1 /* 2 * 3 * Procedures for interfacing to the RTAS on CHRP machines. 4 * 5 * Peter Bergner, IBM March 2001. 6 * Copyright (C) 2001 IBM. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #include <stdarg.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/spinlock.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/capability.h> 21 #include <linux/delay.h> 22 #include <linux/cpu.h> 23 #include <linux/smp.h> 24 #include <linux/completion.h> 25 #include <linux/cpumask.h> 26 #include <linux/memblock.h> 27 #include <linux/slab.h> 28 #include <linux/reboot.h> 29 30 #include <asm/prom.h> 31 #include <asm/rtas.h> 32 #include <asm/hvcall.h> 33 #include <asm/machdep.h> 34 #include <asm/firmware.h> 35 #include <asm/page.h> 36 #include <asm/param.h> 37 #include <asm/delay.h> 38 #include <asm/uaccess.h> 39 #include <asm/udbg.h> 40 #include <asm/syscalls.h> 41 #include <asm/smp.h> 42 #include <linux/atomic.h> 43 #include <asm/time.h> 44 #include <asm/mmu.h> 45 #include <asm/topology.h> 46 47 /* This is here deliberately so it's only used in this file */ 48 void enter_rtas(unsigned long); 49 50 struct rtas_t rtas = { 51 .lock = __ARCH_SPIN_LOCK_UNLOCKED 52 }; 53 EXPORT_SYMBOL(rtas); 54 55 DEFINE_SPINLOCK(rtas_data_buf_lock); 56 EXPORT_SYMBOL(rtas_data_buf_lock); 57 58 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned; 59 EXPORT_SYMBOL(rtas_data_buf); 60 61 unsigned long rtas_rmo_buf; 62 63 /* 64 * If non-NULL, this gets called when the kernel terminates. 65 * This is done like this so rtas_flash can be a module. 66 */ 67 void (*rtas_flash_term_hook)(int); 68 EXPORT_SYMBOL(rtas_flash_term_hook); 69 70 /* RTAS use home made raw locking instead of spin_lock_irqsave 71 * because those can be called from within really nasty contexts 72 * such as having the timebase stopped which would lockup with 73 * normal locks and spinlock debugging enabled 74 */ 75 static unsigned long lock_rtas(void) 76 { 77 unsigned long flags; 78 79 local_irq_save(flags); 80 preempt_disable(); 81 arch_spin_lock_flags(&rtas.lock, flags); 82 return flags; 83 } 84 85 static void unlock_rtas(unsigned long flags) 86 { 87 arch_spin_unlock(&rtas.lock); 88 local_irq_restore(flags); 89 preempt_enable(); 90 } 91 92 /* 93 * call_rtas_display_status and call_rtas_display_status_delay 94 * are designed only for very early low-level debugging, which 95 * is why the token is hard-coded to 10. 96 */ 97 static void call_rtas_display_status(unsigned char c) 98 { 99 unsigned long s; 100 101 if (!rtas.base) 102 return; 103 104 s = lock_rtas(); 105 rtas_call_unlocked(&rtas.args, 10, 1, 1, NULL, c); 106 unlock_rtas(s); 107 } 108 109 static void call_rtas_display_status_delay(char c) 110 { 111 static int pending_newline = 0; /* did last write end with unprinted newline? */ 112 static int width = 16; 113 114 if (c == '\n') { 115 while (width-- > 0) 116 call_rtas_display_status(' '); 117 width = 16; 118 mdelay(500); 119 pending_newline = 1; 120 } else { 121 if (pending_newline) { 122 call_rtas_display_status('\r'); 123 call_rtas_display_status('\n'); 124 } 125 pending_newline = 0; 126 if (width--) { 127 call_rtas_display_status(c); 128 udelay(10000); 129 } 130 } 131 } 132 133 void __init udbg_init_rtas_panel(void) 134 { 135 udbg_putc = call_rtas_display_status_delay; 136 } 137 138 #ifdef CONFIG_UDBG_RTAS_CONSOLE 139 140 /* If you think you're dying before early_init_dt_scan_rtas() does its 141 * work, you can hard code the token values for your firmware here and 142 * hardcode rtas.base/entry etc. 143 */ 144 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE; 145 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE; 146 147 static void udbg_rtascon_putc(char c) 148 { 149 int tries; 150 151 if (!rtas.base) 152 return; 153 154 /* Add CRs before LFs */ 155 if (c == '\n') 156 udbg_rtascon_putc('\r'); 157 158 /* if there is more than one character to be displayed, wait a bit */ 159 for (tries = 0; tries < 16; tries++) { 160 if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0) 161 break; 162 udelay(1000); 163 } 164 } 165 166 static int udbg_rtascon_getc_poll(void) 167 { 168 int c; 169 170 if (!rtas.base) 171 return -1; 172 173 if (rtas_call(rtas_getchar_token, 0, 2, &c)) 174 return -1; 175 176 return c; 177 } 178 179 static int udbg_rtascon_getc(void) 180 { 181 int c; 182 183 while ((c = udbg_rtascon_getc_poll()) == -1) 184 ; 185 186 return c; 187 } 188 189 190 void __init udbg_init_rtas_console(void) 191 { 192 udbg_putc = udbg_rtascon_putc; 193 udbg_getc = udbg_rtascon_getc; 194 udbg_getc_poll = udbg_rtascon_getc_poll; 195 } 196 #endif /* CONFIG_UDBG_RTAS_CONSOLE */ 197 198 void rtas_progress(char *s, unsigned short hex) 199 { 200 struct device_node *root; 201 int width; 202 const __be32 *p; 203 char *os; 204 static int display_character, set_indicator; 205 static int display_width, display_lines, form_feed; 206 static const int *row_width; 207 static DEFINE_SPINLOCK(progress_lock); 208 static int current_line; 209 static int pending_newline = 0; /* did last write end with unprinted newline? */ 210 211 if (!rtas.base) 212 return; 213 214 if (display_width == 0) { 215 display_width = 0x10; 216 if ((root = of_find_node_by_path("/rtas"))) { 217 if ((p = of_get_property(root, 218 "ibm,display-line-length", NULL))) 219 display_width = be32_to_cpu(*p); 220 if ((p = of_get_property(root, 221 "ibm,form-feed", NULL))) 222 form_feed = be32_to_cpu(*p); 223 if ((p = of_get_property(root, 224 "ibm,display-number-of-lines", NULL))) 225 display_lines = be32_to_cpu(*p); 226 row_width = of_get_property(root, 227 "ibm,display-truncation-length", NULL); 228 of_node_put(root); 229 } 230 display_character = rtas_token("display-character"); 231 set_indicator = rtas_token("set-indicator"); 232 } 233 234 if (display_character == RTAS_UNKNOWN_SERVICE) { 235 /* use hex display if available */ 236 if (set_indicator != RTAS_UNKNOWN_SERVICE) 237 rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex); 238 return; 239 } 240 241 spin_lock(&progress_lock); 242 243 /* 244 * Last write ended with newline, but we didn't print it since 245 * it would just clear the bottom line of output. Print it now 246 * instead. 247 * 248 * If no newline is pending and form feed is supported, clear the 249 * display with a form feed; otherwise, print a CR to start output 250 * at the beginning of the line. 251 */ 252 if (pending_newline) { 253 rtas_call(display_character, 1, 1, NULL, '\r'); 254 rtas_call(display_character, 1, 1, NULL, '\n'); 255 pending_newline = 0; 256 } else { 257 current_line = 0; 258 if (form_feed) 259 rtas_call(display_character, 1, 1, NULL, 260 (char)form_feed); 261 else 262 rtas_call(display_character, 1, 1, NULL, '\r'); 263 } 264 265 if (row_width) 266 width = row_width[current_line]; 267 else 268 width = display_width; 269 os = s; 270 while (*os) { 271 if (*os == '\n' || *os == '\r') { 272 /* If newline is the last character, save it 273 * until next call to avoid bumping up the 274 * display output. 275 */ 276 if (*os == '\n' && !os[1]) { 277 pending_newline = 1; 278 current_line++; 279 if (current_line > display_lines-1) 280 current_line = display_lines-1; 281 spin_unlock(&progress_lock); 282 return; 283 } 284 285 /* RTAS wants CR-LF, not just LF */ 286 287 if (*os == '\n') { 288 rtas_call(display_character, 1, 1, NULL, '\r'); 289 rtas_call(display_character, 1, 1, NULL, '\n'); 290 } else { 291 /* CR might be used to re-draw a line, so we'll 292 * leave it alone and not add LF. 293 */ 294 rtas_call(display_character, 1, 1, NULL, *os); 295 } 296 297 if (row_width) 298 width = row_width[current_line]; 299 else 300 width = display_width; 301 } else { 302 width--; 303 rtas_call(display_character, 1, 1, NULL, *os); 304 } 305 306 os++; 307 308 /* if we overwrite the screen length */ 309 if (width <= 0) 310 while ((*os != 0) && (*os != '\n') && (*os != '\r')) 311 os++; 312 } 313 314 spin_unlock(&progress_lock); 315 } 316 EXPORT_SYMBOL(rtas_progress); /* needed by rtas_flash module */ 317 318 int rtas_token(const char *service) 319 { 320 const __be32 *tokp; 321 if (rtas.dev == NULL) 322 return RTAS_UNKNOWN_SERVICE; 323 tokp = of_get_property(rtas.dev, service, NULL); 324 return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE; 325 } 326 EXPORT_SYMBOL(rtas_token); 327 328 int rtas_service_present(const char *service) 329 { 330 return rtas_token(service) != RTAS_UNKNOWN_SERVICE; 331 } 332 EXPORT_SYMBOL(rtas_service_present); 333 334 #ifdef CONFIG_RTAS_ERROR_LOGGING 335 /* 336 * Return the firmware-specified size of the error log buffer 337 * for all rtas calls that require an error buffer argument. 