_length;
1675 	p = ext_log->vendor_log;
1676 
1677 	while (p < log_end) {
1678 		sect = (struct pseries_errorlog *)p;
1679 		if (pseries_errorlog_id(sect) == section_id)
1680 			return sect;
1681 		p += pseries_errorlog_length(sect);
1682 	}
1683 
1684 	return NULL;
1685 }
1686 
1687 /*
1688  * The sys_rtas syscall, as originally designed, allows root to pass
1689  * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1690  * can be abused to write to arbitrary memory and do other things that
1691  * are potentially harmful to system integrity, and thus should only
1692  * be used inside the kernel and not exposed to userspace.
1693  *
1694  * All known legitimate users of the sys_rtas syscall will only ever
1695  * pass addresses that fall within the RMO buffer, and use a known
1696  * subset of RTAS calls.
1697  *
1698  * Accordingly, we filter RTAS requests to check that the call is
1699  * permitted, and that provided pointers fall within the RMO buffer.
1700  * If a function is allowed to be invoked via the syscall, then its
1701  * entry in the rtas_functions table points to a rtas_filter that
1702  * describes its constraints, with the indexes of the parameters which
1703  * are expected to contain addresses and sizes of buffers allocated
1704  * inside the RMO buffer.
1705  */
1706 
1707 static bool in_rmo_buf(u32 base, u32 end)
1708 {
1709 	return base >= rtas_rmo_buf &&
1710 		base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1711 		base <= end &&
1712 		end >= rtas_rmo_buf &&
1713 		end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1714 }
1715 
1716 static bool block_rtas_call(int token, int nargs,
1717 			    struct rtas_args *args)
1718 {
1719 	const struct rtas_function *func;
1720 	const struct rtas_filter *f;
1721 	const bool is_platform_dump = token == rtas_function_token(RTAS_FN_IBM_PLATFORM_DUMP);
1722 	const bool is_config_conn = token == rtas_function_token(RTAS_FN_IBM_CONFIGURE_CONNECTOR);
1723 	u32 base, size, end;
1724 
1725 	/*
1726 	 * If this token doesn't correspond to a function the kernel
1727 	 * understands, you're not allowed to call it.
1728 	 */
1729 	func = rtas_token_to_function(token);
1730 	if (!func)
1731 		goto err;
1732 	/*
1733 	 * And only functions with filters attached are allowed.
1734 	 */
1735 	f = func->filter;
1736 	if (!f)
1737 		goto err;
1738 	/*
1739 	 * And some functions aren't allowed on LE.
1740 	 */
1741 	if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
1742 		goto err;
1743 
1744 	if (f->buf_idx1 != -1) {
1745 		base = be32_to_cpu(args->args[f->buf_idx1]);
1746 		if (f->size_idx1 != -1)
1747 			size = be32_to_cpu(args->args[f->size_idx1]);
1748 		else if (f->fixed_size)
1749 			size = f->fixed_size;
1750 		else
1751 			size = 1;
1752 
1753 		end = base + size - 1;
1754 
1755 		/*
1756 		 * Special case for ibm,platform-dump - NULL buffer
1757 		 * address is used to indicate end of dump processing
1758 		 */
1759 		if (is_platform_dump && base == 0)
1760 			return false;
1761 
1762 		if (!in_rmo_buf(base, end))
1763 			goto err;
1764 	}
1765 
1766 	if (f->buf_idx2 != -1) {
1767 		base = be32_to_cpu(args->args[f->buf_idx2]);
1768 		if (f->size_idx2 != -1)
1769 			size = be32_to_cpu(args->args[f->size_idx2]);
1770 		else if (f->fixed_size)
1771 			size = f->fixed_size;
1772 		else
1773 			size = 1;
1774 		end = base + size - 1;
1775 
1776 		/*
1777 		 * Special case for ibm,configure-connector where the
1778 		 * address can be 0
1779 		 */
1780 		if (is_config_conn && base == 0)
1781 			return false;
1782 
1783 		if (!in_rmo_buf(base, end))
1784 			goto err;
1785 	}
1786 
1787 	return false;
1788 err:
1789 	pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1790 	pr_err_ratelimited("sys_rtas: token=0x%x, nargs=%d (called by %s)\n",
1791 			   token, nargs, current->comm);
1792 	return true;
1793 }
1794 
1795 /* We assume to be passed big endian arguments */
1796 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1797 {
1798 	struct pin_cookie cookie;
1799 	struct rtas_args args;
1800 	unsigned long flags;
1801 	char *buff_copy, *errbuf = NULL;
1802 	int nargs, nret, token;
1803 
