xref: /openbmc/linux/arch/powerpc/kernel/rtas.c (revision 93696d8f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Procedures for interfacing to the RTAS on CHRP machines.
5  *
6  * Peter Bergner, IBM	March 2001.
7  * Copyright (C) 2001 IBM.
8  */
9 
10 #define pr_fmt(fmt)	"rtas: " fmt
11 
12 #include <linux/bsearch.h>
13 #include <linux/capability.h>
14 #include <linux/delay.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/kconfig.h>
18 #include <linux/kernel.h>
19 #include <linux/lockdep.h>
20 #include <linux/memblock.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/reboot.h>
24 #include <linux/sched.h>
25 #include <linux/security.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/stdarg.h>
29 #include <linux/syscalls.h>
30 #include <linux/types.h>
31 #include <linux/uaccess.h>
32 #include <linux/xarray.h>
33 
34 #include <asm/delay.h>
35 #include <asm/firmware.h>
36 #include <asm/interrupt.h>
37 #include <asm/machdep.h>
38 #include <asm/mmu.h>
39 #include <asm/page.h>
40 #include <asm/rtas-work-area.h>
41 #include <asm/rtas.h>
42 #include <asm/time.h>
43 #include <asm/trace.h>
44 #include <asm/udbg.h>
45 
46 struct rtas_filter {
47 	/* Indexes into the args buffer, -1 if not used */
48 	const int buf_idx1;
49 	const int size_idx1;
50 	const int buf_idx2;
51 	const int size_idx2;
52 	/*
53 	 * Assumed buffer size per the spec if the function does not
54 	 * have a size parameter, e.g. ibm,errinjct. 0 if unused.
55 	 */
56 	const int fixed_size;
57 };
58 
59 /**
60  * struct rtas_function - Descriptor for RTAS functions.
61  *
62  * @token: Value of @name if it exists under the /rtas node.
63  * @name: Function name.
64  * @filter: If non-NULL, invoking this function via the rtas syscall is
65  *          generally allowed, and @filter describes constraints on the
66  *          arguments. See also @banned_for_syscall_on_le.
67  * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
68  *                            but specifically restricted on ppc64le. Such
69  *                            functions are believed to have no users on
70  *                            ppc64le, and we want to keep it that way. It does
71  *                            not make sense for this to be set when @filter
72  *                            is NULL.
73  */
74 struct rtas_function {
75 	s32 token;
76 	const bool banned_for_syscall_on_le:1;
77 	const char * const name;
78 	const struct rtas_filter *filter;
79 };
80 
81 static struct rtas_function rtas_function_table[] __ro_after_init = {
82 	[RTAS_FNIDX__CHECK_EXCEPTION] = {
83 		.name = "check-exception",
84 	},
85 	[RTAS_FNIDX__DISPLAY_CHARACTER] = {
86 		.name = "display-character",
87 		.filter = &(const struct rtas_filter) {
88 			.buf_idx1 = -1, .size_idx1 = -1,
89 			.buf_idx2 = -1, .size_idx2 = -1,
90 		},
91 	},
92 	[RTAS_FNIDX__EVENT_SCAN] = {
93 		.name = "event-scan",
94 	},
95 	[RTAS_FNIDX__FREEZE_TIME_BASE] = {
96 		.name = "freeze-time-base",
97 	},
98 	[RTAS_FNIDX__GET_POWER_LEVEL] = {
99 		.name = "get-power-level",
100 		.filter = &(const struct rtas_filter) {
101 			.buf_idx1 = -1, .size_idx1 = -1,
102 			.buf_idx2 = -1, .size_idx2 = -1,
103 		},
104 	},
105 	[RTAS_FNIDX__GET_SENSOR_STATE] = {
106 		.name = "get-sensor-state",
107 		.filter = &(const struct rtas_filter) {
108 			.buf_idx1 = -1, .size_idx1 = -1,
109 			.buf_idx2 = -1, .size_idx2 = -1,
110 		},
111 	},
112 	[RTAS_FNIDX__GET_TERM_CHAR] = {
113 		.name = "get-term-char",
114 	},
115 	[RTAS_FNIDX__GET_TIME_OF_DAY] = {
116 		.name = "get-time-of-day",
117 		.filter = &(const struct rtas_filter) {
118 			.buf_idx1 = -1, .size_idx1 = -1,
119 			.buf_idx2 = -1, .size_idx2 = -1,
120 		},
121 	},
122 	[RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
123 		.name = "ibm,activate-firmware",
124 		.filter = &(const struct rtas_filter) {
125 			.buf_idx1 = -1, .size_idx1 = -1,
126 			.buf_idx2 = -1, .size_idx2 = -1,
127 		},
128 	},
129 	[RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
130 		.name = "ibm,cbe-start-ptcal",
131 	},
132 	[RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
133 		.name = "ibm,cbe-stop-ptcal",
134 	},
135 	[RTAS_FNIDX__IBM_CHANGE_MSI] = {
136 		.name = "ibm,change-msi",
137 	},
138 	[RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
139 		.name = "ibm,close-errinjct",
140 		.filter = &(const struct rtas_filter) {
141 			.buf_idx1 = -1, .size_idx1 = -1,
142 			.buf_idx2 = -1, .size_idx2 = -1,
143 		},
144 	},
145 	[RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
146 		.name = "ibm,configure-bridge",
147 	},
148 	[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
149 		.name = "ibm,configure-connector",
150 		.filter = &(const struct rtas_filter) {
151 			.buf_idx1 = 0, .size_idx1 = -1,
152 			.buf_idx2 = 1, .size_idx2 = -1,
153 			.fixed_size = 4096,
154 		},
155 	},
156 	[RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
157 		.name = "ibm,configure-kernel-dump",
158 	},
159 	[RTAS_FNIDX__IBM_CONFIGURE_PE] = {
160 		.name = "ibm,configure-pe",
161 	},
162 	[RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
163 		.name = "ibm,create-pe-dma-window",
164 	},
165 	[RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
166 		.name = "ibm,display-message",
167 		.filter = &(const struct rtas_filter) {
168 			.buf_idx1 = 0, .size_idx1 = -1,
169 			.buf_idx2 = -1, .size_idx2 = -1,
170 		},
171 	},
172 	[RTAS_FNIDX__IBM_ERRINJCT] = {
173 		.name = "ibm,errinjct",
174 		.filter = &(const struct rtas_filter) {
175 			.buf_idx1 = 2, .size_idx1 = -1,
176 			.buf_idx2 = -1, .size_idx2 = -1,
177 			.fixed_size = 1024,
178 		},
179 	},
180 	[RTAS_FNIDX__IBM_EXTI2C] = {
181 		.name = "ibm,exti2c",
182 	},
183 	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
184 		.name = "ibm,get-config-addr-info",
185 	},
186 	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
187 		.name = "ibm,get-config-addr-info2",
188 		.filter = &(const struct rtas_filter) {
189 			.buf_idx1 = -1, .size_idx1 = -1,
190 			.buf_idx2 = -1, .size_idx2 = -1,
191 		},
192 	},
193 	[RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
194 		.name = "ibm,get-dynamic-sensor-state",
195 		.filter = &(const struct rtas_filter) {
196 			.buf_idx1 = 1, .size_idx1 = -1,
197 			.buf_idx2 = -1, .size_idx2 = -1,
198 		},
199 	},
200 	[RTAS_FNIDX__IBM_GET_INDICES] = {
201 		.name = "ibm,get-indices",
202 		.filter = &(const struct rtas_filter) {
203 			.buf_idx1 = 2, .size_idx1 = 3,
204 			.buf_idx2 = -1, .size_idx2 = -1,
205 		},
206 	},
207 	[RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
208 		.name = "ibm,get-rio-topology",
209 	},
210 	[RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
211 		.name = "ibm,get-system-parameter",
212 		.filter = &(const struct rtas_filter) {
213 			.buf_idx1 = 1, .size_idx1 = 2,
214 			.buf_idx2 = -1, .size_idx2 = -1,
215 		},
216 	},
217 	[RTAS_FNIDX__IBM_GET_VPD] = {
218 		.name = "ibm,get-vpd",
219 		.filter = &(const struct rtas_filter) {
220 			.buf_idx1 = 0, .size_idx1 = -1,
221 			.buf_idx2 = 1, .size_idx2 = 2,
222 		},
223 	},
224 	[RTAS_FNIDX__IBM_GET_XIVE] = {
225 		.name = "ibm,get-xive",
226 	},
227 	[RTAS_FNIDX__IBM_INT_OFF] = {
228 		.name = "ibm,int-off",
229 	},
230 	[RTAS_FNIDX__IBM_INT_ON] = {
231 		.name = "ibm,int-on",
232 	},
233 	[RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
234 		.name = "ibm,io-quiesce-ack",
235 	},
236 	[RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
237 		.name = "ibm,lpar-perftools",
238 		.filter = &(const struct rtas_filter) {
239 			.buf_idx1 = 2, .size_idx1 = 3,