338 * This includes 'check-exception' and 'rtas-last-error'. 339 */ 340 int rtas_get_error_log_max(void) 341 { 342 static int rtas_error_log_max; 343 if (rtas_error_log_max) 344 return rtas_error_log_max; 345 346 rtas_error_log_max = rtas_token ("rtas-error-log-max"); 347 if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) || 348 (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) { 349 printk (KERN_WARNING "RTAS: bad log buffer size %d\n", 350 rtas_error_log_max); 351 rtas_error_log_max = RTAS_ERROR_LOG_MAX; 352 } 353 return rtas_error_log_max; 354 } 355 EXPORT_SYMBOL(rtas_get_error_log_max); 356 357 358 static char rtas_err_buf[RTAS_ERROR_LOG_MAX]; 359 static int rtas_last_error_token; 360 361 /** Return a copy of the detailed error text associated with the 362 * most recent failed call to rtas. Because the error text 363 * might go stale if there are any other intervening rtas calls, 364 * this routine must be called atomically with whatever produced 365 * the error (i.e. with rtas.lock still held from the previous call). 366 */ 367 static char *__fetch_rtas_last_error(char *altbuf) 368 { 369 struct rtas_args err_args, save_args; 370 u32 bufsz; 371 char *buf = NULL; 372 373 if (rtas_last_error_token == -1) 374 return NULL; 375 376 bufsz = rtas_get_error_log_max(); 377 378 err_args.token = cpu_to_be32(rtas_last_error_token); 379 err_args.nargs = cpu_to_be32(2); 380 err_args.nret = cpu_to_be32(1); 381 err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf)); 382 err_args.args[1] = cpu_to_be32(bufsz); 383 err_args.args[2] = 0; 384 385 save_args = rtas.args; 386 rtas.args = err_args; 387 388 enter_rtas(__pa(&rtas.args)); 389 390 err_args = rtas.args; 391 rtas.args = save_args; 392 393 /* Log the error in the unlikely case that there was one. */ 394 if (unlikely(err_args.args[2] == 0)) { 395 if (altbuf) { 396 buf = altbuf; 397 } else { 398 buf = rtas_err_buf; 399 if (slab_is_available()) 400 buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); 401 } 402 if (buf) 403 memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX); 404 } 405 406 return buf; 407 } 408 409 #define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL) 410 411 #else /* CONFIG_RTAS_ERROR_LOGGING */ 412 #define __fetch_rtas_last_error(x) NULL 413 #define get_errorlog_buffer() NULL 414 #endif 415 416 417 static void 418 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, 419 va_list list) 420 { 421 int i; 422 423 args->token = cpu_to_be32(token); 424 args->nargs = cpu_to_be32(nargs); 425 args->nret = cpu_to_be32(nret); 426 args->rets = &(args->args[nargs]); 427 428 for (i = 0; i < nargs; ++i) 429 args->args[i] = cpu_to_be32(va_arg(list, __u32)); 430 431 for (i = 0; i < nret; ++i) 432 args->rets[i] = 0; 433 434 enter_rtas(__pa(args)); 435 } 436 437 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...) 438 { 439 va_list list; 440 441 va_start(list, nret); 442 va_rtas_call_unlocked(args, token, nargs, nret, list); 443 va_end(list); 444 } 445 446 int rtas_call(int token, int nargs, int nret, int *outputs, ...) 447 { 448 va_list list; 449 int i; 450 unsigned long s; 451 struct rtas_args *rtas_args; 452 char *buff_copy = NULL; 453 int ret; 454 455 if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE) 456 return -1; 457 458 s = lock_rtas(); 459 460 /* We use the global rtas args buffer */ 461 rtas_args = &rtas.args; 462 463 va_start(list, outputs); 464 va_rtas_call_unlocked(rtas_args, token, nargs, nret, list); 465 va_end(list); 466 467 /* A -1 return code indicates that the last command couldn't 468 be completed due to a hardware error. */ 469 if (be32_to_cpu(rtas_args->rets[0]) == -1) 470 buff_copy = __fetch_rtas_last_error(NULL); 471 472 if (nret > 1 && outputs != NULL) 473 for (i = 0; i < nret-1; ++i) 474 outputs[i] = be32_to_cpu(rtas_args->rets[i+1]); 475 ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0; 476 477 unlock_rtas(s); 478 479 if (buff_copy) { 480 log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); 481 if (slab_is_available()) 482 kfree(buff_copy); 483 } 484 return ret; 485 } 486 EXPORT_SYMBOL(rtas_call); 487 488 /* For RTAS_BUSY (-2), delay for 1 millisecond. For an extended busy status 489 * code of 990n, perform the hinted delay of 10^n (last digit) milliseconds. 