1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Procedures for interfacing to the RTAS on CHRP machines. 5 * 6 * Peter Bergner, IBM March 2001. 7 * Copyright (C) 2001 IBM. 8 */ 9 10 #define pr_fmt(fmt) "rtas: " fmt 11 12 #include <linux/bsearch.h> 13 #include <linux/capability.h> 14 #include <linux/delay.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/kconfig.h> 18 #include <linux/kernel.h> 19 #include <linux/lockdep.h> 20 #include <linux/memblock.h> 21 #include <linux/of.h> 22 #include <linux/of_fdt.h> 23 #include <linux/reboot.h> 24 #include <linux/sched.h> 25 #include <linux/security.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 #include <linux/stdarg.h> 29 #include <linux/syscalls.h> 30 #include <linux/types.h> 31 #include <linux/uaccess.h> 32 #include <linux/xarray.h> 33 34 #include <asm/delay.h> 35 #include <asm/firmware.h> 36 #include <asm/interrupt.h> 37 #include <asm/machdep.h> 38 #include <asm/mmu.h> 39 #include <asm/page.h> 40 #include <asm/rtas-work-area.h> 41 #include <asm/rtas.h> 42 #include <asm/time.h> 43 #include <asm/trace.h> 44 #include <asm/udbg.h> 45 46 struct rtas_filter { 47 /* Indexes into the args buffer, -1 if not used */ 48 const int buf_idx1; 49 const int size_idx1; 50 const int buf_idx2; 51 const int size_idx2; 52 /* 53 * Assumed buffer size per the spec if the function does not 54 * have a size parameter, e.g. ibm,errinjct. 0 if unused. 55 */ 56 const int fixed_size; 57 }; 58 59 /** 60 * struct rtas_function - Descriptor for RTAS functions. 61 * 62 * @token: Value of @name if it exists under the /rtas node. 63 * @name: Function name. 64 * @filter: If non-NULL, invoking this function via the rtas syscall is 65 * generally allowed, and @filter describes constraints on the 66 * arguments. See also @banned_for_syscall_on_le. 67 * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed 68 * but specifically restricted on ppc64le. Such 69 * functions are believed to have no users on 70 * ppc64le, and we want to keep it that way. It does 71 * not make sense for this to be set when @filter 72 * is NULL. 73 */ 74 struct rtas_function { 75 s32 token; 76 const bool banned_for_syscall_on_le:1; 77 const char * const name; 78 const struct rtas_filter *filter; 79 }; 80 81 static struct rtas_function rtas_function_table[] __ro_after_init = { 82 [RTAS_FNIDX__CHECK_EXCEPTION] = { 83 .name = "check-exception", 84 }, 85 [RTAS_FNIDX__DISPLAY_CHARACTER] = { 86 .name = "display-character", 87 .filter = &(const struct rtas_filter) { 88 .buf_idx1 = -1, .size_idx1 = -1, 89 .buf_idx2 = -1, .size_idx2 = -1, 90 }, 91 }, 92 [RTAS_FNIDX__EVENT_SCAN] = { 93 .name = "event-scan", 94 }, 95 [RTAS_FNIDX__FREEZE_TIME_BASE] = { 96 .name = "freeze-time-base", 97 }, 98 [RTAS_FNIDX__GET_POWER_LEVEL] = { 99 .name = "get-power-level", 100 .filter = &(const struct rtas_filter) { 101 .buf_idx1 = -1, .size_idx1 = -1, 102 .buf_idx2 = -1, .size_idx2 = -1, 103 }, 104 }, 105 [RTAS_FNIDX__GET_SENSOR_STATE] = { 106 .name = "get-sensor-state", 107 .filter = &(const struct rtas_filter) { 108 .buf_idx1 = -1, .size_idx1 = -1, 109 .buf_idx2 = -1, .size_idx2 = -1, 110 }, 111 }, 112 [RTAS_FNIDX__GET_TERM_CHAR] = { 113 .name = "get-term-char", 114 }, 115 [RTAS_FNIDX__GET_TIME_OF_DAY] = { 116 .name = "get-time-of-day", 117 .filter = &(const struct rtas_filter) { 118 .buf_idx1 = -1, .size_idx1 = -1, 119 .buf_idx2 = -1, .size_idx2 = -1, 120 }, 121 }, 122 [RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = { 123 .name = "ibm,activate-firmware", 124 .filter = &(const struct rtas_filter) { 125 .buf_idx1 = -1, .size_idx1 = -1, 126 .buf_idx2 = -1, .size_idx2 = -1, 127 }, 128 }, 129 [RTAS_FNIDX__IBM_CBE_START_PTCAL] = { 130 .name = "ibm,cbe-start-ptcal", 131 }, 132 [RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = { 133 .name = "ibm,cbe-stop-ptcal", 134 }, 135 [RTAS_FNIDX__IBM_CHANGE_MSI] = { 136 .name = "ibm,change-msi", 137 }, 138 [RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = { 139 .name = "ibm,close-errinjct", 140 .filter = &(const struct rtas_filter) { 141 .buf_idx1 = -1, .size_idx1 = -1, 142 .buf_idx2 = -1, .size_idx2 = -1, 143 }, 144 }, 145 [RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = { 