1 /* 2 * 3 * Procedures for interfacing to the RTAS on CHRP machines. 4 * 5 * Peter Bergner, IBM March 2001. 6 * Copyright (C) 2001 IBM. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #include <stdarg.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/spinlock.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/capability.h> 21 #include <linux/delay.h> 22 #include <linux/cpu.h> 23 #include <linux/smp.h> 24 #include <linux/completion.h> 25 #include <linux/cpumask.h> 26 #include <linux/memblock.h> 27 #include <linux/slab.h> 28 #include <linux/reboot.h> 29 #include <linux/syscalls.h> 30 31 #include <asm/prom.h> 32 #include <asm/rtas.h> 33 #include <asm/hvcall.h> 34 #include <asm/machdep.h> 35 #include <asm/firmware.h> 36 #include <asm/page.h> 37 #include <asm/param.h> 38 #include <asm/delay.h> 39 #include <linux/uaccess.h> 40 #include <asm/udbg.h> 41 #include <asm/syscalls.h> 42 #include <asm/smp.h> 43 #include <linux/atomic.h> 44 #include <asm/time.h> 45 #include <asm/mmu.h> 46 #include <asm/topology.h> 47 48 /* This is here deliberately so it's only used in this file */ 49 void enter_rtas(unsigned long); 50 51 struct rtas_t rtas = { 52 .lock = __ARCH_SPIN_LOCK_UNLOCKED 53 }; 54 EXPORT_SYMBOL(rtas); 55 56 DEFINE_SPINLOCK(rtas_data_buf_lock); 57 EXPORT_SYMBOL(rtas_data_buf_lock); 58 59 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned; 60 EXPORT_SYMBOL(rtas_data_buf); 61 62 unsigned long rtas_rmo_buf; 63 64 /* 65 * If non-NULL, this gets called when the kernel terminates. 66 * This is done like this so rtas_flash can be a module. 67 */ 68 void (*rtas_flash_term_hook)(int); 69 EXPORT_SYMBOL(rtas_flash_term_hook); 70 71 /* RTAS use home made raw locking instead of spin_lock_irqsave 72 * because those can be called from within really nasty contexts 73 * such as having the timebase stopped which would lockup with 74 * normal locks and spinlock debugging enabled 75 */ 76 static unsigned long lock_rtas(void) 77 { 78 unsigned long flags; 79 80 local_irq_save(flags); 81 preempt_disable(); 82 arch_spin_lock(&rtas.lock); 83 return flags; 84 } 85 86 static void unlock_rtas(unsigned long flags) 87 { 88 arch_spin_unlock(&rtas.lock); 89 local_irq_restore(flags); 90 preempt_enable(); 91 } 92 93 /* 94 * call_rtas_display_status and call_rtas_display_status_delay 95 * are designed only for very early low-level debugging, which 96 * is why the token is hard-coded to 10. 97 */ 98 static void call_rtas_display_status(unsigned char c) 99 { 100 unsigned long s; 101 102 if (!rtas.base) 103 return; 104 105 s = lock_rtas(); 106 rtas_call_unlocked(&rtas.args, 10, 1, 1, NULL, c); 107 unlock_rtas(s); 108 } 109 110 static void call_rtas_display_status_delay(char c) 111 { 112 static int pending_newline = 0; /* did last write end with unprinted newline? */ 113 static int width = 16; 114 115 if (c == '\n') { 116 while (width-- > 0) 117 call_rtas_display_status(' '); 118 width = 16; 119 mdelay(500); 120 pending_newline = 1; 121 } else { 122 if (pending_newline) { 123 call_rtas_display_status('\r'); 124 call_rtas_display_status('\n'); 125 } 126 pending_newline = 0; 127 if (width--) { 128 call_rtas_display_status(c); 129 udelay(10000); 130 } 131 } 132 } 133 134 void __init udbg_init_rtas_panel(void) 135 { 136 udbg_putc = call_rtas_display_status_delay; 137 } 138 139 #ifdef CONFIG_UDBG_RTAS_CONSOLE 140 141 /* If you think you're dying before early_init_dt_scan_rtas() does its 142 * work, you can hard code the token values for your firmware here and 143 * hardcode rtas.base/entry etc. 144 */ 145 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE; 146 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE; 147 148 static void udbg_rtascon_putc(char c) 149 { 150 int tries; 151 152 if (!rtas.base) 153 return; 154 155 /* Add CRs before LFs */ 156 if (c == '\n') 157 udbg_rtascon_putc('\r'); 158 159 /* if there is more than one character to be displayed, wait a bit */ 160 for (tries = 0; tries < 16; tries++) { 161 if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0) 162 break; 163 udelay(1000); 164 } 165 } 166 167 static int udbg_rtascon_getc_poll(void) 168 { 169 int c; 170 171 if (!rtas.base) 172 return -1; 