490 */ 491 unsigned int rtas_busy_delay_time(int status) 492 { 493 int order; 494 unsigned int ms = 0; 495 496 if (status == RTAS_BUSY) { 497 ms = 1; 498 } else if (status >= RTAS_EXTENDED_DELAY_MIN && 499 status <= RTAS_EXTENDED_DELAY_MAX) { 500 order = status - RTAS_EXTENDED_DELAY_MIN; 501 for (ms = 1; order > 0; order--) 502 ms *= 10; 503 } 504 505 return ms; 506 } 507 EXPORT_SYMBOL(rtas_busy_delay_time); 508 509 /* For an RTAS busy status code, perform the hinted delay. */ 510 unsigned int rtas_busy_delay(int status) 511 { 512 unsigned int ms; 513 514 might_sleep(); 515 ms = rtas_busy_delay_time(status); 516 if (ms && need_resched()) 517 msleep(ms); 518 519 return ms; 520 } 521 EXPORT_SYMBOL(rtas_busy_delay); 522 523 static int rtas_error_rc(int rtas_rc) 524 { 525 int rc; 526 527 switch (rtas_rc) { 528 case -1: /* Hardware Error */ 529 rc = -EIO; 530 break; 531 case -3: /* Bad indicator/domain/etc */ 532 rc = -EINVAL; 533 break; 534 case -9000: /* Isolation error */ 535 rc = -EFAULT; 536 break; 537 case -9001: /* Outstanding TCE/PTE */ 538 rc = -EEXIST; 539 break; 540 case -9002: /* No usable slot */ 541 rc = -ENODEV; 542 break; 543 default: 544 printk(KERN_ERR "%s: unexpected RTAS error %d\n", 545 __func__, rtas_rc); 546 rc = -ERANGE; 547 break; 548 } 549 return rc; 550 } 551 552 int rtas_get_power_level(int powerdomain, int *level) 553 { 554 int token = rtas_token("get-power-level"); 555 int rc; 556 557 if (token == RTAS_UNKNOWN_SERVICE) 558 return -ENOENT; 559 560 while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) 561 udelay(1); 562 563 if (rc < 0) 564 return rtas_error_rc(rc); 565 return rc; 566 } 567 EXPORT_SYMBOL(rtas_get_power_level); 568 569 int rtas_set_power_level(int powerdomain, int level, int *setlevel) 570 { 571 int token = rtas_token("set-power-level"); 572 int rc; 573 574 if (token == RTAS_UNKNOWN_SERVICE) 575 return -ENOENT; 576 577 do { 578 rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); 579 } while (rtas_busy_delay(rc)); 580 581 if (rc < 0) 582 return rtas_error_rc(rc); 583 return rc; 584 } 585 EXPORT_SYMBOL(rtas_set_power_level); 586 587 int rtas_get_sensor(int sensor, int index, int *state) 588 { 589 int token = rtas_token("get-sensor-state"); 590 int rc; 591 592 if (token == RTAS_UNKNOWN_SERVICE) 593 return -ENOENT; 594 595 do { 596 rc = rtas_call(token, 2, 2, state, sensor, index); 597 } while (rtas_busy_delay(rc)); 598 599 if (rc < 0) 600 return rtas_error_rc(rc); 601 return rc; 602 } 603 EXPORT_SYMBOL(rtas_get_sensor); 604 605 int rtas_get_sensor_fast(int sensor, int index, int *state) 606 { 607 int token = rtas_token("get-sensor-state"); 608 int rc; 609 610 if (token == RTAS_UNKNOWN_SERVICE) 611 return -ENOENT; 612 613 rc = rtas_call(token, 2, 2, state, sensor, index); 614 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && 615 rc <= RTAS_EXTENDED_DELAY_MAX)); 616 617 if (rc < 0) 618 return rtas_error_rc(rc); 619 return rc; 620 } 621 622 bool rtas_indicator_present(int token, int *maxindex) 623 { 624 int proplen, count, i; 625 const struct indicator_elem { 626 __be32 token; 627 __be32 maxindex; 628 } *indicators; 629 630 indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen); 631 if (!indicators) 632 return false; 633 634 count = proplen / sizeof(struct indicator_elem); 635 636 for (i = 0; i < count; i++) { 637 if (__be32_to_cpu(indicators[i].token) != token) 638 continue; 639 if (maxindex) 640 *maxindex = __be32_to_cpu(indicators[i].maxindex); 641 return true; 642 } 643 644 return false; 645 } 646 EXPORT_SYMBOL(rtas_indicator_present); 647 648 int rtas_set_indicator(int indicator, int index, int new_value) 