1804 	if (!capable(CAP_SYS_ADMIN))
1805 		return -EPERM;
1806 
1807 	if (!rtas.entry)
1808 		return -EINVAL;
1809 
1810 	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1811 		return -EFAULT;
1812 
1813 	nargs = be32_to_cpu(args.nargs);
1814 	nret  = be32_to_cpu(args.nret);
1815 	token = be32_to_cpu(args.token);
1816 
1817 	if (nargs >= ARRAY_SIZE(args.args)
1818 	    || nret > ARRAY_SIZE(args.args)
1819 	    || nargs + nret > ARRAY_SIZE(args.args))
1820 		return -EINVAL;
1821 
1822 	/* Copy in args. */
1823 	if (copy_from_user(args.args, uargs->args,
1824 			   nargs * sizeof(rtas_arg_t)) != 0)
1825 		return -EFAULT;
1826 
1827 	if (token == RTAS_UNKNOWN_SERVICE)
1828 		return -EINVAL;
1829 
1830 	args.rets = &args.args[nargs];
1831 	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1832 
1833 	if (block_rtas_call(token, nargs, &args))
1834 		return -EINVAL;
1835 
1836 	if (token_is_restricted_errinjct(token)) {
1837 		int err;
1838 
1839 		err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1840 		if (err)
1841 			return err;
1842 	}
1843 
1844 	/* Need to handle ibm,suspend_me call specially */
1845 	if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
1846 
1847 		/*
1848 		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1849 		 * endian, or at least the hcall within it requires it.
1850 		 */
1851 		int rc = 0;
1852 		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1853 		              | be32_to_cpu(args.args[1]);
1854 		rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1855 		if (rc == -EAGAIN)
1856 			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1857 		else if (rc == -EIO)
1858 			args.rets[0] = cpu_to_be32(-1);
1859 		else if (rc)
1860 			return rc;
1861 		goto copy_return;
1862 	}
1863 
1864 	buff_copy = get_errorlog_buffer();
1865 
1866 	raw_spin_lock_irqsave(&rtas_lock, flags);
1867 	cookie = lockdep_pin_lock(&rtas_lock);
1868 
1869 	rtas_args = args;
1870 	do_enter_rtas(&rtas_args);
1871 	args = rtas_args;
1872 
1873 	/* A -1 return code indicates that the last command couldn't
1874 	   be completed due to a hardware error. */
1875 	if (be32_to_cpu(args.rets[0]) == -1)
1876 		errbuf = __fetch_rtas_last_error(buff_copy);
1877 
1878 	lockdep_unpin_lock(&rtas_lock, cookie);
1879 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1880 
1881 	if (buff_copy) {
1882 		if (errbuf)
1883 			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1884 		kfree(buff_copy);
1885 	}
1886 
1887  copy_return:
1888 	/* Copy out args. */
1889 	if (copy_to_user(uargs->args + nargs,
1890 			 args.args + nargs,
1891 			 nret * sizeof(rtas_arg_t)) != 0)
1892 		return -EFAULT;
1893 
1894 	return 0;
1895 }
1896 
1897 static void __init rtas_function_table_init(void)
1898 {
1899 	struct property *prop;
1900 
1901 	for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
1902 		struct rtas_function *curr = &rtas_function_table[i];
1903 		struct rtas_function *prior;
1904 		int cmp;
1905 
1906 		curr->token = RTAS_UNKNOWN_SERVICE;
1907 
1908 		if (i == 0)
1909 			continue;
1910 		/*
1911 		 * Ensure table is sorted correctly for binary search
1912 		 * on function names.
1913 		 */
1914 		prior = &rtas_function_table[i - 1];
1915 
1916 		cmp = strcmp(prior->name, curr->name);
1917 		if (cmp < 0)
1918 			continue;
1919 
1920 		if (cmp == 0) {
1921 			pr_err("'%s' has duplicate function table entries\n",
1922 			       curr->name);
1923 		} else {
1924 			pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
1925 			       prior->name, curr->name);
1926 		}
1927 	}
1928 
1929 	for_each_property_of_node(rtas.dev, prop) {
1930 		struct rtas_function *func;
1931 
1932 		if (prop->length != sizeof(u32))
1933 			continue;
1934 
1935 		func = __rtas_name_to_function(prop->name);
1936 		if (!func)
1937 			continue;
1938 
1939 		func->token = be32_to_cpup((__be32 *)prop->value);
1940 
1941 		pr_debug("function %s has token %u\n", func->name, func->token);
1942 	}
1943 }
1944 
1945 /*
1946  * Call early during boot, before mem init, to retrieve the RTAS
1947  * information from the device-tree and allocate the RMO buffer for userland
1948  * accesses.
