1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Procedures for interfacing to the RTAS on CHRP machines. 5 * 6 * Peter Bergner, IBM March 2001. 7 * Copyright (C) 2001 IBM. 8 */ 9 10 #include <stdarg.h> 11 #include <linux/kernel.h> 12 #include <linux/types.h> 13 #include <linux/spinlock.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/capability.h> 17 #include <linux/delay.h> 18 #include <linux/cpu.h> 19 #include <linux/smp.h> 20 #include <linux/completion.h> 21 #include <linux/cpumask.h> 22 #include <linux/memblock.h> 23 #include <linux/slab.h> 24 #include <linux/reboot.h> 25 #include <linux/syscalls.h> 26 27 #include <asm/prom.h> 28 #include <asm/rtas.h> 29 #include <asm/hvcall.h> 30 #include <asm/machdep.h> 31 #include <asm/firmware.h> 32 #include <asm/page.h> 33 #include <asm/param.h> 34 #include <asm/delay.h> 35 #include <linux/uaccess.h> 36 #include <asm/udbg.h> 37 #include <asm/syscalls.h> 38 #include <asm/smp.h> 39 #include <linux/atomic.h> 40 #include <asm/time.h> 41 #include <asm/mmu.h> 42 #include <asm/topology.h> 43 44 /* This is here deliberately so it's only used in this file */ 45 void enter_rtas(unsigned long); 46 47 struct rtas_t rtas = { 48 .lock = __ARCH_SPIN_LOCK_UNLOCKED 49 }; 50 EXPORT_SYMBOL(rtas); 51 52 DEFINE_SPINLOCK(rtas_data_buf_lock); 53 EXPORT_SYMBOL(rtas_data_buf_lock); 54 55 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned; 56 EXPORT_SYMBOL(rtas_data_buf); 57 58 unsigned long rtas_rmo_buf; 59 60 /* 61 * If non-NULL, this gets called when the kernel terminates. 62 * This is done like this so rtas_flash can be a module. 63 */ 64 void (*rtas_flash_term_hook)(int); 65 EXPORT_SYMBOL(rtas_flash_term_hook); 66 67 /* RTAS use home made raw locking instead of spin_lock_irqsave 68 * because those can be called from within really nasty contexts 69 * such as having the timebase stopped which would lockup with 70 * normal locks and spinlock debugging enabled 71 */ 72 static unsigned long lock_rtas(void) 73 { 74 unsigned long flags; 75 76 local_irq_save(flags); 77 preempt_disable(); 78 arch_spin_lock(&rtas.lock); 79 return flags; 80 } 81 82 static void unlock_rtas(unsigned long flags) 83 { 84 arch_spin_unlock(&rtas.lock); 85 local_irq_restore(flags); 86 preempt_enable(); 87 } 88 89 /* 90 * call_rtas_display_status and call_rtas_display_status_delay 91 * are designed only for very early low-level debugging, which 92 * is why the token is hard-coded to 10. 93 */ 94 static void call_rtas_display_status(unsigned char c) 95 { 96 unsigned long s; 97 98 if (!rtas.base) 99 return; 100 101 s = lock_rtas(); 102 rtas_call_unlocked(&rtas.args, 10, 1, 1, NULL, c); 103 unlock_rtas(s); 104 } 105 106 static void call_rtas_display_status_delay(char c) 107 { 108 static int pending_newline = 0; /* did last write end with unprinted newline? */ 109 static int width = 16; 110 111 if (c == '\n') { 112 while (width-- > 0) 113 call_rtas_display_status(' '); 114 width = 16; 115 mdelay(500); 116 pending_newline = 1; 117 } else { 118 if (pending_newline) { 119 call_rtas_display_status('\r'); 120 call_rtas_display_status('\n'); 121 } 122 pending_newline = 0; 123 if (width--) { 124 call_rtas_display_status(c); 125 udelay(10000); 126 } 127 } 128 } 129 130 void __init udbg_init_rtas_panel(void) 131 { 132 udbg_putc = call_rtas_display_status_delay; 133 } 134 135 #ifdef CONFIG_UDBG_RTAS_CONSOLE 136 137 /* If you think you're dying before early_init_dt_scan_rtas() does its 138 * work, you can hard code the token values for your firmware here and 139 * hardcode rtas.base/entry etc. 140 */ 141 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE; 142 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE; 143 144 static void udbg_rtascon_putc(char c) 145 { 146 int tries; 147 148 if (!rtas.base) 149 return; 150 151 /* Add CRs before LFs */ 152 if (c == '\n') 153 udbg_rtascon_putc('\r'); 154 155 /* if there is more than one character to be displayed, wait a bit */ 156 for (tries = 0; tries < 16; tries++) { 157 if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0) 158 break; 159 udelay(1000); 160 } 161 } 162 163 static int udbg_rtascon_getc_poll(void) 164 { 165 int c; 166 167 if (!rtas.base) 