649 { 650 int token = rtas_token("set-indicator"); 651 int rc; 652 653 if (token == RTAS_UNKNOWN_SERVICE) 654 return -ENOENT; 655 656 do { 657 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); 658 } while (rtas_busy_delay(rc)); 659 660 if (rc < 0) 661 return rtas_error_rc(rc); 662 return rc; 663 } 664 EXPORT_SYMBOL(rtas_set_indicator); 665 666 /* 667 * Ignoring RTAS extended delay 668 */ 669 int rtas_set_indicator_fast(int indicator, int index, int new_value) 670 { 671 int rc; 672 int token = rtas_token("set-indicator"); 673 674 if (token == RTAS_UNKNOWN_SERVICE) 675 return -ENOENT; 676 677 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); 678 679 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && 680 rc <= RTAS_EXTENDED_DELAY_MAX)); 681 682 if (rc < 0) 683 return rtas_error_rc(rc); 684 685 return rc; 686 } 687 688 void __noreturn rtas_restart(char *cmd) 689 { 690 if (rtas_flash_term_hook) 691 rtas_flash_term_hook(SYS_RESTART); 692 printk("RTAS system-reboot returned %d\n", 693 rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); 694 for (;;); 695 } 696 697 void rtas_power_off(void) 698 { 699 if (rtas_flash_term_hook) 700 rtas_flash_term_hook(SYS_POWER_OFF); 701 /* allow power on only with power button press */ 702 printk("RTAS power-off returned %d\n", 703 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); 704 for (;;); 705 } 706 707 void __noreturn rtas_halt(void) 708 { 709 if (rtas_flash_term_hook) 710 rtas_flash_term_hook(SYS_HALT); 711 /* allow power on only with power button press */ 712 printk("RTAS power-off returned %d\n", 713 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); 714 for (;;); 715 } 716 717 /* Must be in the RMO region, so we place it here */ 718 static char rtas_os_term_buf[2048]; 719 720 void rtas_os_term(char *str) 721 { 722 int status; 723 724 /* 725 * Firmware with the ibm,extended-os-term property is guaranteed 726 * to always return from an ibm,os-term call. Earlier versions without 727 * this property may terminate the partition which we want to avoid 728 * since it interferes with panic_timeout. 729 */ 730 if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term") || 731 RTAS_UNKNOWN_SERVICE == rtas_token("ibm,extended-os-term")) 732 return; 733 734 snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); 735 736 do { 737 status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL, 738 __pa(rtas_os_term_buf)); 739 } while (rtas_busy_delay(status)); 740 741 if (status != 0) 742 printk(KERN_EMERG "ibm,os-term call failed %d\n", status); 743 } 744 745 static int ibm_suspend_me_token = RTAS_UNKNOWN_SERVICE; 746 #ifdef CONFIG_PPC_PSERIES 747 static int __rtas_suspend_last_cpu(struct rtas_suspend_me_data *data, int wake_when_done) 748 { 749 u16 slb_size = mmu_slb_size; 750 int rc = H_MULTI_THREADS_ACTIVE; 751 int cpu; 752 753 slb_set_size(SLB_MIN_SIZE); 754 printk(KERN_DEBUG "calling ibm,suspend-me on cpu %i\n", smp_processor_id()); 755 756 while (rc == H_MULTI_THREADS_ACTIVE && !atomic_read(&data->done) && 757 !atomic_read(&data->error)) 758 rc = rtas_call(data->token, 0, 1, NULL); 759 760 if (rc || atomic_read(&data->error)) { 761 printk(KERN_DEBUG "ibm,suspend-me returned %d\n", rc); 762 slb_set_size(slb_size); 763 } 764 765 if (atomic_read(&data->error)) 766 rc = atomic_read(&data->error); 767 768 atomic_set(&data->error, rc); 769 pSeries_coalesce_init(); 770 771 if (wake_when_done) { 772 atomic_set(&data->done, 1); 773 774 for_each_online_cpu(cpu) 775 plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); 776 } 777 778 if (atomic_dec_return(&data->working) == 0) 779 complete(data->complete); 780 781 return rc; 782 } 783 784 int rtas_suspend_last_cpu(struct rtas_suspend_me_data *data) 785 { 786 atomic_inc(&data->working); 787 return __rtas_suspend_last_cpu(data, 0); 788 } 789 790 static int __rtas_suspend_cpu(struct rtas_suspend_me_data *data, int wake_when_done) 791 { 792 long rc = H_SUCCESS; 793 unsigned long msr_save; 794 int cpu; 795 796 atomic_inc(&data->working); 797 798 /* really need to ensure MSR.EE is off for H_JOIN */ 799 msr_save = mfmsr(); 800 mtmsr(msr_save & ~(MSR_EE)); 801 802 while (rc == H_SUCCESS && !atomic_read(&data->done) && !atomic_read(&data->error)) 803 rc = plpar_hcall_norets(H_JOIN); 804 805 mtmsr(msr_save); 806 807 if (rc == H_SUCCESS) { 808 /* This cpu was prodded and the suspend is complete. */ 809 goto out; 810 } else if (rc == H_CONTINUE) { 811 /* All other cpus are in H_JOIN, this cpu does 812 * the suspend. 