240 			.buf_idx2 = -1, .size_idx2 = -1,
241 		},
242 	},
243 	[RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
244 		.name = "ibm,manage-flash-image",
245 	},
246 	[RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
247 		.name = "ibm,manage-storage-preservation",
248 	},
249 	[RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
250 		.name = "ibm,nmi-interlock",
251 	},
252 	[RTAS_FNIDX__IBM_NMI_REGISTER] = {
253 		.name = "ibm,nmi-register",
254 	},
255 	[RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
256 		.name = "ibm,open-errinjct",
257 		.filter = &(const struct rtas_filter) {
258 			.buf_idx1 = -1, .size_idx1 = -1,
259 			.buf_idx2 = -1, .size_idx2 = -1,
260 		},
261 	},
262 	[RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
263 		.name = "ibm,open-sriov-allow-unfreeze",
264 	},
265 	[RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
266 		.name = "ibm,open-sriov-map-pe-number",
267 	},
268 	[RTAS_FNIDX__IBM_OS_TERM] = {
269 		.name = "ibm,os-term",
270 	},
271 	[RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
272 		.name = "ibm,partner-control",
273 	},
274 	[RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
275 		.name = "ibm,physical-attestation",
276 		.filter = &(const struct rtas_filter) {
277 			.buf_idx1 = 0, .size_idx1 = 1,
278 			.buf_idx2 = -1, .size_idx2 = -1,
279 		},
280 	},
281 	[RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
282 		.name = "ibm,platform-dump",
283 		.filter = &(const struct rtas_filter) {
284 			.buf_idx1 = 4, .size_idx1 = 5,
285 			.buf_idx2 = -1, .size_idx2 = -1,
286 		},
287 	},
288 	[RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
289 		.name = "ibm,power-off-ups",
290 	},
291 	[RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
292 		.name = "ibm,query-interrupt-source-number",
293 	},
294 	[RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
295 		.name = "ibm,query-pe-dma-window",
296 	},
297 	[RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
298 		.name = "ibm,read-pci-config",
299 	},
300 	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
301 		.name = "ibm,read-slot-reset-state",
302 		.filter = &(const struct rtas_filter) {
303 			.buf_idx1 = -1, .size_idx1 = -1,
304 			.buf_idx2 = -1, .size_idx2 = -1,
305 		},
306 	},
307 	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
308 		.name = "ibm,read-slot-reset-state2",
309 	},
310 	[RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
311 		.name = "ibm,remove-pe-dma-window",
312 	},
313 	[RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOW] = {
314 		/*
315 		 * Note: PAPR+ v2.13 7.3.31.4.1 spells this as
316 		 * "ibm,reset-pe-dma-windows" (plural), but RTAS
317 		 * implementations use the singular form in practice.
318 		 */
319 		.name = "ibm,reset-pe-dma-window",
320 	},
321 	[RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
322 		.name = "ibm,scan-log-dump",
323 		.filter = &(const struct rtas_filter) {
324 			.buf_idx1 = 0, .size_idx1 = 1,
325 			.buf_idx2 = -1, .size_idx2 = -1,
326 		},
327 	},
328 	[RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
329 		.name = "ibm,set-dynamic-indicator",
330 		.filter = &(const struct rtas_filter) {
331 			.buf_idx1 = 2, .size_idx1 = -1,
332 			.buf_idx2 = -1, .size_idx2 = -1,
333 		},
334 	},
335 	[RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
336 		.name = "ibm,set-eeh-option",
337 		.filter = &(const struct rtas_filter) {
338 			.buf_idx1 = -1, .size_idx1 = -1,
339 			.buf_idx2 = -1, .size_idx2 = -1,
340 		},
341 	},
342 	[RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
343 		.name = "ibm,set-slot-reset",
344 	},
345 	[RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
346 		.name = "ibm,set-system-parameter",
347 		.filter = &(const struct rtas_filter) {
348 			.buf_idx1 = 1, .size_idx1 = -1,
349 			.buf_idx2 = -1, .size_idx2 = -1,
350 		},
351 	},
352 	[RTAS_FNIDX__IBM_SET_XIVE] = {
353 		.name = "ibm,set-xive",
354 	},
355 	[RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
356 		.name = "ibm,slot-error-detail",
357 	},
358 	[RTAS_FNIDX__IBM_SUSPEND_ME] = {
359 		.name = "ibm,suspend-me",
360 		.banned_for_syscall_on_le = true,
361 		.filter = &(const struct rtas_filter) {
362 			.buf_idx1 = -1, .size_idx1 = -1,
363 			.buf_idx2 = -1, .size_idx2 = -1,
364 		},
365 	},
366 	[RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
367 		.name = "ibm,tune-dma-parms",
368 	},
369 	[RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
370 		.name = "ibm,update-flash-64-and-reboot",
371 	},
372 	[RTAS_FNIDX__IBM_UPDATE_NODES] = {
373 		.name = "ibm,update-nodes",
374 		.banned_for_syscall_on_le = true,
375 		.filter = &(const struct rtas_filter) {
376 			.buf_idx1 = 0, .size_idx1 = -1,
377 			.buf_idx2 = -1, .size_idx2 = -1,
378 			.fixed_size = 4096,
379 		},
380 	},
381 	[RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
382 		.name = "ibm,update-properties",
383 		.banned_for_syscall_on_le = true,
384 		.filter = &(const struct rtas_filter) {
385 			.buf_idx1 = 0, .size_idx1 = -1,
386 			.buf_idx2 = -1, .size_idx2 = -1,
387 			.fixed_size = 4096,
388 		},
389 	},
390 	[RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
391 		.name = "ibm,validate-flash-image",
392 	},
393 	[RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
394 		.name = "ibm,write-pci-config",
395 	},
396 	[RTAS_FNIDX__NVRAM_FETCH] = {
397 		.name = "nvram-fetch",
398 	},
399 	[RTAS_FNIDX__NVRAM_STORE] = {
400 		.name = "nvram-store",
401 	},
402 	[RTAS_FNIDX__POWER_OFF] = {
403 		.name = "power-off",
404 	},
405 	[RTAS_FNIDX__PUT_TERM_CHAR] = {
406 		.name = "put-term-char",
407 	},
408 	[RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
409 		.name = "query-cpu-stopped-state",
410 	},
411 	[RTAS_FNIDX__READ_PCI_CONFIG] = {
412 		.name = "read-pci-config",
413 	},
414 	[RTAS_FNIDX__RTAS_LAST_ERROR] = {
415 		.name = "rtas-last-error",
416 	},
417 	[RTAS_FNIDX__SET_INDICATOR] = {
418 		.name = "set-indicator",
419 		.filter = &(const struct rtas_filter) {
420 			.buf_idx1 = -1, .size_idx1 = -1,
421 			.buf_idx2 = -1, .size_idx2 = -1,
422 		},
423 	},
424 	[RTAS_FNIDX__SET_POWER_LEVEL] = {
425 		.name = "set-power-level",
426 		.filter = &(const struct rtas_filter) {
427 			.buf_idx1 = -1, .size_idx1 = -1,
428 			.buf_idx2 = -1, .size_idx2 = -1,
429 		},
430 	},
431 	[RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
432 		.name = "set-time-for-power-on",
433 		.filter = &(const struct rtas_filter) {
434 			.buf_idx1 = -1, .size_idx1 = -1,
435 			.buf_idx2 = -1, .size_idx2 = -1,
436 		},
437 	},
438 	[RTAS_FNIDX__SET_TIME_OF_DAY] = {
439 		.name = "set-time-of-day",
440 		.filter = &(const struct rtas_filter) {
441 			.buf_idx1 = -1, .size_idx1 = -1,
442 			.buf_idx2 = -1, .size_idx2 = -1,
443 		},
444 	},
445 	[RTAS_FNIDX__START_CPU] = {
446 		.name = "start-cpu",
447 	},
448 	[RTAS_FNIDX__STOP_SELF] = {
449 		.name = "stop-self",
450 	},
451 	[RTAS_FNIDX__SYSTEM_REBOOT] = {
452 		.name = "system-reboot",
453 	},
454 	[RTAS_FNIDX__THAW_TIME_BASE] = {
455 		.name = "thaw-time-base",
456 	},
457 	[RTAS_FNIDX__WRITE_PCI_CONFIG] = {
458 		.name = "write-pci-config",
459 	},
460 };
461 
462 /*
463  * Nearly all RTAS calls need to be serialized. All uses of the
464  * default rtas_args block must hold rtas_lock.
465  *
466  * Exceptions to the RTAS serialization requirement (e.g. stop-self)
467  * must use a separate rtas_args structure.
468  */
469 static DEFINE_RAW_SPINLOCK(rtas_lock);
470 static struct rtas_args rtas_args;
471 
472 /**
473  * rtas_function_token() - RTAS function token lookup.