168 return -1; 169 170 if (rtas_call(rtas_getchar_token, 0, 2, &c)) 171 return -1; 172 173 return c; 174 } 175 176 static int udbg_rtascon_getc(void) 177 { 178 int c; 179 180 while ((c = udbg_rtascon_getc_poll()) == -1) 181 ; 182 183 return c; 184 } 185 186 187 void __init udbg_init_rtas_console(void) 188 { 189 udbg_putc = udbg_rtascon_putc; 190 udbg_getc = udbg_rtascon_getc; 191 udbg_getc_poll = udbg_rtascon_getc_poll; 192 } 193 #endif /* CONFIG_UDBG_RTAS_CONSOLE */ 194 195 void rtas_progress(char *s, unsigned short hex) 196 { 197 struct device_node *root; 198 int width; 199 const __be32 *p; 200 char *os; 201 static int display_character, set_indicator; 202 static int display_width, display_lines, form_feed; 203 static const int *row_width; 204 static DEFINE_SPINLOCK(progress_lock); 205 static int current_line; 206 static int pending_newline = 0; /* did last write end with unprinted newline? */ 207 208 if (!rtas.base) 209 return; 210 211 if (display_width == 0) { 212 display_width = 0x10; 213 if ((root = of_find_node_by_path("/rtas"))) { 214 if ((p = of_get_property(root, 215 "ibm,display-line-length", NULL))) 216 display_width = be32_to_cpu(*p); 217 if ((p = of_get_property(root, 218 "ibm,form-feed", NULL))) 219 form_feed = be32_to_cpu(*p); 220 if ((p = of_get_property(root, 221 "ibm,display-number-of-lines", NULL))) 222 display_lines = be32_to_cpu(*p); 223 row_width = of_get_property(root, 224 "ibm,display-truncation-length", NULL); 225 of_node_put(root); 226 } 227 display_character = rtas_token("display-character"); 228 set_indicator = rtas_token("set-indicator"); 229 } 230 231 if (display_character == RTAS_UNKNOWN_SERVICE) { 232 /* use hex display if available */ 233 if (set_indicator != RTAS_UNKNOWN_SERVICE) 234 rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex); 235 return; 236 } 237 238 spin_lock(&progress_lock); 239 240 /* 241 * Last write ended with newline, but we didn't print it since 242 * it would just clear the bottom line of output. Print it now 243 * instead. 244 * 245 * If no newline is pending and form feed is supported, clear the 246 * display with a form feed; otherwise, print a CR to start output 247 * at the beginning of the line. 248 */ 249 if (pending_newline) { 250 rtas_call(display_character, 1, 1, NULL, '\r'); 251 rtas_call(display_character, 1, 1, NULL, '\n'); 252 pending_newline = 0; 253 } else { 254 current_line = 0; 255 if (form_feed) 256 rtas_call(display_character, 1, 1, NULL, 257 (char)form_feed); 258 else 259 rtas_call(display_character, 1, 1, NULL, '\r'); 260 } 261 262 if (row_width) 263 width = row_width[current_line]; 264 else 265 width = display_width; 266 os = s; 267 while (*os) { 268 if (*os == '\n' || *os == '\r') { 269 /* If newline is the last character, save it 270 * until next call to avoid bumping up the 271 * display output. 272 */ 273 if (*os == '\n' && !os[1]) { 274 pending_newline = 1; 275 current_line++; 276 if (current_line > display_lines-1) 277 current_line = display_lines-1; 278 spin_unlock(&progress_lock); 279 return; 280 } 281 282 /* RTAS wants CR-LF, not just LF */ 283 284 if (*os == '\n') { 285 rtas_call(display_character, 1, 1, NULL, '\r'); 286 rtas_call(display_character, 1, 1, NULL, '\n'); 287 } else { 288 /* CR might be used to re-draw a line, so we'll 289 * leave it alone and not add LF. 290 */ 291 rtas_call(display_character, 1, 1, NULL, *os); 292 } 293 294 if (row_width) 295 width = row_width[current_line]; 296 else 297 width = display_width; 298 } else { 299 width--; 300 rtas_call(display_character, 1, 1, NULL, *os); 301 } 302 303 os++; 304 305 /* if we overwrite the screen length */ 306 if (width <= 0) 307 while ((*os != 0) && (*os != '\n') && (*os != '\r')) 308 os++; 309 } 310 311 spin_unlock(&progress_lock); 312 } 313 EXPORT_SYMBOL(rtas_progress); /* needed by rtas_flash module */ 314 315 int rtas_token(const char *service) 316 { 317 const __be32 *tokp; 318 if (rtas.dev == NULL) 319 return RTAS_UNKNOWN_SERVICE; 320 tokp = of_get_property(rtas.dev, service, NULL); 321 return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE; 322 } 323 EXPORT_SYMBOL(rtas_token); 324 325 int rtas_service_present(const char *service) 326 { 327 return rtas_token(service) != RTAS_UNKNOWN_SERVICE; 328 } 329 EXPORT_SYMBOL(rtas_service_present); 330 331 #ifdef CONFIG_RTAS_ERROR_LOGGING 332 /* 333 * Return the firmware-specified size of the error log buffer 334 * for all rtas calls that require an error buffer argument. 