813 */ 814 return __rtas_suspend_last_cpu(data, wake_when_done); 815 } else { 816 printk(KERN_ERR "H_JOIN on cpu %i failed with rc = %ld\n", 817 smp_processor_id(), rc); 818 atomic_set(&data->error, rc); 819 } 820 821 if (wake_when_done) { 822 atomic_set(&data->done, 1); 823 824 /* This cpu did the suspend or got an error; in either case, 825 * we need to prod all other other cpus out of join state. 826 * Extra prods are harmless. 827 */ 828 for_each_online_cpu(cpu) 829 plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); 830 } 831 out: 832 if (atomic_dec_return(&data->working) == 0) 833 complete(data->complete); 834 return rc; 835 } 836 837 int rtas_suspend_cpu(struct rtas_suspend_me_data *data) 838 { 839 return __rtas_suspend_cpu(data, 0); 840 } 841 842 static void rtas_percpu_suspend_me(void *info) 843 { 844 __rtas_suspend_cpu((struct rtas_suspend_me_data *)info, 1); 845 } 846 847 enum rtas_cpu_state { 848 DOWN, 849 UP, 850 }; 851 852 #ifndef CONFIG_SMP 853 static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, 854 cpumask_var_t cpus) 855 { 856 if (!cpumask_empty(cpus)) { 857 cpumask_clear(cpus); 858 return -EINVAL; 859 } else 860 return 0; 861 } 862 #else 863 /* On return cpumask will be altered to indicate CPUs changed. 864 * CPUs with states changed will be set in the mask, 865 * CPUs with status unchanged will be unset in the mask. */ 866 static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, 867 cpumask_var_t cpus) 868 { 869 int cpu; 870 int cpuret = 0; 871 int ret = 0; 872 873 if (cpumask_empty(cpus)) 874 return 0; 875 876 for_each_cpu(cpu, cpus) { 877 switch (state) { 878 case DOWN: 879 cpuret = cpu_down(cpu); 880 break; 881 case UP: 882 cpuret = cpu_up(cpu); 883 break; 884 } 885 if (cpuret) { 886 pr_debug("%s: cpu_%s for cpu#%d returned %d.\n", 887 __func__, 888 ((state == UP) ? "up" : "down"), 889 cpu, cpuret); 890 if (!ret) 891 ret = cpuret; 892 if (state == UP) { 893 /* clear bits for unchanged cpus, return */ 894 cpumask_shift_right(cpus, cpus, cpu); 895 cpumask_shift_left(cpus, cpus, cpu); 896 break; 897 } else { 898 /* clear bit for unchanged cpu, continue */ 899 cpumask_clear_cpu(cpu, cpus); 900 } 901 } 902 } 903 904 return ret; 905 } 906 #endif 907 908 int rtas_online_cpus_mask(cpumask_var_t cpus) 909 { 910 int ret; 911 912 ret = rtas_cpu_state_change_mask(UP, cpus); 913 914 if (ret) { 915 cpumask_var_t tmp_mask; 916 917 if (!alloc_cpumask_var(&tmp_mask, GFP_TEMPORARY)) 918 return ret; 919 920 /* Use tmp_mask to preserve cpus mask from first failure */ 921 cpumask_copy(tmp_mask, cpus); 922 rtas_offline_cpus_mask(tmp_mask); 923 free_cpumask_var(tmp_mask); 924 } 925 926 return ret; 927 } 928 EXPORT_SYMBOL(rtas_online_cpus_mask); 929 930 int rtas_offline_cpus_mask(cpumask_var_t cpus) 931 { 932 return rtas_cpu_state_change_mask(DOWN, cpus); 933 } 934 EXPORT_SYMBOL(rtas_offline_cpus_mask); 935 936 int rtas_ibm_suspend_me(u64 handle) 937 { 938 long state; 939 long rc; 940 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 941 struct rtas_suspend_me_data data; 942 DECLARE_COMPLETION_ONSTACK(done); 943 cpumask_var_t offline_mask; 944 int cpuret; 945 946 if (!rtas_service_present("ibm,suspend-me")) 947 return -ENOSYS; 948 949 /* Make sure the state is valid */ 950 rc = plpar_hcall(H_VASI_STATE, retbuf, handle); 951 952 state = retbuf[0]; 953 954 if (rc) { 955 printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc); 956 return rc; 957 } else if (state == H_VASI_ENABLED) { 958 return -EAGAIN; 959 } else if (state != H_VASI_SUSPENDING) { 960 printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n", 961 state); 962 return -EIO; 963 } 964 965 if (!alloc_cpumask_var(&offline_mask, GFP_TEMPORARY)) 966 return -ENOMEM; 967 968 atomic_set(&data.working, 0); 969 atomic_set(&data.done, 0); 970 atomic_set(&data.error, 0); 971 data.token = rtas_token("ibm,suspend-me"); 972 data.complete = &done; 973 974 /* All present CPUs must be online */ 975 cpumask_andnot(offline_mask, cpu_present_mask, cpu_online_mask); 976 cpuret = rtas_online_cpus_mask(offline_mask); 977 if (cpuret) { 978 pr_err("%s: Could not bring present CPUs online.