173 174 if (rtas_call(rtas_getchar_token, 0, 2, &c)) 175 return -1; 176 177 return c; 178 } 179 180 static int udbg_rtascon_getc(void) 181 { 182 int c; 183 184 while ((c = udbg_rtascon_getc_poll()) == -1) 185 ; 186 187 return c; 188 } 189 190 191 void __init udbg_init_rtas_console(void) 192 { 193 udbg_putc = udbg_rtascon_putc; 194 udbg_getc = udbg_rtascon_getc; 195 udbg_getc_poll = udbg_rtascon_getc_poll; 196 } 197 #endif /* CONFIG_UDBG_RTAS_CONSOLE */ 198 199 void rtas_progress(char *s, unsigned short hex) 200 { 201 struct device_node *root; 202 int width; 203 const __be32 *p; 204 char *os; 205 static int display_character, set_indicator; 206 static int display_width, display_lines, form_feed; 207 static const int *row_width; 208 static DEFINE_SPINLOCK(progress_lock); 209 static int current_line; 210 static int pending_newline = 0; /* did last write end with unprinted newline? */ 211 212 if (!rtas.base) 213 return; 214 215 if (display_width == 0) { 216 display_width = 0x10; 217 if ((root = of_find_node_by_path("/rtas"))) { 218 if ((p = of_get_property(root, 219 "ibm,display-line-length", NULL))) 220 display_width = be32_to_cpu(*p); 221 if ((p = of_get_property(root, 222 "ibm,form-feed", NULL))) 223 form_feed = be32_to_cpu(*p); 224 if ((p = of_get_property(root, 225 "ibm,display-number-of-lines", NULL))) 226 display_lines = be32_to_cpu(*p); 227 row_width = of_get_property(root, 228 "ibm,display-truncation-length", NULL); 229 of_node_put(root); 230 } 231 display_character = rtas_token("display-character"); 232 set_indicator = rtas_token("set-indicator"); 233 } 234 235 if (display_character == RTAS_UNKNOWN_SERVICE) { 236 /* use hex display if available */ 237 if (set_indicator != RTAS_UNKNOWN_SERVICE) 238 rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex); 239 return; 240 } 241 242 spin_lock(&progress_lock); 243 244 /* 245 * Last write ended with newline, but we didn't print it since 246 * it would just clear the bottom line of output. Print it now 247 * instead. 248 * 249 * If no newline is pending and form feed is supported, clear the 250 * display with a form feed; otherwise, print a CR to start output 251 * at the beginning of the line. 252 */ 253 if (pending_newline) { 254 rtas_call(display_character, 1, 1, NULL, '\r'); 255 rtas_call(display_character, 1, 1, NULL, '\n'); 256 pending_newline = 0; 257 } else { 258 current_line = 0; 259 if (form_feed) 260 rtas_call(display_character, 1, 1, NULL, 261 (char)form_feed); 262 else 263 rtas_call(display_character, 1, 1, NULL, '\r'); 264 } 265 266 if (row_width) 267 width = row_width[current_line]; 268 else 269 width = display_width; 270 os = s; 271 while (*os) { 272 if (*os == '\n' || *os == '\r') { 273 /* If newline is the last character, save it 274 * until next call to avoid bumping up the 275 * display output. 276 */ 277 if (*os == '\n' && !os[1]) { 278 pending_newline = 1; 279 current_line++; 280 if (current_line > display_lines-1) 281 current_line = display_lines-1; 282 spin_unlock(&progress_lock); 283 return; 284 } 285 286 /* RTAS wants CR-LF, not just LF */ 287 288 if (*os == '\n') { 289 rtas_call(display_character, 1, 1, NULL, '\r'); 290 rtas_call(display_character, 1, 1, NULL, '\n'); 291 } else { 292 /* CR might be used to re-draw a line, so we'll 293 * leave it alone and not add LF. 294 */ 295 rtas_call(display_character, 1, 1, NULL, *os); 296 } 297 298 if (row_width) 299 width = row_width[current_line]; 300 else 301 width = display_width; 302 } else { 303 width--; 304 rtas_call(display_character, 1, 1, NULL, *os); 305 } 306 307 os++; 308 309 /* if we overwrite the screen length */ 310 if (width <= 0) 311 while ((*os != 0) && (*os != '\n') && (*os != '\r')) 312 os++; 313 } 314 315 spin_unlock(&progress_lock); 316 } 317 EXPORT_SYMBOL(rtas_progress); /* needed by rtas_flash module */ 318 319 int rtas_token(const char *service) 320 { 321 const __be32 *tokp; 322 if (rtas.dev == NULL) 323 return RTAS_UNKNOWN_SERVICE; 324 tokp = of_get_property(rtas.dev, service, NULL); 325 return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE; 326 } 327 EXPORT_SYMBOL(rtas_token); 328 329 int rtas_service_present(const char *service) 330 { 331 return rtas_token(service) != RTAS_UNKNOWN_SERVICE; 332 } 333 EXPORT_SYMBOL(rtas_service_present); 334 335 #ifdef CONFIG_RTAS_ERROR_LOGGING 336 /* 337 * Return the firmware-specified size of the error log buffer 338 * for all rtas calls that require an error buffer argument. 