335 * This includes 'check-exception' and 'rtas-last-error'. 336 */ 337 int rtas_get_error_log_max(void) 338 { 339 static int rtas_error_log_max; 340 if (rtas_error_log_max) 341 return rtas_error_log_max; 342 343 rtas_error_log_max = rtas_token ("rtas-error-log-max"); 344 if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) || 345 (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) { 346 printk (KERN_WARNING "RTAS: bad log buffer size %d\n", 347 rtas_error_log_max); 348 rtas_error_log_max = RTAS_ERROR_LOG_MAX; 349 } 350 return rtas_error_log_max; 351 } 352 EXPORT_SYMBOL(rtas_get_error_log_max); 353 354 355 static char rtas_err_buf[RTAS_ERROR_LOG_MAX]; 356 static int rtas_last_error_token; 357 358 /** Return a copy of the detailed error text associated with the 359 * most recent failed call to rtas. Because the error text 360 * might go stale if there are any other intervening rtas calls, 361 * this routine must be called atomically with whatever produced 362 * the error (i.e. with rtas.lock still held from the previous call). 363 */ 364 static char *__fetch_rtas_last_error(char *altbuf) 365 { 366 struct rtas_args err_args, save_args; 367 u32 bufsz; 368 char *buf = NULL; 369 370 if (rtas_last_error_token == -1) 371 return NULL; 372 373 bufsz = rtas_get_error_log_max(); 374 375 err_args.token = cpu_to_be32(rtas_last_error_token); 376 err_args.nargs = cpu_to_be32(2); 377 err_args.nret = cpu_to_be32(1); 378 err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf)); 379 err_args.args[1] = cpu_to_be32(bufsz); 380 err_args.args[2] = 0; 381 382 save_args = rtas.args; 383 rtas.args = err_args; 384 385 enter_rtas(__pa(&rtas.args)); 386 387 err_args = rtas.args; 388 rtas.args = save_args; 389 390 /* Log the error in the unlikely case that there was one. */ 391 if (unlikely(err_args.args[2] == 0)) { 392 if (altbuf) { 393 buf = altbuf; 394 } else { 395 buf = rtas_err_buf; 396 if (slab_is_available()) 397 buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); 398 } 399 if (buf) 400 memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX); 401 } 402 403 return buf; 404 } 405 406 #define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL) 407 408 #else /* CONFIG_RTAS_ERROR_LOGGING */ 409 #define __fetch_rtas_last_error(x) NULL 410 #define get_errorlog_buffer() NULL 411 #endif 412 413 414 static void 415 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, 416 va_list list) 417 { 418 int i; 419 420 args->token = cpu_to_be32(token); 421 args->nargs = cpu_to_be32(nargs); 422 args->nret = cpu_to_be32(nret); 423 args->rets = &(args->args[nargs]); 424 425 for (i = 0; i < nargs; ++i) 426 args->args[i] = cpu_to_be32(va_arg(list, __u32)); 427 428 for (i = 0; i < nret; ++i) 429 args->rets[i] = 0; 430 431 enter_rtas(__pa(args)); 432 } 433 434 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...) 435 { 436 va_list list; 437 438 va_start(list, nret); 439 va_rtas_call_unlocked(args, token, nargs, nret, list); 440 va_end(list); 441 } 442 443 int rtas_call(int token, int nargs, int nret, int *outputs, ...) 444 { 445 va_list list; 446 int i; 447 unsigned long s; 448 struct rtas_args *rtas_args; 449 char *buff_copy = NULL; 450 int ret; 451 452 if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE) 453 return -1; 454 455 s = lock_rtas(); 456 457 /* We use the global rtas args buffer */ 458 rtas_args = &rtas.args; 459 460 va_start(list, outputs); 461 va_rtas_call_unlocked(rtas_args, token, nargs, nret, list); 462 va_end(list); 463 464 /* A -1 return code indicates that the last command couldn't 465 be completed due to a hardware error. */ 466 if (be32_to_cpu(rtas_args->rets[0]) == -1) 467 buff_copy = __fetch_rtas_last_error(NULL); 468 469 if (nret > 1 && outputs != NULL) 470 for (i = 0; i < nret-1; ++i) 471 outputs[i] = be32_to_cpu(rtas_args->rets[i+1]); 472 ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0; 473 474 unlock_rtas(s); 475 476 if (buff_copy) { 477 log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); 478 if (slab_is_available()) 479 kfree(buff_copy); 480 } 481 return ret; 482 } 483 EXPORT_SYMBOL(rtas_call); 484 485 /* For RTAS_BUSY (-2), delay for 1 millisecond. For an extended busy status 486 * code of 990n, perform the hinted delay of 10^n (last digit) milliseconds. 