\n", __func__); 979 atomic_set(&data.error, cpuret); 980 goto out; 981 } 982 983 stop_topology_update(); 984 985 /* Call function on all CPUs. One of us will make the 986 * rtas call 987 */ 988 if (on_each_cpu(rtas_percpu_suspend_me, &data, 0)) 989 atomic_set(&data.error, -EINVAL); 990 991 wait_for_completion(&done); 992 993 if (atomic_read(&data.error) != 0) 994 printk(KERN_ERR "Error doing global join\n"); 995 996 start_topology_update(); 997 998 /* Take down CPUs not online prior to suspend */ 999 cpuret = rtas_offline_cpus_mask(offline_mask); 1000 if (cpuret) 1001 pr_warn("%s: Could not restore CPUs to offline state.\n", 1002 __func__); 1003 1004 out: 1005 free_cpumask_var(offline_mask); 1006 return atomic_read(&data.error); 1007 } 1008 #else /* CONFIG_PPC_PSERIES */ 1009 int rtas_ibm_suspend_me(u64 handle) 1010 { 1011 return -ENOSYS; 1012 } 1013 #endif 1014 1015 /** 1016 * Find a specific pseries error log in an RTAS extended event log. 1017 * @log: RTAS error/event log 1018 * @section_id: two character section identifier 1019 * 1020 * Returns a pointer to the specified errorlog or NULL if not found. 1021 */ 1022 struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log, 1023 uint16_t section_id) 1024 { 1025 struct rtas_ext_event_log_v6 *ext_log = 1026 (struct rtas_ext_event_log_v6 *)log->buffer; 1027 struct pseries_errorlog *sect; 1028 unsigned char *p, *log_end; 1029 uint32_t ext_log_length = rtas_error_extended_log_length(log); 1030 uint8_t log_format = rtas_ext_event_log_format(ext_log); 1031 uint32_t company_id = rtas_ext_event_company_id(ext_log); 1032 1033 /* Check that we understand the format */ 1034 if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) || 1035 log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG || 1036 company_id != RTAS_V6EXT_COMPANY_ID_IBM) 1037 return NULL; 1038 1039 log_end = log->buffer + ext_log_length; 1040 p = ext_log->vendor_log; 1041 1042 while (p < log_end) { 1043 sect = (struct pseries_errorlog *)p; 1044 if (pseries_errorlog_id(sect) == section_id) 1045 return sect; 1046 p += pseries_errorlog_length(sect); 1047 } 1048 1049 return NULL; 1050 } 1051 1052 /* We assume to be passed big endian arguments */ 1053 asmlinkage int ppc_rtas(struct rtas_args __user *uargs) 1054 { 1055 struct rtas_args args; 1056 unsigned long flags; 1057 char *buff_copy, *errbuf = NULL; 1058 int nargs, nret, token; 1059 1060 if (!capable(CAP_SYS_ADMIN)) 1061 return -EPERM; 1062 1063 if (!rtas.entry) 1064 return -EINVAL; 1065 1066 if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) 1067 return -EFAULT; 1068 1069 nargs = be32_to_cpu(args.nargs); 1070 nret = be32_to_cpu(args.nret); 1071 token = be32_to_cpu(args.token); 1072 1073 if (nargs >= ARRAY_SIZE(args.args) 1074 || nret > ARRAY_SIZE(args.args) 1075 || nargs + nret > ARRAY_SIZE(args.args)) 1076 return -EINVAL; 1077 1078 /* Copy in args. */ 1079 if (copy_from_user(args.args, uargs->args, 1080 nargs * sizeof(rtas_arg_t)) != 0) 1081 return -EFAULT; 1082 1083 if (token == RTAS_UNKNOWN_SERVICE) 1084 return -EINVAL; 1085 1086 args.rets = &args.args[nargs]; 1087 memset(args.rets, 0, nret * sizeof(rtas_arg_t)); 1088 1089 /* Need to handle ibm,suspend_me call specially */ 1090 if (token == ibm_suspend_me_token) { 1091 1092 /* 1093 * rtas_ibm_suspend_me assumes the streamid handle is in cpu 1094 * endian, or at least the hcall within it requires it. 1095 */ 1096 int rc = 0; 1097 u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32) 1098 | be32_to_cpu(args.args[1]); 1099 rc = rtas_ibm_suspend_me(handle); 1100 if (rc == -EAGAIN) 1101 args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE); 1102 else if (rc == -EIO) 1103 args.rets[0] = cpu_to_be32(-1); 1104 else if (rc) 1105 return rc; 