339 * This includes 'check-exception' and 'rtas-last-error'. 340 */ 341 int rtas_get_error_log_max(void) 342 { 343 static int rtas_error_log_max; 344 if (rtas_error_log_max) 345 return rtas_error_log_max; 346 347 rtas_error_log_max = rtas_token ("rtas-error-log-max"); 348 if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) || 349 (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) { 350 printk (KERN_WARNING "RTAS: bad log buffer size %d\n", 351 rtas_error_log_max); 352 rtas_error_log_max = RTAS_ERROR_LOG_MAX; 353 } 354 return rtas_error_log_max; 355 } 356 EXPORT_SYMBOL(rtas_get_error_log_max); 357 358 359 static char rtas_err_buf[RTAS_ERROR_LOG_MAX]; 360 static int rtas_last_error_token; 361 362 /** Return a copy of the detailed error text associated with the 363 * most recent failed call to rtas. Because the error text 364 * might go stale if there are any other intervening rtas calls, 365 * this routine must be called atomically with whatever produced 366 * the error (i.e. with rtas.lock still held from the previous call). 367 */ 368 static char *__fetch_rtas_last_error(char *altbuf) 369 { 370 struct rtas_args err_args, save_args; 371 u32 bufsz; 372 char *buf = NULL; 373 374 if (rtas_last_error_token == -1) 375 return NULL; 376 377 bufsz = rtas_get_error_log_max(); 378 379 err_args.token = cpu_to_be32(rtas_last_error_token); 380 err_args.nargs = cpu_to_be32(2); 381 err_args.nret = cpu_to_be32(1); 382 err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf)); 383 err_args.args[1] = cpu_to_be32(bufsz); 384 err_args.args[2] = 0; 385 386 save_args = rtas.args; 387 rtas.args = err_args; 388 389 enter_rtas(__pa(&rtas.args)); 390 391 err_args = rtas.args; 392 rtas.args = save_args; 393 394 /* Log the error in the unlikely case that there was one. */ 395 if (unlikely(err_args.args[2] == 0)) { 396 if (altbuf) { 397 buf = altbuf; 398 } else { 399 buf = rtas_err_buf; 400 if (slab_is_available()) 401 buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); 402 } 403 if (buf) 404 memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX); 405 } 406 407 return buf; 408 } 409 410 #define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL) 411 412 #else /* CONFIG_RTAS_ERROR_LOGGING */ 413 #define __fetch_rtas_last_error(x) NULL 414 #define get_errorlog_buffer() NULL 415 #endif 416 417 418 static void 419 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, 420 va_list list) 421 { 422 int i; 423 424 args->token = cpu_to_be32(token); 425 args->nargs = cpu_to_be32(nargs); 426 args->nret = cpu_to_be32(nret); 427 args->rets = &(args->args[nargs]); 428 429 for (i = 0; i < nargs; ++i) 430 args->args[i] = cpu_to_be32(va_arg(list, __u32)); 431 432 for (i = 0; i < nret; ++i) 433 args->rets[i] = 0; 434 435 enter_rtas(__pa(args)); 436 } 437 438 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...) 439 { 440 va_list list; 441 442 va_start(list, nret); 443 va_rtas_call_unlocked(args, token, nargs, nret, list); 444 va_end(list); 445 } 446 447 int rtas_call(int token, int nargs, int nret, int *outputs, ...) 448 { 449 va_list list; 450 int i; 451 unsigned long s; 452 struct rtas_args *rtas_args; 453 char *buff_copy = NULL; 454 int ret; 455 456 if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE) 457 return -1; 458 459 s = lock_rtas(); 460 461 /* We use the global rtas args buffer */ 462 rtas_args = &rtas.args; 463 464 va_start(list, outputs); 465 va_rtas_call_unlocked(rtas_args, token, nargs, nret, list); 466 va_end(list); 467 468 /* A -1 return code indicates that the last command couldn't 469 be completed due to a hardware error. */ 470 if (be32_to_cpu(rtas_args->rets[0]) == -1) 471 buff_copy = __fetch_rtas_last_error(NULL); 472 473 if (nret > 1 && outputs != NULL) 474 for (i = 0; i < nret-1; ++i) 475 outputs[i] = be32_to_cpu(rtas_args->rets[i+1]); 476 ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0; 477 478 unlock_rtas(s); 479 480 if (buff_copy) { 481 log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); 482 if (slab_is_available()) 483 kfree(buff_copy); 484 } 485 return ret; 486 } 487 EXPORT_SYMBOL(rtas_call); 488 489 /* For RTAS_BUSY (-2), delay for 1 millisecond. For an extended busy status 490 * code of 990n, perform the hinted delay of 10^n (last digit) milliseconds. 