487 */ 488 unsigned int rtas_busy_delay_time(int status) 489 { 490 int order; 491 unsigned int ms = 0; 492 493 if (status == RTAS_BUSY) { 494 ms = 1; 495 } else if (status >= RTAS_EXTENDED_DELAY_MIN && 496 status <= RTAS_EXTENDED_DELAY_MAX) { 497 order = status - RTAS_EXTENDED_DELAY_MIN; 498 for (ms = 1; order > 0; order--) 499 ms *= 10; 500 } 501 502 return ms; 503 } 504 EXPORT_SYMBOL(rtas_busy_delay_time); 505 506 /* For an RTAS busy status code, perform the hinted delay. */ 507 unsigned int rtas_busy_delay(int status) 508 { 509 unsigned int ms; 510 511 might_sleep(); 512 ms = rtas_busy_delay_time(status); 513 if (ms && need_resched()) 514 msleep(ms); 515 516 return ms; 517 } 518 EXPORT_SYMBOL(rtas_busy_delay); 519 520 static int rtas_error_rc(int rtas_rc) 521 { 522 int rc; 523 524 switch (rtas_rc) { 525 case -1: /* Hardware Error */ 526 rc = -EIO; 527 break; 528 case -3: /* Bad indicator/domain/etc */ 529 rc = -EINVAL; 530 break; 531 case -9000: /* Isolation error */ 532 rc = -EFAULT; 533 break; 534 case -9001: /* Outstanding TCE/PTE */ 535 rc = -EEXIST; 536 break; 537 case -9002: /* No usable slot */ 538 rc = -ENODEV; 539 break; 540 default: 541 printk(KERN_ERR "%s: unexpected RTAS error %d\n", 542 __func__, rtas_rc); 543 rc = -ERANGE; 544 break; 545 } 546 return rc; 547 } 548 549 int rtas_get_power_level(int powerdomain, int *level) 550 { 551 int token = rtas_token("get-power-level"); 552 int rc; 553 554 if (token == RTAS_UNKNOWN_SERVICE) 555 return -ENOENT; 556 557 while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) 558 udelay(1); 559 560 if (rc < 0) 561 return rtas_error_rc(rc); 562 return rc; 563 } 564 EXPORT_SYMBOL(rtas_get_power_level); 565 566 int rtas_set_power_level(int powerdomain, int level, int *setlevel) 567 { 568 int token = rtas_token("set-power-level"); 569 int rc; 570 571 if (token == RTAS_UNKNOWN_SERVICE) 572 return -ENOENT; 573 574 do { 575 rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); 576 } while (rtas_busy_delay(rc)); 577 578 if (rc < 0) 579 return rtas_error_rc(rc); 580 return rc; 581 } 582 EXPORT_SYMBOL(rtas_set_power_level); 583 584 int rtas_get_sensor(int sensor, int index, int *state) 585 { 586 int token = rtas_token("get-sensor-state"); 587 int rc; 588 589 if (token == RTAS_UNKNOWN_SERVICE) 590 return -ENOENT; 591 592 do { 593 rc = rtas_call(token, 2, 2, state, sensor, index); 594 } while (rtas_busy_delay(rc)); 595 596 if (rc < 0) 597 return rtas_error_rc(rc); 598 return rc; 599 } 600 EXPORT_SYMBOL(rtas_get_sensor); 601 602 int rtas_get_sensor_fast(int sensor, int index, int *state) 603 { 604 int token = rtas_token("get-sensor-state"); 605 int rc; 606 607 if (token == RTAS_UNKNOWN_SERVICE) 608 return -ENOENT; 609 610 rc = rtas_call(token, 2, 2, state, sensor, index); 611 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && 612 rc <= RTAS_EXTENDED_DELAY_MAX)); 613 614 if (rc < 0) 615 return rtas_error_rc(rc); 616 return rc; 617 } 618 619 bool rtas_indicator_present(int token, int *maxindex) 620 { 621 int proplen, count, i; 622 const struct indicator_elem { 623 __be32 token; 624 __be32 maxindex; 625 } *indicators; 626 627 indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen); 628 if (!indicators) 629 return false; 630 631 count = proplen / sizeof(struct indicator_elem); 632 633 for (i = 0; i < count; i++) { 634 if (__be32_to_cpu(indicators[i].token) != token) 635 continue; 636 if (maxindex) 637 *maxindex = __be32_to_cpu(indicators[i].maxindex); 638 return true; 639 } 640 641 return false; 642 } 643 EXPORT_SYMBOL(rtas_indicator_present); 644 645 int rtas_set_indicator(int indicator, int index, int new_value) 646 { 647 int token = rtas_token("set-indicator"); 648 int rc; 649 650 if (token == RTAS_UNKNOWN_SERVICE) 651 return -ENOENT; 652 653 do { 654 