474  * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
475  *
476  * Context: Any context.
477  * Return: the token value for the function if implemented by this platform,
478  *         otherwise RTAS_UNKNOWN_SERVICE.
479  */
480 s32 rtas_function_token(const rtas_fn_handle_t handle)
481 {
482 	const size_t index = handle.index;
483 	const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
484 
485 	if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
486 		return RTAS_UNKNOWN_SERVICE;
487 	/*
488 	 * Various drivers attempt token lookups on non-RTAS
489 	 * platforms.
490 	 */
491 	if (!rtas.dev)
492 		return RTAS_UNKNOWN_SERVICE;
493 
494 	return rtas_function_table[index].token;
495 }
496 EXPORT_SYMBOL_GPL(rtas_function_token);
497 
498 static int rtas_function_cmp(const void *a, const void *b)
499 {
500 	const struct rtas_function *f1 = a;
501 	const struct rtas_function *f2 = b;
502 
503 	return strcmp(f1->name, f2->name);
504 }
505 
506 /*
507  * Boot-time initialization of the function table needs the lookup to
508  * return a non-const-qualified object. Use rtas_name_to_function()
509  * in all other contexts.
510  */
511 static struct rtas_function *__rtas_name_to_function(const char *name)
512 {
513 	const struct rtas_function key = {
514 		.name = name,
515 	};
516 	struct rtas_function *found;
517 
518 	found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
519 			sizeof(rtas_function_table[0]), rtas_function_cmp);
520 
521 	return found;
522 }
523 
524 static const struct rtas_function *rtas_name_to_function(const char *name)
525 {
526 	return __rtas_name_to_function(name);
527 }
528 
529 static DEFINE_XARRAY(rtas_token_to_function_xarray);
530 
531 static int __init rtas_token_to_function_xarray_init(void)
532 {
533 	int err = 0;
534 
535 	for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
536 		const struct rtas_function *func = &rtas_function_table[i];
537 		const s32 token = func->token;
538 
539 		if (token == RTAS_UNKNOWN_SERVICE)
540 			continue;
541 
542 		err = xa_err(xa_store(&rtas_token_to_function_xarray,
543 				      token, (void *)func, GFP_KERNEL));
544 		if (err)
545 			break;
546 	}
547 
548 	return err;
549 }
550 arch_initcall(rtas_token_to_function_xarray_init);
551 
552 /*
553  * For use by sys_rtas(), where the token value is provided by user
554  * space and we don't want to warn on failed lookups.
555  */
556 static const struct rtas_function *rtas_token_to_function_untrusted(s32 token)
557 {
558 	return xa_load(&rtas_token_to_function_xarray, token);
559 }
560 
561 /*
562  * Reverse lookup for deriving the function descriptor from a
563  * known-good token value in contexts where the former is not already
564  * available. @token must be valid, e.g. derived from the result of a
565  * prior lookup against the function table.
566  */
567 static const struct rtas_function *rtas_token_to_function(s32 token)
568 {
569 	const struct rtas_function *func;
570 
571 	if (WARN_ONCE(token < 0, "invalid token %d", token))
572 		return NULL;
573 
574 	func = rtas_token_to_function_untrusted(token);
575 
576 	if (WARN_ONCE(!func, "unexpected failed lookup for token %d", token))
577 		return NULL;
578 
579 	return func;
580 }
581 
582 /* This is here deliberately so it's only used in this file */
583 void enter_rtas(unsigned long);
584 
585 static void __do_enter_rtas(struct rtas_args *args)
586 {
587 	enter_rtas(__pa(args));
588 	srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
589 }
590 
591 static void __do_enter_rtas_trace(struct rtas_args *args)
592 {
593 	const char *name = NULL;
594 
595 	if (args == &rtas_args)
596 		lockdep_assert_held(&rtas_lock);
597 	/*
598 	 * If the tracepoints that consume the function name aren't
599 	 * active, avoid the lookup.
600 	 */
601 	if ((trace_rtas_input_enabled() || trace_rtas_output_enabled())) {
602 		const s32 token = be32_to_cpu(args->token);
603 		const struct rtas_function *func = rtas_token_to_function(token);
604 
605 		name = func->name;
606 	}
607 
608 	trace_rtas_input(args, name);
609 	trace_rtas_ll_entry(args);
610 
611 	__do_enter_rtas(args);
612 
613 	trace_rtas_ll_exit(args);
614 	trace_rtas_output(args, name);
615 }
616 
617 static void do_enter_rtas(struct rtas_args *args)
618 {
619 	const unsigned long msr = mfmsr();
620 	/*
621 	 * Situations where we want to skip any active tracepoints for
622 	 * safety reasons:
623 	 *
624 	 * 1. The last code executed on an offline CPU as it stops,
625 	 *    i.e. we're about to call stop-self. The tracepoints'
626 	 *    function name lookup uses xarray, which uses RCU, which
627 	 *    isn't valid to call on an offline CPU.  Any events
628 	 *    emitted on an offline CPU will be discarded anyway.
629 	 *
630 	 * 2. In real mode, as when invoking ibm,nmi-interlock from
631 	 *    the pseries MCE handler. We cannot count on trace
632 	 *    buffers or the entries in rtas_token_to_function_xarray
633 	 *    to be contained in the RMO.
634 	 */
635 	const unsigned long mask = MSR_IR | MSR_DR;
636 	const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
637 				      (msr & mask) == mask);
638 	/*
639 	 * Make sure MSR[RI] is currently enabled as it will be forced later
640 	 * in enter_rtas.
641 	 */
642 	BUG_ON(!(msr & MSR_RI));
643 
644 	BUG_ON(!irqs_disabled());
645 
646 	hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
647 
648 	if (can_trace)
649 		__do_enter_rtas_trace(args);
650 	else
651 		__do_enter_rtas(args);
652 }
653 
654 struct rtas_t rtas;
655 
656 DEFINE_SPINLOCK(rtas_data_buf_lock);
657 EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
658 
659 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
660 EXPORT_SYMBOL_GPL(rtas_data_buf);
661 
662 unsigned long rtas_rmo_buf;
663 
664 /*
665  * If non-NULL, this gets called when the kernel terminates.
666  * This is done like this so rtas_flash can be a module.
667  */
668 void (*rtas_flash_term_hook)(int);
669 EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
670 
671 /*
672  * call_rtas_display_status and call_rtas_display_status_delay
673  * are designed only for very early low-level debugging, which
674  * is why the token is hard-coded to 10.
675  */
676 static void call_rtas_display_status(unsigned char c)
677 {
678 	unsigned long flags;
679 
680 	if (!rtas.base)
681 		return;
682 
683 	raw_spin_lock_irqsave(&rtas_lock, flags);
684 	rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
685 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
686 }
687 
688 static void call_rtas_display_status_delay(char c)
689 {
690 	static int pending_newline = 0;  /* did last write end with unprinted newline? */
691 	static int width = 16;
692 
693 	if (c == '\n') {
694 		while (width-- > 0)
695 			call_rtas_display_status(' ');
696 		width = 16;
697 		mdelay(500);
698 		pending_newline = 1;
699 	} else {
700 		if (pending_newline) {
701 			call_rtas_display_status('\r');
702 			call_rtas_display_status('\n');
703 		}
704 		pending_newline = 0;
705 		if (width--) {
706 			call_rtas_display_status(c);
707 			udelay(10000);
708 		}
709 	}
710 }
711 
712 void __init udbg_init_rtas_panel(void)
713 {
714 	udbg_putc = call_rtas_display_status_delay;
715 }
716 
717 #ifdef CONFIG_UDBG_RTAS_CONSOLE
718 
719 /* If you think you're dying before early_init_dt_scan_rtas() does its
720  * work, you can hard code the token values for your firmware here and
721  * hardcode rtas.base/entry etc.