491 */ 492 unsigned int rtas_busy_delay_time(int status) 493 { 494 int order; 495 unsigned int ms = 0; 496 497 if (status == RTAS_BUSY) { 498 ms = 1; 499 } else if (status >= RTAS_EXTENDED_DELAY_MIN && 500 status <= RTAS_EXTENDED_DELAY_MAX) { 501 order = status - RTAS_EXTENDED_DELAY_MIN; 502 for (ms = 1; order > 0; order--) 503 ms *= 10; 504 } 505 506 return ms; 507 } 508 EXPORT_SYMBOL(rtas_busy_delay_time); 509 510 /* For an RTAS busy status code, perform the hinted delay. */ 511 unsigned int rtas_busy_delay(int status) 512 { 513 unsigned int ms; 514 515 might_sleep(); 516 ms = rtas_busy_delay_time(status); 517 if (ms && need_resched()) 518 msleep(ms); 519 520 return ms; 521 } 522 EXPORT_SYMBOL(rtas_busy_delay); 523 524 static int rtas_error_rc(int rtas_rc) 525 { 526 int rc; 527 528 switch (rtas_rc) { 529 case -1: /* Hardware Error */ 530 rc = -EIO; 531 break; 532 case -3: /* Bad indicator/domain/etc */ 533 rc = -EINVAL; 534 break; 535 case -9000: /* Isolation error */ 536 rc = -EFAULT; 537 break; 538 case -9001: /* Outstanding TCE/PTE */ 539 rc = -EEXIST; 540 break; 541 case -9002: /* No usable slot */ 542 rc = -ENODEV; 543 break; 544 default: 545 printk(KERN_ERR "%s: unexpected RTAS error %d\n", 546 __func__, rtas_rc); 547 rc = -ERANGE; 548 break; 549 } 550 return rc; 551 } 552 553 int rtas_get_power_level(int powerdomain, int *level) 554 { 555 int token = rtas_token("get-power-level"); 556 int rc; 557 558 if (token == RTAS_UNKNOWN_SERVICE) 559 return -ENOENT; 560 561 while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) 562 udelay(1); 563 564 if (rc < 0) 565 return rtas_error_rc(rc); 566 return rc; 567 } 568 EXPORT_SYMBOL(rtas_get_power_level); 569 570 int rtas_set_power_level(int powerdomain, int level, int *setlevel) 571 { 572 int token = rtas_token("set-power-level"); 573 int rc; 574 575 if (token == RTAS_UNKNOWN_SERVICE) 576 return -ENOENT; 577 578 do { 579 rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); 580 } while (rtas_busy_delay(rc)); 581 582 if (rc < 0) 583 return rtas_error_rc(rc); 584 return rc; 585 } 586 EXPORT_SYMBOL(rtas_set_power_level); 587 588 int rtas_get_sensor(int sensor, int index, int *state) 589 { 590 int token = rtas_token("get-sensor-state"); 591 int rc; 592 593 if (token == RTAS_UNKNOWN_SERVICE) 594 return -ENOENT; 595 596 do { 597 rc = rtas_call(token, 2, 2, state, sensor, index); 598 } while (rtas_busy_delay(rc)); 599 600 if (rc < 0) 601 return rtas_error_rc(rc); 602 return rc; 603 } 604 EXPORT_SYMBOL(rtas_get_sensor); 605 606 int rtas_get_sensor_fast(int sensor, int index, int *state) 607 { 608 int token = rtas_token("get-sensor-state"); 609 int rc; 610 611 if (token == RTAS_UNKNOWN_SERVICE) 612 return -ENOENT; 613 614 rc = rtas_call(token, 2, 2, state, sensor, index); 615 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && 616 rc <= RTAS_EXTENDED_DELAY_MAX)); 617 618 if (rc < 0) 619 return rtas_error_rc(rc); 620 return rc; 621 } 622 623 bool rtas_indicator_present(int token, int *maxindex) 624 { 625 int proplen, count, i; 626 const struct indicator_elem { 627 __be32 token; 628 __be32 maxindex; 629 } *indicators; 630 631 indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen); 632 if (!indicators) 633 return false; 634 635 count = proplen / sizeof(struct indicator_elem); 636 637 for (i = 0; i < count; i++) { 638 if (__be32_to_cpu(indicators[i].token) != token) 639 continue; 640 if (maxindex) 641 *maxindex = __be32_to_cpu(indicators[i].maxindex); 642 return true; 643 } 644 645 return false; 646 } 647 EXPORT_SYMBOL(rtas_indicator_present); 648 649 int rtas_set_indicator(int indicator, int index, int new_value) 650 { 651 int token = rtas_token("set-indicator"); 652 int rc; 653 654 if (token == RTAS_UNKNOWN_SERVICE) 655 return -ENOENT; 656 657 do { 658 