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); 655 } while (rtas_busy_delay(rc)); 656 657 if (rc < 0) 658 return rtas_error_rc(rc); 659 return rc; 660 } 661 EXPORT_SYMBOL(rtas_set_indicator); 662 663 /* 664 * Ignoring RTAS extended delay 665 */ 666 int rtas_set_indicator_fast(int indicator, int index, int new_value) 667 { 668 int rc; 669 int token = rtas_token("set-indicator"); 670 671 if (token == RTAS_UNKNOWN_SERVICE) 672 return -ENOENT; 673 674 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); 675 676 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && 677 rc <= RTAS_EXTENDED_DELAY_MAX)); 678 679 if (rc < 0) 680 return rtas_error_rc(rc); 681 682 return rc; 683 } 684 685 void __noreturn rtas_restart(char *cmd) 686 { 687 if (rtas_flash_term_hook) 688 rtas_flash_term_hook(SYS_RESTART); 689 printk("RTAS system-reboot returned %d\n", 690 rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); 691 for (;;); 692 } 693 694 void rtas_power_off(void) 695 { 696 if (rtas_flash_term_hook) 697 rtas_flash_term_hook(SYS_POWER_OFF); 698 /* allow power on only with power button press */ 699 printk("RTAS power-off returned %d\n", 700 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); 701 for (;;); 702 } 703 704 void __noreturn rtas_halt(void) 705 { 706 if (rtas_flash_term_hook) 707 rtas_flash_term_hook(SYS_HALT); 708 /* allow power on only with power button press */ 709 printk("RTAS power-off returned %d\n", 710 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); 711 for (;;); 712 } 713 714 /* Must be in the RMO region, so we place it here */ 715 static char rtas_os_term_buf[2048]; 716 717 void rtas_os_term(char *str) 718 { 719 int status; 720 721 /* 722 * Firmware with the ibm,extended-os-term property is guaranteed 723 * to always return from an ibm,os-term call. Earlier versions without 724 * this property may terminate the partition which we want to avoid 725 * since it interferes with panic_timeout. 726 */ 727 if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term") || 728 RTAS_UNKNOWN_SERVICE == rtas_token("ibm,extended-os-term")) 729 return; 730 731 snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); 732 733 do { 734 status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL, 735 __pa(rtas_os_term_buf)); 736 } while (rtas_busy_delay(status)); 737 738 if (status != 0) 739 printk(KERN_EMERG "ibm,os-term call failed %d\n", status); 740 } 741 742 static int ibm_suspend_me_token = RTAS_UNKNOWN_SERVICE; 743 #ifdef CONFIG_PPC_PSERIES 744 static int __rtas_suspend_last_cpu(struct rtas_suspend_me_data *data, int wake_when_done) 745 { 746 u16 slb_size = mmu_slb_size; 747 int rc = H_MULTI_THREADS_ACTIVE; 748 int cpu; 749 750 slb_set_size(SLB_MIN_SIZE); 751 printk(KERN_DEBUG "calling ibm,suspend-me on cpu %i\n", smp_processor_id()); 752 753 while (rc == H_MULTI_THREADS_ACTIVE && !atomic_read(&data->done) && 754 !atomic_read(&data->error)) 755 rc = rtas_call(data->token, 0, 1, NULL); 756 757 if (rc || atomic_read(&data->error)) { 758 printk(KERN_DEBUG "ibm,suspend-me returned %d\n", rc); 759 slb_set_size(slb_size); 760 } 761 762 if (atomic_read(&data->error)) 763 rc = atomic_read(&data->error); 764 765 atomic_set(&data->error, rc); 766 pSeries_coalesce_init(); 767 768 if (wake_when_done) { 769 atomic_set(&data->done, 1); 770 771 for_each_online_cpu(cpu) 772 plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); 773 } 774 775 if (atomic_dec_return(&data->working) == 0) 776 complete(data->complete); 777 778 return rc; 779 } 780 781 int rtas_suspend_last_cpu(struct rtas_suspend_me_data *data) 782 { 783 atomic_inc(&data->working); 784 return __rtas_suspend_last_cpu(data, 0); 785 } 786 787 static int __rtas_suspend_cpu(struct rtas_suspend_me_data *data, int wake_when_done) 788 { 789 long rc = H_SUCCESS; 790 unsigned long msr_save; 791 int cpu; 792 793 atomic_inc(&data->working); 794 795 /* really need to ensure MSR.EE is off for H_JOIN */ 796 msr_save = mfmsr(); 797 mtmsr(msr_save & ~(MSR_EE)); 798 799 while (rc == H_SUCCESS && !atomic_read(&data->done) && !atomic_read(&data->error)) 800 rc = plpar_hcall_norets(H_JOIN); 801 802 mtmsr(msr_save); 803 804 if (rc == H_SUCCESS) { 805 /* This cpu was prodded and the suspend is complete. */ 806 goto out; 807 } else if (rc == H_CONTINUE) { 808 /* All other cpus are in H_JOIN, this cpu does 809 * the suspend. 