722  */
723 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
724 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
725 
726 static void udbg_rtascon_putc(char c)
727 {
728 	int tries;
729 
730 	if (!rtas.base)
731 		return;
732 
733 	/* Add CRs before LFs */
734 	if (c == '\n')
735 		udbg_rtascon_putc('\r');
736 
737 	/* if there is more than one character to be displayed, wait a bit */
738 	for (tries = 0; tries < 16; tries++) {
739 		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
740 			break;
741 		udelay(1000);
742 	}
743 }
744 
745 static int udbg_rtascon_getc_poll(void)
746 {
747 	int c;
748 
749 	if (!rtas.base)
750 		return -1;
751 
752 	if (rtas_call(rtas_getchar_token, 0, 2, &c))
753 		return -1;
754 
755 	return c;
756 }
757 
758 static int udbg_rtascon_getc(void)
759 {
760 	int c;
761 
762 	while ((c = udbg_rtascon_getc_poll()) == -1)
763 		;
764 
765 	return c;
766 }
767 
768 
769 void __init udbg_init_rtas_console(void)
770 {
771 	udbg_putc = udbg_rtascon_putc;
772 	udbg_getc = udbg_rtascon_getc;
773 	udbg_getc_poll = udbg_rtascon_getc_poll;
774 }
775 #endif /* CONFIG_UDBG_RTAS_CONSOLE */
776 
777 void rtas_progress(char *s, unsigned short hex)
778 {
779 	struct device_node *root;
780 	int width;
781 	const __be32 *p;
782 	char *os;
783 	static int display_character, set_indicator;
784 	static int display_width, display_lines, form_feed;
785 	static const int *row_width;
786 	static DEFINE_SPINLOCK(progress_lock);
787 	static int current_line;
788 	static int pending_newline = 0;  /* did last write end with unprinted newline? */
789 
790 	if (!rtas.base)
791 		return;
792 
793 	if (display_width == 0) {
794 		display_width = 0x10;
795 		if ((root = of_find_node_by_path("/rtas"))) {
796 			if ((p = of_get_property(root,
797 					"ibm,display-line-length", NULL)))
798 				display_width = be32_to_cpu(*p);
799 			if ((p = of_get_property(root,
800 					"ibm,form-feed", NULL)))
801 				form_feed = be32_to_cpu(*p);
802 			if ((p = of_get_property(root,
803 					"ibm,display-number-of-lines", NULL)))
804 				display_lines = be32_to_cpu(*p);
805 			row_width = of_get_property(root,
806 					"ibm,display-truncation-length", NULL);
807 			of_node_put(root);
808 		}
809 		display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
810 		set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
811 	}
812 
813 	if (display_character == RTAS_UNKNOWN_SERVICE) {
814 		/* use hex display if available */
815 		if (set_indicator != RTAS_UNKNOWN_SERVICE)
816 			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
817 		return;
818 	}
819 
820 	spin_lock(&progress_lock);
821 
822 	/*
823 	 * Last write ended with newline, but we didn't print it since
824 	 * it would just clear the bottom line of output. Print it now
825 	 * instead.
826 	 *
827 	 * If no newline is pending and form feed is supported, clear the
828 	 * display with a form feed; otherwise, print a CR to start output
829 	 * at the beginning of the line.
830 	 */
831 	if (pending_newline) {
832 		rtas_call(display_character, 1, 1, NULL, '\r');
833 		rtas_call(display_character, 1, 1, NULL, '\n');
834 		pending_newline = 0;
835 	} else {
836 		current_line = 0;
837 		if (form_feed)
838 			rtas_call(display_character, 1, 1, NULL,
839 				  (char)form_feed);
840 		else
841 			rtas_call(display_character, 1, 1, NULL, '\r');
842 	}
843 
844 	if (row_width)
845 		width = row_width[current_line];
846 	else
847 		width = display_width;
848 	os = s;
849 	while (*os) {
850 		if (*os == '\n' || *os == '\r') {
851 			/* If newline is the last character, save it
852 			 * until next call to avoid bumping up the
853 			 * display output.
854 			 */
855 			if (*os == '\n' && !os[1]) {
856 				pending_newline = 1;
857 				current_line++;
858 				if (current_line > display_lines-1)
859 					current_line = display_lines-1;
860 				spin_unlock(&progress_lock);
861 				return;
862 			}
863 
864 			/* RTAS wants CR-LF, not just LF */
865 
866 			if (*os == '\n') {
867 				rtas_call(display_character, 1, 1, NULL, '\r');
868 				rtas_call(display_character, 1, 1, NULL, '\n');
869 			} else {
870 				/* CR might be used to re-draw a line, so we'll
871 				 * leave it alone and not add LF.
872 				 */
873 				rtas_call(display_character, 1, 1, NULL, *os);
874 			}
875 
876 			if (row_width)
877 				width = row_width[current_line];
878 			else
879 				width = display_width;
880 		} else {
881 			width--;
882 			rtas_call(display_character, 1, 1, NULL, *os);
883 		}
884 
885 		os++;
886 
887 		/* if we overwrite the screen length */
888 		if (width <= 0)
889 			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
890 				os++;
891 	}
892 
893 	spin_unlock(&progress_lock);
894 }
895 EXPORT_SYMBOL_GPL(rtas_progress);		/* needed by rtas_flash module */
896 
897 int rtas_token(const char *service)
898 {
899 	const struct rtas_function *func;
900 	const __be32 *tokp;
901 
902 	if (rtas.dev == NULL)
903 		return RTAS_UNKNOWN_SERVICE;
904 
905 	func = rtas_name_to_function(service);
906 	if (func)
907 		return func->token;
908 	/*
909 	 * The caller is looking up a name that is not known to be an
910 	 * RTAS function. Either it's a function that needs to be
911 	 * added to the table, or they're misusing rtas_token() to
912 	 * access non-function properties of the /rtas node. Warn and
913 	 * fall back to the legacy behavior.
914 	 */
915 	WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
916 		  service);
917 
918 	tokp = of_get_property(rtas.dev, service, NULL);
919 	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
920 }
921 EXPORT_SYMBOL_GPL(rtas_token);
922 
923 int rtas_service_present(const char *service)
924 {
925 	return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
926 }
927 
928 #ifdef CONFIG_RTAS_ERROR_LOGGING
929 
930 static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
931 
932 /*
933  * Return the firmware-specified size of the error log buffer
934  *  for all rtas calls that require an error buffer argument.
935  *  This includes 'check-exception' and 'rtas-last-error'.
936  */
937 int rtas_get_error_log_max(void)
938 {
939 	return rtas_error_log_max;
940 }
941 
942 static void __init init_error_log_max(void)
943 {
944 	static const char propname[] __initconst = "rtas-error-log-max";
945 	u32 max;
946 
947 	if (of_property_read_u32(rtas.dev, propname, &max)) {
948 		pr_warn("%s not found, using default of %u\n",
949 			propname, RTAS_ERROR_LOG_MAX);
950 		max = RTAS_ERROR_LOG_MAX;
951 	}
952 
953 	if (max > RTAS_ERROR_LOG_MAX) {
954 		pr_warn("%s = %u, clamping max error log size to %u\n",
955 			propname, max, RTAS_ERROR_LOG_MAX);
956 		max = RTAS_ERROR_LOG_MAX;
957 	}
958 
959 	rtas_error_log_max = max;
960 }
961 
962 
963 static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
964 
965 /** Return a copy of the detailed error text associated with the
966  *  most recent failed call to rtas.  Because the error text
967  *  might go stale if there are any other intervening rtas calls,
968  *  this routine must be called atomically with whatever produced
969  *  the error (i.e. with rtas_lock still held from the previous call).
970  */
971 static char *__fetch_rtas_last_error(char *altbuf)
972 {
973 	const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
974 	struct rtas_args err_args, save_args;
975 	u32 bufsz;
976 	char *buf = NULL;
977 
978 	lockdep_assert_held(&rtas_lock);
979 
980 	if (token == -1)
981 		return NULL;
982 
983 	bufsz = rtas_get_error_log_max();
984 
985 	err_args.token = cpu_to_be32(token);
986 	err_args.nargs = cpu_to_be32(2);
987 	err_args.nret = cpu_to_be32(1);
988 	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
989 	err_args.args[1] = cpu_to_be32(bufsz);
990 	err_args.args[2] = 0;
991 
992 	save_args = rtas_args;
993 	rtas_args = err_args;
994 
995 	do_enter_rtas(&rtas_args);
996 
997 	err_args = rtas_args;
998 	rtas_args = save_args;
999 
1000 	/* Log the error in the unlikely case that there was one. */
1001 	if (unlikely(err_args.args[2] == 0)) {
1002 		if (altbuf) {
1003 			buf = altbuf;
1004 		} else {
1005 			buf = rtas_err_buf;
1006 			if (slab_is_available())
1007 				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
1008 		}
1009 		if (buf)
1010 			memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
1011 	}
1012 
1013 	return buf;
1014 }
1015 
1016 #define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
1017 
1018 #else /* CONFIG_RTAS_ERROR_LOGGING */
1019 #define __fetch_rtas_last_error(x)	NULL
1020 #define get_errorlog_buffer()		NULL
1021 static void __init init_error_log_max(void) {}
1022 #endif
1023 
1024 
1025 static void
1026 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
1027 		      va_list list)
1028 {
1029 	int i;
1030 
1031 	args->token = cpu_to_be32(token);
1032 	args->nargs = cpu_to_be32(nargs);
1033 	args->nret  = cpu_to_be32(nret);
1034 	args->rets  = &(args->args[nargs]);
1035 
1036 	for (i = 0; i < nargs; ++i)
1037 		args->args[i] = cpu_to_be32(va_arg(list, __u32));
1038 
1039 	for (i = 0; i < nret; ++i)
1040 		args->rets[i] = 0;
1041 
1042 	do_enter_rtas(args);
1043 }
1044 
1045 /**
1046  * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
1047  * @args: RTAS parameter block to be used for the call, must obey RTAS addressing
1048  *        constraints.