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); 659 } while (rtas_busy_delay(rc)); 660 661 if (rc < 0) 662 return rtas_error_rc(rc); 663 return rc; 664 } 665 EXPORT_SYMBOL(rtas_set_indicator); 666 667 /* 668 * Ignoring RTAS extended delay 669 */ 670 int rtas_set_indicator_fast(int indicator, int index, int new_value) 671 { 672 int rc; 673 int token = rtas_token("set-indicator"); 674 675 if (token == RTAS_UNKNOWN_SERVICE) 676 return -ENOENT; 677 678 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); 679 680 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && 681 rc <= RTAS_EXTENDED_DELAY_MAX)); 682 683 if (rc < 0) 684 return rtas_error_rc(rc); 685 686 return rc; 687 } 688 689 void __noreturn rtas_restart(char *cmd) 690 { 691 if (rtas_flash_term_hook) 692 rtas_flash_term_hook(SYS_RESTART); 693 printk("RTAS system-reboot returned %d\n", 694 rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); 695 for (;;); 696 } 697 698 void rtas_power_off(void) 699 { 700 if (rtas_flash_term_hook) 701 rtas_flash_term_hook(SYS_POWER_OFF); 702 /* allow power on only with power button press */ 703 printk("RTAS power-off returned %d\n", 704 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); 705 for (;;); 706 } 707 708 void __noreturn rtas_halt(void) 709 { 710 if (rtas_flash_term_hook) 711 rtas_flash_term_hook(SYS_HALT); 712 /* allow power on only with power button press */ 713 printk("RTAS power-off returned %d\n", 714 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); 715 for (;;); 716 } 717 718 /* Must be in the RMO region, so we place it here */ 719 static char rtas_os_term_buf[2048]; 720 721 void rtas_os_term(char *str) 722 { 723 int status; 724 725 /* 726 * Firmware with the ibm,extended-os-term property is guaranteed 727 * to always return from an ibm,os-term call. Earlier versions without 728 * this property may terminate the partition which we want to avoid 729 * since it interferes with panic_timeout. 730 */ 731 if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term") || 732 RTAS_UNKNOWN_SERVICE == rtas_token("ibm,extended-os-term")) 733 return; 734 735 snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); 736 737 do { 738 status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL, 739 __pa(rtas_os_term_buf)); 740 } while (rtas_busy_delay(status)); 741 742 if (status != 0) 743 printk(KERN_EMERG "ibm,os-term call failed %d\n", status); 744 } 745 746 static int ibm_suspend_me_token = RTAS_UNKNOWN_SERVICE; 747 #ifdef CONFIG_PPC_PSERIES 748 static int __rtas_suspend_last_cpu(struct rtas_suspend_me_data *data, int wake_when_done) 749 { 750 u16 slb_size = mmu_slb_size; 751 int rc = H_MULTI_THREADS_ACTIVE; 752 int cpu; 753 754 slb_set_size(SLB_MIN_SIZE); 755 printk(KERN_DEBUG "calling ibm,suspend-me on cpu %i\n", smp_processor_id()); 756 757 while (rc == H_MULTI_THREADS_ACTIVE && !atomic_read(&data->done) && 758 !atomic_read(&data->error)) 759 rc = rtas_call(data->token, 0, 1, NULL); 760 761 if (rc || atomic_read(&data->error)) { 762 printk(KERN_DEBUG "ibm,suspend-me returned %d\n", rc); 763 slb_set_size(slb_size); 764 } 765 766 if (atomic_read(&data->error)) 767 rc = atomic_read(&data->error); 768 769 atomic_set(&data->error, rc); 770 pSeries_coalesce_init(); 771 772 if (wake_when_done) { 773 atomic_set(&data->done, 1); 774 775 for_each_online_cpu(cpu) 776 plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); 777 } 778 779 if (atomic_dec_return(&data->working) == 0) 780 complete(data->complete); 781 782 return rc; 783 } 784 785 int rtas_suspend_last_cpu(struct rtas_suspend_me_data *data) 786 { 787 atomic_inc(&data->working); 788 return __rtas_suspend_last_cpu(data, 0); 789 } 790 791 static int __rtas_suspend_cpu(struct rtas_suspend_me_data *data, int wake_when_done) 792 { 793 long rc = H_SUCCESS; 794 unsigned long msr_save; 795 int cpu; 796 797 atomic_inc(&data->working); 798 799 /* really need to ensure MSR.EE is off for H_JOIN */ 800 msr_save = mfmsr(); 801 mtmsr(msr_save & ~(MSR_EE)); 802 803 while (rc == H_SUCCESS && !atomic_read(&data->done) && !atomic_read(&data->error)) 804 rc = plpar_hcall_norets(H_JOIN); 805 806 mtmsr(msr_save); 807 808 if (rc == H_SUCCESS) { 809 /* This cpu was prodded and the suspend is complete. */ 810 goto out; 811 } else if (rc == H_CONTINUE) { 812 /* All other cpus are in H_JOIN, this cpu does 813 * the suspend. 