810 */ 811 return __rtas_suspend_last_cpu(data, wake_when_done); 812 } else { 813 printk(KERN_ERR "H_JOIN on cpu %i failed with rc = %ld\n", 814 smp_processor_id(), rc); 815 atomic_set(&data->error, rc); 816 } 817 818 if (wake_when_done) { 819 atomic_set(&data->done, 1); 820 821 /* This cpu did the suspend or got an error; in either case, 822 * we need to prod all other other cpus out of join state. 823 * Extra prods are harmless. 824 */ 825 for_each_online_cpu(cpu) 826 plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); 827 } 828 out: 829 if (atomic_dec_return(&data->working) == 0) 830 complete(data->complete); 831 return rc; 832 } 833 834 int rtas_suspend_cpu(struct rtas_suspend_me_data *data) 835 { 836 return __rtas_suspend_cpu(data, 0); 837 } 838 839 static void rtas_percpu_suspend_me(void *info) 840 { 841 __rtas_suspend_cpu((struct rtas_suspend_me_data *)info, 1); 842 } 843 844 enum rtas_cpu_state { 845 DOWN, 846 UP, 847 }; 848 849 #ifndef CONFIG_SMP 850 static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, 851 cpumask_var_t cpus) 852 { 853 if (!cpumask_empty(cpus)) { 854 cpumask_clear(cpus); 855 return -EINVAL; 856 } else 857 return 0; 858 } 859 #else 860 /* On return cpumask will be altered to indicate CPUs changed. 861 * CPUs with states changed will be set in the mask, 862 * CPUs with status unchanged will be unset in the mask. */ 863 static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, 864 cpumask_var_t cpus) 865 { 866 int cpu; 867 int cpuret = 0; 868 int ret = 0; 869 870 if (cpumask_empty(cpus)) 871 return 0; 872 873 for_each_cpu(cpu, cpus) { 874 switch (state) { 875 case DOWN: 876 cpuret = cpu_down(cpu); 877 break; 878 case UP: 879 cpuret = cpu_up(cpu); 880 break; 881 } 882 if (cpuret) { 883 pr_debug("%s: cpu_%s for cpu#%d returned %d.\n", 884 __func__, 885 ((state == UP) ? "up" : "down"), 886 cpu, cpuret); 887 if (!ret) 888 ret = cpuret; 889 if (state == UP) { 890 /* clear bits for unchanged cpus, return */ 891 cpumask_shift_right(cpus, cpus, cpu); 892 cpumask_shift_left(cpus, cpus, cpu); 893 break; 894 } else { 895 /* clear bit for unchanged cpu, continue */ 896 cpumask_clear_cpu(cpu, cpus); 897 } 898 } 899 } 900 901 return ret; 902 } 903 #endif 904 905 int rtas_online_cpus_mask(cpumask_var_t cpus) 906 { 907 int ret; 908 909 ret = rtas_cpu_state_change_mask(UP, cpus); 910 911 if (ret) { 912 cpumask_var_t tmp_mask; 913 914 if (!alloc_cpumask_var(&tmp_mask, GFP_KERNEL)) 915 return ret; 916 917 /* Use tmp_mask to preserve cpus mask from first failure */ 918 cpumask_copy(tmp_mask, cpus); 919 rtas_offline_cpus_mask(tmp_mask); 920 free_cpumask_var(tmp_mask); 921 } 922 923 return ret; 924 } 925 EXPORT_SYMBOL(rtas_online_cpus_mask); 926 927 int rtas_offline_cpus_mask(cpumask_var_t cpus) 928 { 929 return rtas_cpu_state_change_mask(DOWN, cpus); 930 } 931 EXPORT_SYMBOL(rtas_offline_cpus_mask); 932 933 int rtas_ibm_suspend_me(u64 handle) 934 { 935 long state; 936 long rc; 937 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 938 struct rtas_suspend_me_data data; 939 DECLARE_COMPLETION_ONSTACK(done); 940 cpumask_var_t offline_mask; 941 int cpuret; 942 943 if (!rtas_service_present("ibm,suspend-me")) 944 return -ENOSYS; 945 946 /* Make sure the state is valid */ 947 rc = plpar_hcall(H_VASI_STATE, retbuf, handle); 948 949 state = retbuf[0]; 950 951 if (rc) { 952 printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc); 953 return rc; 954 } else if (state == H_VASI_ENABLED) { 955 return -EAGAIN; 956 } else if (state != H_VASI_SUSPENDING) { 957 printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n", 958 state); 959 return -EIO; 960 } 961 962 if (!alloc_cpumask_var(&offline_mask, GFP_KERNEL)) 963 return -ENOMEM; 964 965 atomic_set(&data.working, 0); 966 atomic_set(&data.done, 0); 967 atomic_set(&data.error, 0); 968 data.token = rtas_token("ibm,suspend-me"); 969 data.complete = &done; 970 971 /* All present CPUs must be online */ 972 cpumask_andnot(offline_mask, cpu_present_mask, cpu_online_mask); 973 cpuret = rtas_online_cpus_mask(offline_mask); 974 if (cpuret) { 975 pr_err("%s: Could not bring present CPUs online.