1949  */
1950 void __init rtas_initialize(void)
1951 {
1952 	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
1953 	u32 base, size, entry;
1954 	int no_base, no_size, no_entry;
1955 
1956 	/* Get RTAS dev node and fill up our "rtas" structure with infos
1957 	 * about it.
1958 	 */
1959 	rtas.dev = of_find_node_by_name(NULL, "rtas");
1960 	if (!rtas.dev)
1961 		return;
1962 
1963 	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
1964 	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
1965 	if (no_base || no_size) {
1966 		of_node_put(rtas.dev);
1967 		rtas.dev = NULL;
1968 		return;
1969 	}
1970 
1971 	rtas.base = base;
1972 	rtas.size = size;
1973 	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
1974 	rtas.entry = no_entry ? rtas.base : entry;
1975 
1976 	init_error_log_max();
1977 
1978 	/* Must be called before any function token lookups */
1979 	rtas_function_table_init();
1980 
1981 	/*
1982 	 * Discover this now to avoid a device tree lookup in the
1983 	 * panic path.
1984 	 */
1985 	ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
1986 
1987 	/* If RTAS was found, allocate the RMO buffer for it and look for
1988 	 * the stop-self token if any
1989 	 */
1990 #ifdef CONFIG_PPC64
1991 	if (firmware_has_feature(FW_FEATURE_LPAR))
1992 		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
1993 #endif
1994 	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
1995 						 0, rtas_region);
1996 	if (!rtas_rmo_buf)
1997 		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
1998 		      PAGE_SIZE, &rtas_region);
1999 
2000 	rtas_work_area_reserve_arena(rtas_region);
2001 }
2002 
2003 int __init early_init_dt_scan_rtas(unsigned long node,
2004 		const char *uname, int depth, void *data)
2005 {
2006 	const u32 *basep, *entryp, *sizep;
2007 
2008 	if (depth != 1 || strcmp(uname, "rtas") != 0)
2009 		return 0;
2010 
2011 	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
2012 	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
2013 	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
2014 
2015 #ifdef CONFIG_PPC64
2016 	/* need this feature to decide the crashkernel offset */
2017 	if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
2018 		powerpc_firmware_features |= FW_FEATURE_LPAR;
2019 #endif
2020 
2021 	if (basep && entryp && sizep) {
2022 		rtas.base = *basep;
2023 		rtas.entry = *entryp;
2024 		rtas.size = *sizep;
2025 	}
2026 
2027 #ifdef CONFIG_UDBG_RTAS_CONSOLE
2028 	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
2029 	if (basep)
2030 		rtas_putchar_token = *basep;
2031 
2032 	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
2033 	if (basep)
2034 		rtas_getchar_token = *basep;
2035 
2036 	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
2037 	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
2038 		udbg_init_rtas_console();
2039 
2040 #endif
2041 
2042 	/* break now */
2043 	return 1;
2044 }
2045 
2046 static DEFINE_RAW_SPINLOCK(timebase_lock);
2047 static u64 timebase = 0;
2048 
2049 void rtas_give_timebase(void)
2050 {
2051 	unsigned long flags;
2052 
2053 	raw_spin_lock_irqsave(&timebase_lock, flags);
2054 	hard_irq_disable();
2055 	rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
2056 	timebase = get_tb();
2057 	raw_spin_unlock(&timebase_lock);
2058 
2059 	while (timebase)
2060 		barrier();
2061 	rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
2062 	local_irq_restore(flags);
2063 }
2064 
2065 void rtas_take_timebase(void)
2066 {
2067 	while (!timebase)
2068 		barrier();
2069 	raw_spin_lock(&timebase_lock);
2070 	set_tb(timebase >> 32, timebase & 0xffffffff);
2071 	timebase = 0;
2072 	raw_spin_unlock(&timebase_lock);
2073 }
2074