1049  * @token: Identifies the function being invoked.
1050  * @nargs: Number of input parameters. Does not include token.
1051  * @nret: Number of output parameters, including the call status.
1052  * @....: List of @nargs input parameters.
1053  *
1054  * Invokes the RTAS function indicated by @token, which the caller
1055  * should obtain via rtas_function_token().
1056  *
1057  * This function is similar to rtas_call(), but must be used with a
1058  * limited set of RTAS calls specifically exempted from the general
1059  * requirement that only one RTAS call may be in progress at any
1060  * time. Examples include stop-self and ibm,nmi-interlock.
1061  */
1062 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
1063 {
1064 	va_list list;
1065 
1066 	va_start(list, nret);
1067 	va_rtas_call_unlocked(args, token, nargs, nret, list);
1068 	va_end(list);
1069 }
1070 
1071 static bool token_is_restricted_errinjct(s32 token)
1072 {
1073 	return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
1074 	       token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
1075 }
1076 
1077 /**
1078  * rtas_call() - Invoke an RTAS firmware function.
1079  * @token: Identifies the function being invoked.
1080  * @nargs: Number of input parameters. Does not include token.
1081  * @nret: Number of output parameters, including the call status.
1082  * @outputs: Array of @nret output words.
1083  * @....: List of @nargs input parameters.
1084  *
1085  * Invokes the RTAS function indicated by @token, which the caller
1086  * should obtain via rtas_function_token().
1087  *
1088  * The @nargs and @nret arguments must match the number of input and
1089  * output parameters specified for the RTAS function.
1090  *
1091  * rtas_call() returns RTAS status codes, not conventional Linux errno
1092  * values. Callers must translate any failure to an appropriate errno
1093  * in syscall context. Most callers of RTAS functions that can return
1094  * -2 or 990x should use rtas_busy_delay() to correctly handle those
1095  * statuses before calling again.
1096  *
1097  * The return value descriptions are adapted from 7.2.8 [RTAS] Return
1098  * Codes of the PAPR and CHRP specifications.
1099  *
1100  * Context: Process context preferably, interrupt context if
1101  *          necessary.  Acquires an internal spinlock and may perform
1102  *          GFP_ATOMIC slab allocation in error path. Unsafe for NMI
1103  *          context.
1104  * Return:
1105  * *                          0 - RTAS function call succeeded.
1106  * *                         -1 - RTAS function encountered a hardware or
1107  *                                platform error, or the token is invalid,
1108  *                                or the function is restricted by kernel policy.
1109  * *                         -2 - Specs say "A necessary hardware device was busy,
1110  *                                and the requested function could not be
1111  *                                performed. The operation should be retried at
1112  *                                a later time." This is misleading, at least with
1113  *                                respect to current RTAS implementations. What it
1114  *                                usually means in practice is that the function
1115  *                                could not be completed while meeting RTAS's
1116  *                                deadline for returning control to the OS (250us
1117  *                                for PAPR/PowerVM, typically), but the call may be
1118  *                                immediately reattempted to resume work on it.
1119  * *                         -3 - Parameter error.
1120  * *                         -7 - Unexpected state change.
1121  * *                9000...9899 - Vendor-specific success codes.
1122  * *                9900...9905 - Advisory extended delay. Caller should try
1123  *                                again after ~10^x ms has elapsed, where x is
1124  *                                the last digit of the status [0-5]. Again going
1125  *                                beyond the PAPR text, 990x on PowerVM indicates
1126  *                                contention for RTAS-internal resources. Other
1127  *                                RTAS call sequences in progress should be
1128  *                                allowed to complete before reattempting the
1129  *                                call.
1130  * *                      -9000 - Multi-level isolation error.
1131  * *              -9999...-9004 - Vendor-specific error codes.
1132  * * Additional negative values - Function-specific error.
1133  * * Additional positive values - Function-specific success.
1134  */
1135 int rtas_call(int token, int nargs, int nret, int *outputs, ...)
1136 {
1137 	struct pin_cookie cookie;
1138 	va_list list;
1139 	int i;
1140 	unsigned long flags;
1141 	struct rtas_args *args;
1142 	char *buff_copy = NULL;
1143 	int ret;
1144 
1145 	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
1146 		return -1;
1147 
1148 	if (token_is_restricted_errinjct(token)) {
1149 		/*
1150 		 * It would be nicer to not discard the error value
1151 		 * from security_locked_down(), but callers expect an
1152 		 * RTAS status, not an errno.
1153 		 */
1154 		if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
1155 			return -1;
1156 	}
1157 
1158 	if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
1159 		WARN_ON_ONCE(1);
1160 		return -1;
1161 	}
1162 
1163 	raw_spin_lock_irqsave(&rtas_lock, flags);
1164 	cookie = lockdep_pin_lock(&rtas_lock);
1165 
1166 	/* We use the global rtas args buffer */
1167 	args = &rtas_args;
1168 
1169 	va_start(list, outputs);
1170 	va_rtas_call_unlocked(args, token, nargs, nret, list);
1171 	va_end(list);
1172 
1173 	/* A -1 return code indicates that the last command couldn't
1174 	   be completed due to a hardware error. */
1175 	if (be32_to_cpu(args->rets[0]) == -1)
1176 		buff_copy = __fetch_rtas_last_error(NULL);
1177 
1178 	if (nret > 1 && outputs != NULL)
1179 		for (i = 0; i < nret-1; ++i)
1180 			outputs[i] = be32_to_cpu(args->rets[i + 1]);
1181 	ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
1182 
1183 	lockdep_unpin_lock(&rtas_lock, cookie);
1184 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1185 
1186 	if (buff_copy) {
1187 		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
1188 		if (slab_is_available())
1189 			kfree(buff_copy);
1190 	}
1191 	return ret;
1192 }
1193 EXPORT_SYMBOL_GPL(rtas_call);
1194 
1195 /**
1196  * rtas_busy_delay_time() - From an RTAS status value, calculate the
1197  *                          suggested delay time in milliseconds.
1198  *
1199  * @status: a value returned from rtas_call() or similar APIs which return
1200  *          the status of a RTAS function call.
1201  *
1202  * Context: Any context.
1203  *
1204  * Return:
1205  * * 100000 - If @status is 9905.
1206  * * 10000  - If @status is 9904.
1207  * * 1000   - If @status is 9903.
1208  * * 100    - If @status is 9902.
1209  * * 10     - If @status is 9901.
1210  * * 1      - If @status is either 9900 or -2. This is "wrong" for -2, but
1211  *            some callers depend on this behavior, and the worst outcome
1212  *            is that they will delay for longer than necessary.
1213  * * 0      - If @status is not a busy or extended delay value.
1214  */
1215 unsigned int rtas_busy_delay_time(int status)
1216 {
1217 	int order;
1218 	unsigned int ms = 0;
1219 
1220 	if (status == RTAS_BUSY) {
1221 		ms = 1;
1222 	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
1223 		   status <= RTAS_EXTENDED_DELAY_MAX) {
1224 		order = status - RTAS_EXTENDED_DELAY_MIN;
1225 		for (ms = 1; order > 0; order--)
1226 			ms *= 10;
1227 	}
1228 
1229 	return ms;
1230 }
1231 
1232 /*
1233  * Early boot fallback for rtas_busy_delay().
1234  */
1235 static bool __init rtas_busy_delay_early(int status)
1236 {
1237 	static size_t successive_ext_delays __initdata;
1238 	bool retry;
1239 
1240 	switch (status) {
1241 	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1242 		/*
1243 		 * In the unlikely case that we receive an extended
1244 		 * delay status in early boot, the OS is probably not
1245 		 * the cause, and there's nothing we can do to clear
1246 		 * the condition. Best we can do is delay for a bit
1247 		 * and hope it's transient. Lie to the caller if it
1248 		 * seems like we're stuck in a retry loop.
1249 		 */
1250 		mdelay(1);
1251 		retry = true;
1252 		successive_ext_delays += 1;
1253 		if (successive_ext_delays > 1000) {
1254 			pr_err("too many extended delays, giving up\n");
1255 			dump_stack();
1256 			retry = false;
1257 			successive_ext_delays = 0;
1258 		}
1259 		break;
1260 	case RTAS_BUSY:
1261 		retry = true;
1262 		successive_ext_delays = 0;
1263 		break;
1264 	default:
1265 		retry = false;
1266 		successive_ext_delays = 0;
1267 		break;
1268 	}
1269 
1270 	return retry;
1271 }
1272 
1273 /**
1274  * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
1275  *
1276  * @status: a value returned from rtas_call() or similar APIs which return
1277  *          the status of a RTAS function call.