\n", __func__); 976 atomic_set(&data.error, cpuret); 977 goto out; 978 } 979 980 cpu_hotplug_disable(); 981 982 /* Check if we raced with a CPU-Offline Operation */ 983 if (unlikely(!cpumask_equal(cpu_present_mask, cpu_online_mask))) { 984 pr_err("%s: Raced against a concurrent CPU-Offline\n", 985 __func__); 986 atomic_set(&data.error, -EBUSY); 987 goto out_hotplug_enable; 988 } 989 990 /* Call function on all CPUs. One of us will make the 991 * rtas call 992 */ 993 if (on_each_cpu(rtas_percpu_suspend_me, &data, 0)) 994 atomic_set(&data.error, -EINVAL); 995 996 wait_for_completion(&done); 997 998 if (atomic_read(&data.error) != 0) 999 printk(KERN_ERR "Error doing global join\n"); 1000 1001 out_hotplug_enable: 1002 cpu_hotplug_enable(); 1003 1004 /* Take down CPUs not online prior to suspend */ 1005 cpuret = rtas_offline_cpus_mask(offline_mask); 1006 if (cpuret) 1007 pr_warn("%s: Could not restore CPUs to offline state.\n", 1008 __func__); 1009 1010 out: 1011 free_cpumask_var(offline_mask); 1012 return atomic_read(&data.error); 1013 } 1014 #else /* CONFIG_PPC_PSERIES */ 1015 int rtas_ibm_suspend_me(u64 handle) 1016 { 1017 return -ENOSYS; 1018 } 1019 #endif 1020 1021 /** 1022 * Find a specific pseries error log in an RTAS extended event log. 1023 * @log: RTAS error/event log 1024 * @section_id: two character section identifier 1025 * 1026 * Returns a pointer to the specified errorlog or NULL if not found. 1027 */ 1028 struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log, 1029 uint16_t section_id) 1030 { 1031 struct rtas_ext_event_log_v6 *ext_log = 1032 (struct rtas_ext_event_log_v6 *)log->buffer; 1033 struct pseries_errorlog *sect; 1034 unsigned char *p, *log_end; 1035 uint32_t ext_log_length = rtas_error_extended_log_length(log); 1036 uint8_t log_format = rtas_ext_event_log_format(ext_log); 1037 uint32_t company_id = rtas_ext_event_company_id(ext_log); 1038 1039 /* Check that we understand the format */ 1040 if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) || 1041 log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG || 1042 company_id != RTAS_V6EXT_COMPANY_ID_IBM) 1043 return NULL; 1044 1045 log_end = log->buffer + ext_log_length; 1046 p = ext_log->vendor_log; 1047 1048 while (p < log_end) { 1049 sect = (struct pseries_errorlog *)p; 1050 if (pseries_errorlog_id(sect) == section_id) 1051 return sect; 1052 p += pseries_errorlog_length(sect); 1053 } 1054 1055 return NULL; 1056 } 1057 1058 /* We assume to be passed big endian arguments */ 1059 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs) 1060 { 1061 struct rtas_args args; 1062 unsigned long flags; 1063 char *buff_copy, *errbuf = NULL; 1064 int nargs, nret, token; 1065 1066 if (!capable(CAP_SYS_ADMIN)) 1067 return -EPERM; 1068 1069 if (!rtas.entry) 1070 return -EINVAL; 1071 1072 if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) 1073 return -EFAULT; 1074 1075 nargs = be32_to_cpu(args.nargs); 1076 nret = be32_to_cpu(args.nret); 1077 token = be32_to_cpu(args.token); 1078 1079 if (nargs >= ARRAY_SIZE(args.args) 1080 || nret > ARRAY_SIZE(args.args) 1081 || nargs + nret > ARRAY_SIZE(args.args)) 1082 return -EINVAL; 1083 1084 /* Copy in args. */ 1085 if (copy_from_user(args.args, uargs->args, 1086 nargs * sizeof(rtas_arg_t)) != 0) 1087 return -EFAULT; 1088 1089 if (token == RTAS_UNKNOWN_SERVICE) 1090 return -EINVAL; 1091 1092 args.rets = &args.args[nargs]; 1093 memset(args.rets, 0, nret * sizeof(rtas_arg_t)); 1094 1095 /* Need to handle ibm,suspend_me call specially */ 1096 if (token == ibm_suspend_me_token) { 1097 1098 /* 1099 * rtas_ibm_suspend_me assumes the streamid handle is in cpu 1100 * endian, or at least the hcall within it requires it. 1101 */ 1102 int rc = 0; 1103 u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32) 1104 | be32_to_cpu(args.args[1]); 1105 rc = rtas_ibm_suspend_me(handle); 1106 if (rc == -EAGAIN) 1107 args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE); 1108 else if (rc == -EIO) 1109 args.rets[0] = cpu_to_be32(-1); 1110 else if (rc) 1111 return