814 */ 815 return __rtas_suspend_last_cpu(data, wake_when_done); 816 } else { 817 printk(KERN_ERR "H_JOIN on cpu %i failed with rc = %ld\n", 818 smp_processor_id(), rc); 819 atomic_set(&data->error, rc); 820 } 821 822 if (wake_when_done) { 823 atomic_set(&data->done, 1); 824 825 /* This cpu did the suspend or got an error; in either case, 826 * we need to prod all other other cpus out of join state. 827 * Extra prods are harmless. 828 */ 829 for_each_online_cpu(cpu) 830 plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); 831 } 832 out: 833 if (atomic_dec_return(&data->working) == 0) 834 complete(data->complete); 835 return rc; 836 } 837 838 int rtas_suspend_cpu(struct rtas_suspend_me_data *data) 839 { 840 return __rtas_suspend_cpu(data, 0); 841 } 842 843 static void rtas_percpu_suspend_me(void *info) 844 { 845 __rtas_suspend_cpu((struct rtas_suspend_me_data *)info, 1); 846 } 847 848 enum rtas_cpu_state { 849 DOWN, 850 UP, 851 }; 852 853 #ifndef CONFIG_SMP 854 static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, 855 cpumask_var_t cpus) 856 { 857 if (!cpumask_empty(cpus)) { 858 cpumask_clear(cpus); 859 return -EINVAL; 860 } else 861 return 0; 862 } 863 #else 864 /* On return cpumask will be altered to indicate CPUs changed. 865 * CPUs with states changed will be set in the mask, 866 * CPUs with status unchanged will be unset in the mask. */ 867 static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, 868 cpumask_var_t cpus) 869 { 870 int cpu; 871 int cpuret = 0; 872 int ret = 0; 873 874 if (cpumask_empty(cpus)) 875 return 0; 876 877 for_each_cpu(cpu, cpus) { 878 switch (state) { 879 case DOWN: 880 cpuret = cpu_down(cpu); 881 break; 882 case UP: 883 cpuret = cpu_up(cpu); 884 break; 885 } 886 if (cpuret) { 887 pr_debug("%s: cpu_%s for cpu#%d returned %d.\n", 888 __func__, 889 ((state == UP) ? "up" : "down"), 890 cpu, cpuret); 891 if (!ret) 892 ret = cpuret; 893 if (state == UP) { 894 /* clear bits for unchanged cpus, return */ 895 cpumask_shift_right(cpus, cpus, cpu); 896 cpumask_shift_left(cpus, cpus, cpu); 897 break; 898 } else { 899 /* clear bit for unchanged cpu, continue */ 900 cpumask_clear_cpu(cpu, cpus); 901 } 902 } 903 } 904 905 return ret; 906 } 907 #endif 908 909 int rtas_online_cpus_mask(cpumask_var_t cpus) 910 { 911 int ret; 912 913 ret = rtas_cpu_state_change_mask(UP, cpus); 914 915 if (ret) { 916 cpumask_var_t tmp_mask; 917 918 if (!alloc_cpumask_var(&tmp_mask, GFP_KERNEL)) 919 return ret; 920 921 /* Use tmp_mask to preserve cpus mask from first failure */ 922 cpumask_copy(tmp_mask, cpus); 923 rtas_offline_cpus_mask(tmp_mask); 924 free_cpumask_var(tmp_mask); 925 } 926 927 return ret; 928 } 929 EXPORT_SYMBOL(rtas_online_cpus_mask); 930 931 int rtas_offline_cpus_mask(cpumask_var_t cpus) 932 { 933 return rtas_cpu_state_change_mask(DOWN, cpus); 934 } 935 EXPORT_SYMBOL(rtas_offline_cpus_mask); 936 937 int rtas_ibm_suspend_me(u64 handle) 938 { 939 long state; 940 long rc; 941 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 942 struct rtas_suspend_me_data data; 943 DECLARE_COMPLETION_ONSTACK(done); 944 cpumask_var_t offline_mask; 945 int cpuret; 946 947 if (!rtas_service_present("ibm,suspend-me")) 948 return -ENOSYS; 949 950 /* Make sure the state is valid */ 951 rc = plpar_hcall(H_VASI_STATE, retbuf, handle); 952 953 state = retbuf[0]; 954 955 if (rc) { 956 printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc); 957 return rc; 958 } else if (state == H_VASI_ENABLED) { 959 return -EAGAIN; 960 } else if (state != H_VASI_SUSPENDING) { 961 printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n", 962 state); 963 return -EIO; 964 } 965 966 if (!alloc_cpumask_var(&offline_mask, GFP_KERNEL)) 967 return -ENOMEM; 968 969 atomic_set(&data.working, 0); 970 atomic_set(&data.done, 0); 971 atomic_set(&data.error, 0); 972 data.token = rtas_token("ibm,suspend-me"); 973 data.complete = &done; 974 975 /* All present CPUs must be online */ 976 cpumask_andnot(offline_mask, cpu_present_mask, cpu_online_mask); 977 cpuret = rtas_online_cpus_mask(offline_mask); 978 if (cpuret) { 979 pr_err("%s: Could not bring present CPUs online.