1278  *
1279  * Context: Process context. May sleep or schedule.
1280  *
1281  * Return:
1282  * * true  - @status is RTAS_BUSY or an extended delay hint. The
1283  *           caller may assume that the CPU has been yielded if necessary,
1284  *           and that an appropriate delay for @status has elapsed.
1285  *           Generally the caller should reattempt the RTAS call which
1286  *           yielded @status.
1287  *
1288  * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
1289  *           caller is responsible for handling @status.
1290  */
1291 bool __ref rtas_busy_delay(int status)
1292 {
1293 	unsigned int ms;
1294 	bool ret;
1295 
1296 	/*
1297 	 * Can't do timed sleeps before timekeeping is up.
1298 	 */
1299 	if (system_state < SYSTEM_SCHEDULING)
1300 		return rtas_busy_delay_early(status);
1301 
1302 	switch (status) {
1303 	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1304 		ret = true;
1305 		ms = rtas_busy_delay_time(status);
1306 		/*
1307 		 * The extended delay hint can be as high as 100 seconds.
1308 		 * Surely any function returning such a status is either
1309 		 * buggy or isn't going to be significantly slowed by us
1310 		 * polling at 1HZ. Clamp the sleep time to one second.
1311 		 */
1312 		ms = clamp(ms, 1U, 1000U);
1313 		/*
1314 		 * The delay hint is an order-of-magnitude suggestion, not
1315 		 * a minimum. It is fine, possibly even advantageous, for
1316 		 * us to pause for less time than hinted. For small values,
1317 		 * use usleep_range() to ensure we don't sleep much longer
1318 		 * than actually needed.
1319 		 *
1320 		 * See Documentation/timers/timers-howto.rst for
1321 		 * explanation of the threshold used here. In effect we use
1322 		 * usleep_range() for 9900 and 9901, msleep() for
1323 		 * 9902-9905.
1324 		 */
1325 		if (ms <= 20)
1326 			usleep_range(ms * 100, ms * 1000);
1327 		else
1328 			msleep(ms);
1329 		break;
1330 	case RTAS_BUSY:
1331 		ret = true;
1332 		/*
1333 		 * We should call again immediately if there's no other
1334 		 * work to do.
1335 		 */
1336 		cond_resched();
1337 		break;
1338 	default:
1339 		ret = false;
1340 		/*
1341 		 * Not a busy or extended delay status; the caller should
1342 		 * handle @status itself. Ensure we warn on misuses in
1343 		 * atomic context regardless.
1344 		 */
1345 		might_sleep();
1346 		break;
1347 	}
1348 
1349 	return ret;
1350 }
1351 EXPORT_SYMBOL_GPL(rtas_busy_delay);
1352 
1353 int rtas_error_rc(int rtas_rc)
1354 {
1355 	int rc;
1356 
1357 	switch (rtas_rc) {
1358 	case RTAS_HARDWARE_ERROR:	/* Hardware Error */
1359 		rc = -EIO;
1360 		break;
1361 	case RTAS_INVALID_PARAMETER:	/* Bad indicator/domain/etc */
1362 		rc = -EINVAL;
1363 		break;
1364 	case -9000:			/* Isolation error */
1365 		rc = -EFAULT;
1366 		break;
1367 	case -9001:			/* Outstanding TCE/PTE */
1368 		rc = -EEXIST;
1369 		break;
1370 	case -9002:			/* No usable slot */
1371 		rc = -ENODEV;
1372 		break;
1373 	default:
1374 		pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
1375 		rc = -ERANGE;
1376 		break;
1377 	}
1378 	return rc;
1379 }
1380 EXPORT_SYMBOL_GPL(rtas_error_rc);
1381 
1382 int rtas_get_power_level(int powerdomain, int *level)
1383 {
1384 	int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
1385 	int rc;
1386 
1387 	if (token == RTAS_UNKNOWN_SERVICE)
1388 		return -ENOENT;
1389 
1390 	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
1391 		udelay(1);
1392 
1393 	if (rc < 0)
1394 		return rtas_error_rc(rc);
1395 	return rc;
1396 }
1397 EXPORT_SYMBOL_GPL(rtas_get_power_level);
1398 
1399 int rtas_set_power_level(int powerdomain, int level, int *setlevel)
1400 {
1401 	int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
1402 	int rc;
1403 
1404 	if (token == RTAS_UNKNOWN_SERVICE)
1405 		return -ENOENT;
1406 
1407 	do {
1408 		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
1409 	} while (rtas_busy_delay(rc));
1410 
1411 	if (rc < 0)
1412 		return rtas_error_rc(rc);
1413 	return rc;
1414 }
1415 EXPORT_SYMBOL_GPL(rtas_set_power_level);
1416 
1417 int rtas_get_sensor(int sensor, int index, int *state)
1418 {
1419 	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1420 	int rc;
1421 
1422 	if (token == RTAS_UNKNOWN_SERVICE)
1423 		return -ENOENT;
1424 
1425 	do {
1426 		rc = rtas_call(token, 2, 2, state, sensor, index);
1427 	} while (rtas_busy_delay(rc));
1428 
1429 	if (rc < 0)
1430 		return rtas_error_rc(rc);
1431 	return rc;
1432 }
1433 EXPORT_SYMBOL_GPL(rtas_get_sensor);
1434 
1435 int rtas_get_sensor_fast(int sensor, int index, int *state)
1436 {
1437 	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1438 	int rc;
1439 
1440 	if (token == RTAS_UNKNOWN_SERVICE)
1441 		return -ENOENT;
1442 
1443 	rc = rtas_call(token, 2, 2, state, sensor, index);
1444 	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1445 				    rc <= RTAS_EXTENDED_DELAY_MAX));
1446 
1447 	if (rc < 0)
1448 		return rtas_error_rc(rc);
1449 	return rc;
1450 }
1451 
1452 bool rtas_indicator_present(int token, int *maxindex)
1453 {
1454 	int proplen, count, i;
1455 	const struct indicator_elem {
1456 		__be32 token;
1457 		__be32 maxindex;
1458 	} *indicators;
1459 
1460 	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
1461 	if (!indicators)
1462 		return false;
1463 
1464 	count = proplen / sizeof(struct indicator_elem);
1465 
1466 	for (i = 0; i < count; i++) {
1467 		if (__be32_to_cpu(indicators[i].token) != token)
1468 			continue;
1469 		if (maxindex)
1470 			*maxindex = __be32_to_cpu(indicators[i].maxindex);
1471 		return true;
1472 	}
1473 
1474 	return false;
1475 }
1476 
1477 int rtas_set_indicator(int indicator, int index, int new_value)
1478 {
1479 	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1480 	int rc;
1481 
1482 	if (token == RTAS_UNKNOWN_SERVICE)
1483 		return -ENOENT;
1484 
1485 	do {
1486 		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1487 	} while (rtas_busy_delay(rc));
1488 
1489 	if (rc < 0)
1490 		return rtas_error_rc(rc);
1491 	return rc;
1492 }
1493 EXPORT_SYMBOL_GPL(rtas_set_indicator);
1494 
1495 /*
1496  * Ignoring RTAS extended delay
1497  */
1498 int rtas_set_indicator_fast(int indicator, int index, int new_value)
1499 {
1500 	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1501 	int rc;
1502 
1503 	if (token == RTAS_UNKNOWN_SERVICE)
1504 		return -ENOENT;
1505 
1506 	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1507 
1508 	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1509 				    rc <= RTAS_EXTENDED_DELAY_MAX));
1510 
1511 	if (rc < 0)
1512 		return rtas_error_rc(rc);
1513 
1514 	return rc;
1515 }
1516 
1517 /**
1518  * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
1519  *
1520  * @fw_status: RTAS call status will be placed here if not NULL.
1521  *
1522  * rtas_ibm_suspend_me() should be called only on a CPU which has
1523  * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
1524  * should be waiting to return from H_JOIN.
1525  *
1526  * rtas_ibm_suspend_me() may suspend execution of the OS
1527  * indefinitely. Callers should take appropriate measures upon return, such as
1528  * resetting watchdog facilities.
1529  *
1530  * Callers may choose to retry this call if @fw_status is
1531  * %RTAS_THREADS_ACTIVE.
1532  *
1533  * Return:
1534  * 0          - The partition has resumed from suspend, possibly after
1535  *              migration to a different host.
1536  * -ECANCELED - The operation was aborted.
1537  * -EAGAIN    - There were other CPUs not in H_JOIN at the time of the call.
1538  * -EBUSY     - Some other condition prevented the suspend from succeeding.
1539  * -EIO       - Hardware/platform error.