rc; 1112 goto copy_return; 1113 } 1114 1115 buff_copy = get_errorlog_buffer(); 1116 1117 flags = lock_rtas(); 1118 1119 rtas.args = args; 1120 enter_rtas(__pa(&rtas.args)); 1121 args = rtas.args; 1122 1123 /* A -1 return code indicates that the last command couldn't 1124 be completed due to a hardware error. */ 1125 if (be32_to_cpu(args.rets[0]) == -1) 1126 errbuf = __fetch_rtas_last_error(buff_copy); 1127 1128 unlock_rtas(flags); 1129 1130 if (buff_copy) { 1131 if (errbuf) 1132 log_error(errbuf, ERR_TYPE_RTAS_LOG, 0); 1133 kfree(buff_copy); 1134 } 1135 1136 copy_return: 1137 /* Copy out args. */ 1138 if (copy_to_user(uargs->args + nargs, 1139 args.args + nargs, 1140 nret * sizeof(rtas_arg_t)) != 0) 1141 return -EFAULT; 1142 1143 return 0; 1144 } 1145 1146 /* 1147 * Call early during boot, before mem init, to retrieve the RTAS 1148 * information from the device-tree and allocate the RMO buffer for userland 1149 * accesses. 1150 */ 1151 void __init rtas_initialize(void) 1152 { 1153 unsigned long rtas_region = RTAS_INSTANTIATE_MAX; 1154 u32 base, size, entry; 1155 int no_base, no_size, no_entry; 1156 1157 /* Get RTAS dev node and fill up our "rtas" structure with infos 1158 * about it. 1159 */ 1160 rtas.dev = of_find_node_by_name(NULL, "rtas"); 1161 if (!rtas.dev) 1162 return; 1163 1164 no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base); 1165 no_size = of_property_read_u32(rtas.dev, "rtas-size", &size); 1166 if (no_base || no_size) { 1167 of_node_put(rtas.dev); 1168 rtas.dev = NULL; 1169 return; 1170 } 1171 1172 rtas.base = base; 1173 rtas.size = size; 1174 no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry); 1175 rtas.entry = no_entry ? rtas.base : entry; 1176 1177 /* If RTAS was found, allocate the RMO buffer for it and look for 1178 * the stop-self token if any 1179 */ 1180 #ifdef CONFIG_PPC64 1181 if (firmware_has_feature(FW_FEATURE_LPAR)) { 1182 rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX); 1183 ibm_suspend_me_token = rtas_token("ibm,suspend-me"); 1184 } 1185 #endif 1186 rtas_rmo_buf = memblock_phys_alloc_range(RTAS_RMOBUF_MAX, PAGE_SIZE, 1187 0, rtas_region); 1188 if (!rtas_rmo_buf) 1189 panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n", 1190 PAGE_SIZE, &rtas_region); 1191 1192 #ifdef CONFIG_RTAS_ERROR_LOGGING 1193 rtas_last_error_token = rtas_token("rtas-last-error"); 1194 #endif 1195 } 1196 1197 int __init early_init_dt_scan_rtas(unsigned long node, 1198 const char *uname, int depth, void *data) 1199 { 1200 const u32 *basep, *entryp, *sizep; 1201 1202 if (depth != 1 || strcmp(uname, "rtas") != 0) 1203 return 0; 1204 1205 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL); 1206 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL); 1207 sizep = of_get_flat_dt_prop(node, "rtas-size", NULL); 1208 1209 if (basep && entryp && sizep) { 1210 rtas.base = *basep; 1211 rtas.entry = *entryp; 1212 rtas.size = *sizep; 1213 } 1214 1215 #ifdef CONFIG_UDBG_RTAS_CONSOLE 1216 basep = of_get_flat_dt_prop(node, "put-term-char", NULL); 1217 if (basep) 1218 rtas_putchar_token = *basep; 1219 1220 basep = of_get_flat_dt_prop(node, "get-term-char", NULL); 1221 if (basep) 1222 rtas_getchar_token = *basep; 1223 1224 if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE && 1225 rtas_getchar_token != RTAS_UNKNOWN_SERVICE) 1226 udbg_init_rtas_console(); 1227 1228 #endif 1229 1230 /* break now */ 1231 return 1; 1232 } 1233 1234 static arch_spinlock_t timebase_lock; 1235 static u64 timebase = 0; 1236 1237 void rtas_give_timebase(void) 1238 { 1239 unsigned long flags; 1240 1241 local_irq_save(flags); 1242 hard_irq_disable(); 1243 arch_spin_lock(&timebase_lock); 1244 rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL); 1245 timebase = get_tb(); 1246 arch_spin_unlock(&timebase_lock); 1247 1248 while (timebase) 1249 barrier(); 1250 rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL); 1251 local_irq_restore(flags); 1252 } 1253 1254 void rtas_take_timebase(void) 1255 { 1256 while (!timebase) 1257 barrier(); 1258 arch_spin_lock(&timebase_lock); 1259 set_tb(timebase >> 32, timebase & 0xffffffff); 1260 timebase = 0; 1261 arch_spin_unlock(&timebase_lock); 1262 } 1263