\n", __func__); 980 atomic_set(&data.error, cpuret); 981 goto out; 982 } 983 984 cpu_hotplug_disable(); 985 986 /* Check if we raced with a CPU-Offline Operation */ 987 if (unlikely(!cpumask_equal(cpu_present_mask, cpu_online_mask))) { 988 pr_err("%s: Raced against a concurrent CPU-Offline\n", 989 __func__); 990 atomic_set(&data.error, -EBUSY); 991 goto out_hotplug_enable; 992 } 993 994 /* Call function on all CPUs. One of us will make the 995 * rtas call 996 */ 997 if (on_each_cpu(rtas_percpu_suspend_me, &data, 0)) 998 atomic_set(&data.error, -EINVAL); 999 1000 wait_for_completion(&done); 1001 1002 if (atomic_read(&data.error) != 0) 1003 printk(KERN_ERR "Error doing global join\n"); 1004 1005 out_hotplug_enable: 1006 cpu_hotplug_enable(); 1007 1008 /* Take down CPUs not online prior to suspend */ 1009 cpuret = rtas_offline_cpus_mask(offline_mask); 1010 if (cpuret) 1011 pr_warn("%s: Could not restore CPUs to offline state.\n", 1012 __func__); 1013 1014 out: 1015 free_cpumask_var(offline_mask); 1016 return atomic_read(&data.error); 1017 } 1018 #else /* CONFIG_PPC_PSERIES */ 1019 int rtas_ibm_suspend_me(u64 handle) 1020 { 1021 return -ENOSYS; 1022 } 1023 #endif 1024 1025 /** 1026 * Find a specific pseries error log in an RTAS extended event log. 1027 * @log: RTAS error/event log 1028 * @section_id: two character section identifier 1029 * 1030 * Returns a pointer to the specified errorlog or NULL if not found. 1031 */ 1032 struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log, 1033 uint16_t section_id) 1034 { 1035 struct rtas_ext_event_log_v6 *ext_log = 1036 (struct rtas_ext_event_log_v6 *)log->buffer; 1037 struct pseries_errorlog *sect; 1038 unsigned char *p, *log_end; 1039 uint32_t ext_log_length = rtas_error_extended_log_length(log); 1040 uint8_t log_format = rtas_ext_event_log_format(ext_log); 1041 uint32_t company_id = rtas_ext_event_company_id(ext_log); 1042 1043 /* Check that we understand the format */ 1044 if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) || 1045 log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG || 1046 company_id != RTAS_V6EXT_COMPANY_ID_IBM) 1047 return NULL; 1048 1049 log_end = log->buffer + ext_log_length; 1050 p = ext_log->vendor_log; 1051 1052 while (p < log_end) { 1053 sect = (struct pseries_errorlog *)p; 1054 if (pseries_errorlog_id(sect) == section_id) 1055 return sect; 1056 p += pseries_errorlog_length(sect); 1057 } 1058 1059 return NULL; 1060 } 1061 1062 /* We assume to be passed big endian arguments */ 1063 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs) 1064 { 1065 struct rtas_args args; 1066 unsigned long flags; 1067 char *buff_copy, *errbuf = NULL; 1068 int nargs, nret, token; 1069 1070 if (!capable(CAP_SYS_ADMIN)) 1071 return -EPERM; 1072 1073 if (!rtas.entry) 1074 return -EINVAL; 1075 1076 if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) 1077 return -EFAULT; 1078 1079 nargs = be32_to_cpu(args.nargs); 1080 nret = be32_to_cpu(args.nret); 1081 token = be32_to_cpu(args.token); 1082 1083 if (nargs >= ARRAY_SIZE(args.args) 1084 || nret > ARRAY_SIZE(args.args) 1085 || nargs + nret > ARRAY_SIZE(args.args)) 1086 return -EINVAL; 1087 1088 /* Copy in args. */ 1089 if (copy_from_user(args.args, uargs->args, 1090 nargs * sizeof(rtas_arg_t)) != 0) 1091 return -EFAULT; 1092 1093 if (token == RTAS_UNKNOWN_SERVICE) 1094 return -EINVAL; 1095 1096 args.rets = &args.args[nargs]; 1097 memset(args.rets, 0, nret * sizeof(rtas_arg_t)); 1098 1099 /* Need to handle ibm,suspend_me call specially */ 1100 if (token == ibm_suspend_me_token) { 1101 1102 /* 1103 * rtas_ibm_suspend_me assumes the streamid handle is in cpu 1104 * endian, or at least the hcall within it requires it. 1105 */ 1106 int rc = 0; 1107 u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32) 1108 | be32_to_cpu(args.args[1]); 1109 rc = rtas_ibm_suspend_me(handle); 1110 if (rc == -EAGAIN) 1111 args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE); 1112 else if (rc == -EIO) 1113 args.rets[0] = cpu_to_be32(-1); 1114 else if (rc) 1115 return