1540  */
1541 int rtas_ibm_suspend_me(int *fw_status)
1542 {
1543 	int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
1544 	int fwrc;
1545 	int ret;
1546 
1547 	fwrc = rtas_call(token, 0, 1, NULL);
1548 
1549 	switch (fwrc) {
1550 	case 0:
1551 		ret = 0;
1552 		break;
1553 	case RTAS_SUSPEND_ABORTED:
1554 		ret = -ECANCELED;
1555 		break;
1556 	case RTAS_THREADS_ACTIVE:
1557 		ret = -EAGAIN;
1558 		break;
1559 	case RTAS_NOT_SUSPENDABLE:
1560 	case RTAS_OUTSTANDING_COPROC:
1561 		ret = -EBUSY;
1562 		break;
1563 	case -1:
1564 	default:
1565 		ret = -EIO;
1566 		break;
1567 	}
1568 
1569 	if (fw_status)
1570 		*fw_status = fwrc;
1571 
1572 	return ret;
1573 }
1574 
1575 void __noreturn rtas_restart(char *cmd)
1576 {
1577 	if (rtas_flash_term_hook)
1578 		rtas_flash_term_hook(SYS_RESTART);
1579 	pr_emerg("system-reboot returned %d\n",
1580 		 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
1581 	for (;;);
1582 }
1583 
1584 void rtas_power_off(void)
1585 {
1586 	if (rtas_flash_term_hook)
1587 		rtas_flash_term_hook(SYS_POWER_OFF);
1588 	/* allow power on only with power button press */
1589 	pr_emerg("power-off returned %d\n",
1590 		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1591 	for (;;);
1592 }
1593 
1594 void __noreturn rtas_halt(void)
1595 {
1596 	if (rtas_flash_term_hook)
1597 		rtas_flash_term_hook(SYS_HALT);
1598 	/* allow power on only with power button press */
1599 	pr_emerg("power-off returned %d\n",
1600 		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1601 	for (;;);
1602 }
1603 
1604 /* Must be in the RMO region, so we place it here */
1605 static char rtas_os_term_buf[2048];
1606 static bool ibm_extended_os_term;
1607 
1608 void rtas_os_term(char *str)
1609 {
1610 	s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
1611 	static struct rtas_args args;
1612 	int status;
1613 
1614 	/*
1615 	 * Firmware with the ibm,extended-os-term property is guaranteed
1616 	 * to always return from an ibm,os-term call. Earlier versions without
1617 	 * this property may terminate the partition which we want to avoid
1618 	 * since it interferes with panic_timeout.
1619 	 */
1620 
1621 	if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
1622 		return;
1623 
1624 	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
1625 
1626 	/*
1627 	 * Keep calling as long as RTAS returns a "try again" status,
1628 	 * but don't use rtas_busy_delay(), which potentially
1629 	 * schedules.
1630 	 */
1631 	do {
1632 		rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
1633 		status = be32_to_cpu(args.rets[0]);
1634 	} while (rtas_busy_delay_time(status));
1635 
1636 	if (status != 0)
1637 		pr_emerg("ibm,os-term call failed %d\n", status);
1638 }
1639 
1640 /**
1641  * rtas_activate_firmware() - Activate a new version of firmware.
1642  *
1643  * Context: This function may sleep.
1644  *
1645  * Activate a new version of partition firmware. The OS must call this
1646  * after resuming from a partition hibernation or migration in order
1647  * to maintain the ability to perform live firmware updates. It's not
1648  * catastrophic for this method to be absent or to fail; just log the
1649  * condition in that case.
1650  */
1651 void rtas_activate_firmware(void)
1652 {
1653 	int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
1654 	int fwrc;
1655 
1656 	if (token == RTAS_UNKNOWN_SERVICE) {
1657 		pr_notice("ibm,activate-firmware method unavailable\n");
1658 		return;
1659 	}
1660 
1661 	do {
1662 		fwrc = rtas_call(token, 0, 1, NULL);
1663 	} while (rtas_busy_delay(fwrc));
1664 
1665 	if (fwrc)
1666 		pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
1667 }
1668 
1669 /**
1670  * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1671  *                          extended event log.
1672  * @log: RTAS error/event log
1673  * @section_id: two character section identifier
1674  *
1675  * Return: A pointer to the specified errorlog or NULL if not found.
1676  */
1677 noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1678 						      uint16_t section_id)
1679 {
1680 	struct rtas_ext_event_log_v6 *ext_log =
1681 		(struct rtas_ext_event_log_v6 *)log->buffer;
1682 	struct pseries_errorlog *sect;
1683 	unsigned char *p, *log_end;
1684 	uint32_t ext_log_length = rtas_error_extended_log_length(log);
1685 	uint8_t log_format = rtas_ext_event_log_format(ext_log);
1686 	uint32_t company_id = rtas_ext_event_company_id(ext_log);
1687 
1688 	/* Check that we understand the format */
1689 	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1690 	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1691 	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1692 		return NULL;
1693 
1694 	log_end = log->buffer + ext_log_length;
1695 	p = ext_log->vendor_log;
1696 
1697 	while (p < log_end) {
1698 		sect = (struct pseries_errorlog *)p;
1699 		if (pseries_errorlog_id(sect) == section_id)
1700 			return sect;
1701 		p += pseries_errorlog_length(sect);
1702 	}
1703 
1704 	return NULL;
1705 }
1706 
1707 /*
1708  * The sys_rtas syscall, as originally designed, allows root to pass
1709  * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1710  * can be abused to write to arbitrary memory and do other things that
1711  * are potentially harmful to system integrity, and thus should only
1712  * be used inside the kernel and not exposed to userspace.
1713  *
1714  * All known legitimate users of the sys_rtas syscall will only ever
1715  * pass addresses that fall within the RMO buffer, and use a known
1716  * subset of RTAS calls.
1717  *
1718  * Accordingly, we filter RTAS requests to check that the call is
1719  * permitted, and that provided pointers fall within the RMO buffer.
1720  * If a function is allowed to be invoked via the syscall, then its
1721  * entry in the rtas_functions table points to a rtas_filter that
1722  * describes its constraints, with the indexes of the parameters which
1723  * are expected to contain addresses and sizes of buffers allocated
1724  * inside the RMO buffer.
1725  */
1726 
1727 static bool in_rmo_buf(u32 base, u32 end)
1728 {
1729 	return base >= rtas_rmo_buf &&
1730 		base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1731 		base <= end &&
1732 		end >= rtas_rmo_buf &&
1733 		end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1734 }
1735 
1736 static bool block_rtas_call(int token, int nargs,
1737 			    struct rtas_args *args)
1738 {
1739 	const struct rtas_function *func;
1740 	const struct rtas_filter *f;
1741 	const bool is_platform_dump = token == rtas_function_token(RTAS_FN_IBM_PLATFORM_DUMP);
1742 	const bool is_config_conn = token == rtas_function_token(RTAS_FN_IBM_CONFIGURE_CONNECTOR);
1743 	u32 base, size, end;
1744 
1745 	/*
1746 	 * If this token doesn't correspond to a function the kernel
1747 	 * understands, you're not allowed to call it.
1748 	 */
1749 	func = rtas_token_to_function_untrusted(token);
1750 	if (!func)
1751 		goto err;
1752 	/*
1753 	 * And only functions with filters attached are allowed.
1754 	 */
1755 	f = func->filter;
1756 	if (!f)
1757 		goto err;
1758 	/*
1759 	 * And some functions aren't allowed on LE.