1106 goto copy_return; 1107 } 1108 1109 buff_copy = get_errorlog_buffer(); 1110 1111 flags = lock_rtas(); 1112 1113 rtas.args = args; 1114 enter_rtas(__pa(&rtas.args)); 1115 args = rtas.args; 1116 1117 /* A -1 return code indicates that the last command couldn't 1118 be completed due to a hardware error. */ 1119 if (be32_to_cpu(args.rets[0]) == -1) 1120 errbuf = __fetch_rtas_last_error(buff_copy); 1121 1122 unlock_rtas(flags); 1123 1124 if (buff_copy) { 1125 if (errbuf) 1126 log_error(errbuf, ERR_TYPE_RTAS_LOG, 0); 1127 kfree(buff_copy); 1128 } 1129 1130 copy_return: 1131 /* Copy out args. */ 1132 if (copy_to_user(uargs->args + nargs, 1133 args.args + nargs, 1134 nret * sizeof(rtas_arg_t)) != 0) 1135 return -EFAULT; 1136 1137 return 0; 1138 } 1139 1140 /* 1141 * Call early during boot, before mem init, to retrieve the RTAS 1142 * information from the device-tree and allocate the RMO buffer for userland 1143 * accesses. 1144 */ 1145 void __init rtas_initialize(void) 1146 { 1147 unsigned long rtas_region = RTAS_INSTANTIATE_MAX; 1148 1149 /* Get RTAS dev node and fill up our "rtas" structure with infos 1150 * about it. 1151 */ 1152 rtas.dev = of_find_node_by_name(NULL, "rtas"); 1153 if (rtas.dev) { 1154 const __be32 *basep, *entryp, *sizep; 1155 1156 basep = of_get_property(rtas.dev, "linux,rtas-base", NULL); 1157 sizep = of_get_property(rtas.dev, "rtas-size", NULL); 1158 if (basep != NULL && sizep != NULL) { 1159 rtas.base = __be32_to_cpu(*basep); 1160 rtas.size = __be32_to_cpu(*sizep); 1161 entryp = of_get_property(rtas.dev, 1162 "linux,rtas-entry", NULL); 1163 if (entryp == NULL) /* Ugh */ 1164 rtas.entry = rtas.base; 1165 else 1166 rtas.entry = __be32_to_cpu(*entryp); 1167 } else 1168 rtas.dev = NULL; 1169 } 1170 if (!rtas.dev) 1171 return; 1172 1173 /* If RTAS was found, allocate the RMO buffer for it and look for 1174 * the stop-self token if any 1175 */ 1176 #ifdef CONFIG_PPC64 1177 if (firmware_has_feature(FW_FEATURE_LPAR)) { 1178 rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX); 1179 ibm_suspend_me_token = rtas_token("ibm,suspend-me"); 1180 } 1181 #endif 1182 rtas_rmo_buf = memblock_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE, rtas_region); 1183 1184 #ifdef CONFIG_RTAS_ERROR_LOGGING 1185 rtas_last_error_token = rtas_token("rtas-last-error"); 1186 #endif 1187 } 1188 1189 int __init early_init_dt_scan_rtas(unsigned long node, 1190 const char *uname, int depth, void *data) 1191 { 1192 const u32 *basep, *entryp, *sizep; 1193 1194 if (depth != 1 || strcmp(uname, "rtas") != 0) 1195 return 0; 1196 1197 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL); 1198 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL); 1199 sizep = of_get_flat_dt_prop(node, "rtas-size", NULL); 1200 1201 if (basep && entryp && sizep) { 1202 rtas.base = *basep; 1203 rtas.entry = *entryp; 1204 rtas.size = *sizep; 1205 } 1206 1207 #ifdef CONFIG_UDBG_RTAS_CONSOLE 1208 basep = of_get_flat_dt_prop(node, "put-term-char", NULL); 1209 if (basep) 1210 rtas_putchar_token = *basep; 1211 1212 basep = of_get_flat_dt_prop(node, "get-term-char", NULL); 1213 if (basep) 1214 rtas_getchar_token = *basep; 1215 1216 if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE && 1217 rtas_getchar_token != RTAS_UNKNOWN_SERVICE) 1218 udbg_init_rtas_console(); 1219 1220 #endif 1221 1222 /* break now */ 1223 return 1; 1224 } 1225 1226 static arch_spinlock_t timebase_lock; 1227 static u64 timebase = 0; 1228 1229 void rtas_give_timebase(void) 1230 { 1231 unsigned long flags; 1232 1233 local_irq_save(flags); 1234 hard_irq_disable(); 1235 arch_spin_lock(&timebase_lock); 1236 rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL); 1237 timebase = get_tb(); 1238 arch_spin_unlock(&timebase_lock); 1239 1240 while (timebase) 1241 barrier(); 1242 rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL); 1243 local_irq_restore(flags); 1244 } 1245 1246 void rtas_take_timebase(void) 1247 { 1248 while (!timebase) 1249 barrier(); 1250 arch_spin_lock(&timebase_lock); 1251 set_tb(timebase >> 32, timebase & 0xffffffff); 1252 timebase = 0; 1253 arch_spin_unlock(&timebase_lock); 1254 } 1255