rc; 1116 goto copy_return; 1117 } 1118 1119 buff_copy = get_errorlog_buffer(); 1120 1121 flags = lock_rtas(); 1122 1123 rtas.args = args; 1124 enter_rtas(__pa(&rtas.args)); 1125 args = rtas.args; 1126 1127 /* A -1 return code indicates that the last command couldn't 1128 be completed due to a hardware error. */ 1129 if (be32_to_cpu(args.rets[0]) == -1) 1130 errbuf = __fetch_rtas_last_error(buff_copy); 1131 1132 unlock_rtas(flags); 1133 1134 if (buff_copy) { 1135 if (errbuf) 1136 log_error(errbuf, ERR_TYPE_RTAS_LOG, 0); 1137 kfree(buff_copy); 1138 } 1139 1140 copy_return: 1141 /* Copy out args. */ 1142 if (copy_to_user(uargs->args + nargs, 1143 args.args + nargs, 1144 nret * sizeof(rtas_arg_t)) != 0) 1145 return -EFAULT; 1146 1147 return 0; 1148 } 1149 1150 /* 1151 * Call early during boot, before mem init, to retrieve the RTAS 1152 * information from the device-tree and allocate the RMO buffer for userland 1153 * accesses. 1154 */ 1155 void __init rtas_initialize(void) 1156 { 1157 unsigned long rtas_region = RTAS_INSTANTIATE_MAX; 1158 u32 base, size, entry; 1159 int no_base, no_size, no_entry; 1160 1161 /* Get RTAS dev node and fill up our "rtas" structure with infos 1162 * about it. 1163 */ 1164 rtas.dev = of_find_node_by_name(NULL, "rtas"); 1165 if (!rtas.dev) 1166 return; 1167 1168 no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base); 1169 no_size = of_property_read_u32(rtas.dev, "rtas-size", &size); 1170 if (no_base || no_size) { 1171 of_node_put(rtas.dev); 1172 rtas.dev = NULL; 1173 return; 1174 } 1175 1176 rtas.base = base; 1177 rtas.size = size; 1178 no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry); 1179 rtas.entry = no_entry ? rtas.base : entry; 1180 1181 /* If RTAS was found, allocate the RMO buffer for it and look for 1182 * the stop-self token if any 1183 */ 1184 #ifdef CONFIG_PPC64 1185 if (firmware_has_feature(FW_FEATURE_LPAR)) { 1186 rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX); 1187 ibm_suspend_me_token = rtas_token("ibm,suspend-me"); 1188 } 1189 #endif 1190 rtas_rmo_buf = memblock_phys_alloc_range(RTAS_RMOBUF_MAX, PAGE_SIZE, 1191 0, rtas_region); 1192 if (!rtas_rmo_buf) 1193 panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n", 1194 PAGE_SIZE, &rtas_region); 1195 1196 #ifdef CONFIG_RTAS_ERROR_LOGGING 1197 rtas_last_error_token = rtas_token("rtas-last-error"); 1198 #endif 1199 } 1200 1201 int __init early_init_dt_scan_rtas(unsigned long node, 1202 const char *uname, int depth, void *data) 1203 { 1204 const u32 *basep, *entryp, *sizep; 1205 1206 if (depth != 1 || strcmp(uname, "rtas") != 0) 1207 return 0; 1208 1209 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL); 1210 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL); 1211 sizep = of_get_flat_dt_prop(node, "rtas-size", NULL); 1212 1213 if (basep && entryp && sizep) { 1214 rtas.base = *basep; 1215 rtas.entry = *entryp; 1216 rtas.size = *sizep; 1217 } 1218 1219 #ifdef CONFIG_UDBG_RTAS_CONSOLE 1220 basep = of_get_flat_dt_prop(node, "put-term-char", NULL); 1221 if (basep) 1222 rtas_putchar_token = *basep; 1223 1224 basep = of_get_flat_dt_prop(node, "get-term-char", NULL); 1225 if (basep) 1226 rtas_getchar_token = *basep; 1227 1228 if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE && 1229 rtas_getchar_token != RTAS_UNKNOWN_SERVICE) 1230 udbg_init_rtas_console(); 1231 1232 #endif 1233 1234 /* break now */ 1235 return 1; 1236 } 1237 1238 static arch_spinlock_t timebase_lock; 1239 static u64 timebase = 0; 1240 1241 void rtas_give_timebase(void) 1242 { 1243 unsigned long flags; 1244 1245 local_irq_save(flags); 1246 hard_irq_disable(); 1247 arch_spin_lock(&timebase_lock); 1248 rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL); 1249 timebase = get_tb(); 1250 arch_spin_unlock(&timebase_lock); 1251 1252 while (timebase) 1253 barrier(); 1254 rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL); 1255 local_irq_restore(flags); 1256 } 1257 1258 void rtas_take_timebase(void) 1259 { 1260 while (!timebase) 1261 barrier(); 1262 arch_spin_lock(&timebase_lock); 1263 set_tb(timebase >> 32, timebase & 0xffffffff); 1264 timebase = 0; 1265 arch_spin_unlock(&timebase_lock); 1266 } 1267