1760 	 */
1761 	if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
1762 		goto err;
1763 
1764 	if (f->buf_idx1 != -1) {
1765 		base = be32_to_cpu(args->args[f->buf_idx1]);
1766 		if (f->size_idx1 != -1)
1767 			size = be32_to_cpu(args->args[f->size_idx1]);
1768 		else if (f->fixed_size)
1769 			size = f->fixed_size;
1770 		else
1771 			size = 1;
1772 
1773 		end = base + size - 1;
1774 
1775 		/*
1776 		 * Special case for ibm,platform-dump - NULL buffer
1777 		 * address is used to indicate end of dump processing
1778 		 */
1779 		if (is_platform_dump && base == 0)
1780 			return false;
1781 
1782 		if (!in_rmo_buf(base, end))
1783 			goto err;
1784 	}
1785 
1786 	if (f->buf_idx2 != -1) {
1787 		base = be32_to_cpu(args->args[f->buf_idx2]);
1788 		if (f->size_idx2 != -1)
1789 			size = be32_to_cpu(args->args[f->size_idx2]);
1790 		else if (f->fixed_size)
1791 			size = f->fixed_size;
1792 		else
1793 			size = 1;
1794 		end = base + size - 1;
1795 
1796 		/*
1797 		 * Special case for ibm,configure-connector where the
1798 		 * address can be 0
1799 		 */
1800 		if (is_config_conn && base == 0)
1801 			return false;
1802 
1803 		if (!in_rmo_buf(base, end))
1804 			goto err;
1805 	}
1806 
1807 	return false;
1808 err:
1809 	pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1810 	pr_err_ratelimited("sys_rtas: token=0x%x, nargs=%d (called by %s)\n",
1811 			   token, nargs, current->comm);
1812 	return true;
1813 }
1814 
1815 /* We assume to be passed big endian arguments */
1816 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1817 {
1818 	struct pin_cookie cookie;
1819 	struct rtas_args args;
1820 	unsigned long flags;
1821 	char *buff_copy, *errbuf = NULL;
1822 	int nargs, nret, token;
1823 
1824 	if (!capable(CAP_SYS_ADMIN))
1825 		return -EPERM;
1826 
1827 	if (!rtas.entry)
1828 		return -EINVAL;
1829 
1830 	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1831 		return -EFAULT;
1832 
1833 	nargs = be32_to_cpu(args.nargs);
1834 	nret  = be32_to_cpu(args.nret);
1835 	token = be32_to_cpu(args.token);
1836 
1837 	if (nargs >= ARRAY_SIZE(args.args)
1838 	    || nret > ARRAY_SIZE(args.args)
1839 	    || nargs + nret > ARRAY_SIZE(args.args))
1840 		return -EINVAL;
1841 
1842 	/* Copy in args. */
1843 	if (copy_from_user(args.args, uargs->args,
1844 			   nargs * sizeof(rtas_arg_t)) != 0)
1845 		return -EFAULT;
1846 
1847 	if (token == RTAS_UNKNOWN_SERVICE)
1848 		return -EINVAL;
1849 
1850 	args.rets = &args.args[nargs];
1851 	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1852 
1853 	if (block_rtas_call(token, nargs, &args))
1854 		return -EINVAL;
1855 
1856 	if (token_is_restricted_errinjct(token)) {
1857 		int err;
1858 
1859 		err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1860 		if (err)
1861 			return err;
1862 	}
1863 
1864 	/* Need to handle ibm,suspend_me call specially */
1865 	if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
1866 
1867 		/*
1868 		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1869 		 * endian, or at least the hcall within it requires it.
1870 		 */
1871 		int rc = 0;
1872 		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1873 		              | be32_to_cpu(args.args[1]);
1874 		rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1875 		if (rc == -EAGAIN)
1876 			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1877 		else if (rc == -EIO)
1878 			args.rets[0] = cpu_to_be32(-1);
1879 		else if (rc)
1880 			return rc;
1881 		goto copy_return;
1882 	}
1883 
1884 	buff_copy = get_errorlog_buffer();
1885 
1886 	raw_spin_lock_irqsave(&rtas_lock, flags);
1887 	cookie = lockdep_pin_lock(&rtas_lock);
1888 
1889 	rtas_args = args;
1890 	do_enter_rtas(&rtas_args);
1891 	args = rtas_args;
1892 
1893 	/* A -1 return code indicates that the last command couldn't
1894 	   be completed due to a hardware error. */
1895 	if (be32_to_cpu(args.rets[0]) == -1)
1896 		errbuf = __fetch_rtas_last_error(buff_copy);
1897 
1898 	lockdep_unpin_lock(&rtas_lock, cookie);
1899 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1900 
1901 	if (buff_copy) {
1902 		if (errbuf)
1903 			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1904 		kfree(buff_copy);
1905 	}
1906 
1907  copy_return:
1908 	/* Copy out args. */
1909 	if (copy_to_user(uargs->args + nargs,
1910 			 args.args + nargs,
1911 			 nret * sizeof(rtas_arg_t)) != 0)
1912 		return -EFAULT;
1913 
1914 	return 0;
1915 }
1916 
1917 static void __init rtas_function_table_init(void)
1918 {
1919 	struct property *prop;
1920 
1921 	for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
1922 		struct rtas_function *curr = &rtas_function_table[i];
1923 		struct rtas_function *prior;
1924 		int cmp;
1925 
1926 		curr->token = RTAS_UNKNOWN_SERVICE;
1927 
1928 		if (i == 0)
1929 			continue;
1930 		/*
1931 		 * Ensure table is sorted correctly for binary search
1932 		 * on function names.
1933 		 */
1934 		prior = &rtas_function_table[i - 1];
1935 
1936 		cmp = strcmp(prior->name, curr->name);
1937 		if (cmp < 0)
1938 			continue;
1939 
1940 		if (cmp == 0) {
1941 			pr_err("'%s' has duplicate function table entries\n",
1942 			       curr->name);
1943 		} else {
1944 			pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
1945 			       prior->name, curr->name);
1946 		}
1947 	}
1948 
1949 	for_each_property_of_node(rtas.dev, prop) {
1950 		struct rtas_function *func;
1951 
1952 		if (prop->length != sizeof(u32))
1953 			continue;
1954 
1955 		func = __rtas_name_to_function(prop->name);
1956 		if (!func)
1957 			continue;
1958 
1959 		func->token = be32_to_cpup((__be32 *)prop->value);
1960 
1961 		pr_debug("function %s has token %u\n", func->name, func->token);
1962 	}
1963 }
1964 
1965 /*
1966  * Call early during boot, before mem init, to retrieve the RTAS
1967  * information from the device-tree and allocate the RMO buffer for userland
1968  * accesses.
1969  */
1970 void __init rtas_initialize(void)
1971 {
1972 	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
1973 	u32 base, size, entry;
1974 	int no_base, no_size, no_entry;
1975 
1976 	/* Get RTAS dev node and fill up our "rtas" structure with infos
1977 	 * about it.
1978 	 */
1979 	rtas.dev = of_find_node_by_name(NULL, "rtas");
1980 	if (!rtas.dev)
1981 		return;
1982 
1983 	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
1984 	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
1985 	if (no_base || no_size) {
1986 		of_node_put(rtas.dev);
1987 		rtas.dev = NULL;
1988 		return;
1989 	}
1990 
1991 	rtas.base = base;
1992 	rtas.size = size;
1993 	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
1994 	rtas.entry = no_entry ? rtas.base : entry;
1995 
1996 	init_error_log_max();
1997 
1998 	/* Must be called before any function token lookups */
1999 	rtas_function_table_init();
2000 
2001 	/*
2002 	 * Discover this now to avoid a device tree lookup in the
2003 	 * panic path.
2004 	 */
2005 	ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
2006 
2007 	/* If RTAS was found, allocate the RMO buffer for it and look for
2008 	 * the stop-self token if any
2009 	 */
2010 #ifdef CONFIG_PPC64
2011 	if (firmware_has_feature(FW_FEATURE_LPAR))
2012 		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
2013 #endif
2014 	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
2015 						 0, rtas_region);
2016 	if (!rtas_rmo_buf)
2017 		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
2018 		      PAGE_SIZE, &rtas_region);
2019 
2020 	rtas_work_area_reserve_arena(rtas_region);
2021 }
2022 
2023 int __init early_init_dt_scan_rtas(unsigned long node,
2024 		const char *uname, int depth, void *data)
2025 {
2026 	const u32 *basep, *entryp, *sizep;
2027 
2028 	if (depth != 1 || strcmp(uname, "rtas") != 0)
2029 		return 0;
2030 
2031 	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
2032 	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
2033 	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
2034 
2035 #ifdef CONFIG_PPC64
2036 	/* need this feature to decide the crashkernel offset */
2037 	if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
2038 		powerpc_firmware_features |= FW_FEATURE_LPAR;
2039 #endif
2040 
2041 	if (basep && entryp && sizep) {
2042 		rtas.base = *basep;
2043 		rtas.entry = *entryp;
2044 		rtas.size = *sizep;
2045 	}
2046 
2047 #ifdef CONFIG_UDBG_RTAS_CONSOLE
2048 	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
2049 	if (basep)
2050 		rtas_putchar_token = *basep;
2051 
2052 	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
2053 	if (basep)
2054 		rtas_getchar_token = *basep;
2055 
2056 	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
2057 	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
2058 		udbg_init_rtas_console();
2059 
2060 #endif
2061 
2062 	/* break now */
2063 	return 1;
2064 }
2065 
2066 static DEFINE_RAW_SPINLOCK(timebase_lock);
2067 static u64 timebase = 0;
2068 
2069 void rtas_give_timebase(void)
2070 {
2071 	unsigned long flags;
2072 
2073 	raw_spin_lock_irqsave(&timebase_lock, flags);
2074 	hard_irq_disable();
2075 	rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
2076 	timebase = get_tb();
2077 	raw_spin_unlock(&timebase_lock);
2078 
2079 	while (timebase)
2080 		barrier();
2081 	rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
2082 	local_irq_restore(flags);
2083 }
2084 
2085 void rtas_take_timebase(void)
2086 {
2087 	while (!timebase)
2088 		barrier();
2089 	raw_spin_lock(&timebase_lock);
2090 	set_tb(timebase >> 32, timebase & 0xffffffff);
2091 	timebase = 0;
2092 	raw_spin_unlock(&timebase_lock);
2093 }
2094