146 .name = "ibm,configure-bridge", 147 }, 148 [RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = { 149 .name = "ibm,configure-connector", 150 .filter = &(const struct rtas_filter) { 151 .buf_idx1 = 0, .size_idx1 = -1, 152 .buf_idx2 = 1, .size_idx2 = -1, 153 .fixed_size = 4096, 154 }, 155 }, 156 [RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = { 157 .name = "ibm,configure-kernel-dump", 158 }, 159 [RTAS_FNIDX__IBM_CONFIGURE_PE] = { 160 .name = "ibm,configure-pe", 161 }, 162 [RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = { 163 .name = "ibm,create-pe-dma-window", 164 }, 165 [RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = { 166 .name = "ibm,display-message", 167 .filter = &(const struct rtas_filter) { 168 .buf_idx1 = 0, .size_idx1 = -1, 169 .buf_idx2 = -1, .size_idx2 = -1, 170 }, 171 }, 172 [RTAS_FNIDX__IBM_ERRINJCT] = { 173 .name = "ibm,errinjct", 174 .filter = &(const struct rtas_filter) { 175 .buf_idx1 = 2, .size_idx1 = -1, 176 .buf_idx2 = -1, .size_idx2 = -1, 177 .fixed_size = 1024, 178 }, 179 }, 180 [RTAS_FNIDX__IBM_EXTI2C] = { 181 .name = "ibm,exti2c", 182 }, 183 [RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = { 184 .name = "ibm,get-config-addr-info", 185 }, 186 [RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = { 187 .name = "ibm,get-config-addr-info2", 188 .filter = &(const struct rtas_filter) { 189 .buf_idx1 = -1, .size_idx1 = -1, 190 .buf_idx2 = -1, .size_idx2 = -1, 191 }, 192 }, 193 [RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = { 194 .name = "ibm,get-dynamic-sensor-state", 195 .filter = &(const struct rtas_filter) { 196 .buf_idx1 = 1, .size_idx1 = -1, 197 .buf_idx2 = -1, .size_idx2 = -1, 198 }, 199 }, 200 [RTAS_FNIDX__IBM_GET_INDICES] = { 201 .name = "ibm,get-indices", 202 .filter = &(const struct rtas_filter) { 203 .buf_idx1 = 2, .size_idx1 = 3, 204 .buf_idx2 = -1, .size_idx2 = -1, 205 }, 206 }, 207 [RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = { 208 .name = "ibm,get-rio-topology", 209 }, 210 [RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = { 211 .name = "ibm,get-system-parameter", 212 .filter = &(const struct rtas_filter) { 213 .buf_idx1 = 1, .size_idx1 = 2, 214 .buf_idx2 = -1, .size_idx2 = -1, 215 }, 216 }, 217 [RTAS_FNIDX__IBM_GET_VPD] = { 218 .name = "ibm,get-vpd", 219 .filter = &(const struct rtas_filter) { 220 .buf_idx1 = 0, .size_idx1 = -1, 221 .buf_idx2 = 1, .size_idx2 = 2, 222 }, 223 }, 224 [RTAS_FNIDX__IBM_GET_XIVE] = { 225 .name = "ibm,get-xive", 226 }, 227 [RTAS_FNIDX__IBM_INT_OFF] = { 228 .name = "ibm,int-off", 229 }, 230 [RTAS_FNIDX__IBM_INT_ON] = { 231 .name = "ibm,int-on", 232 }, 233 [RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = { 234 .name = "ibm,io-quiesce-ack", 235 }, 236 [RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = { 237 .name = "ibm,lpar-perftools", 238 .filter = &(const struct rtas_filter) { 239 .buf_idx1 = 2, .size_idx1 = 3, 240 .buf_idx2 = -1, .size_idx2 = -1, 241 }, 242 }, 243 [RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = { 244 .name = "ibm,manage-flash-image", 245 }, 246 [RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = { 247 .name = "ibm,manage-storage-preservation", 248 }, 249 [RTAS_FNIDX__IBM_NMI_INTERLOCK] = { 250 .name = "ibm,nmi-interlock", 251 }, 252 [RTAS_FNIDX__IBM_NMI_REGISTER] = { 253 .name = "ibm,nmi-register", 254 }, 255 [RTAS_FNIDX__IBM_OPEN_ERRINJCT] = { 256 .name = "ibm,open-errinjct", 257 .filter = &(const struct rtas_filter) { 258 .buf_idx1 = -1, .size_idx1 = -1, 259 .buf_idx2 = -1, .size_idx2 = -1, 260 }, 261 }, 262 [RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = { 263 .name = "ibm,open-sriov-allow-unfreeze", 264 }, 265 [RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = { 266 .name = "ibm,open-sriov-map-pe-number", 267 }, 268 [RTAS_FNIDX__IBM_OS_TERM] = { 269 .name = "ibm,os-term", 270 }, 271 [RTAS_FNIDX__IBM_PARTNER_CONTROL] = { 272 .name = "ibm,partner-control", 273 }, 274 [RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = { 275 .name = "ibm,physical-attestation", 276 .filter = &(const struct rtas_filter) { 277 .buf_idx1 = 0, .size_idx1 = 1, 278 .buf_idx2 = -1, .size_idx2 = -1, 279 }, 280 }, 281 [RTAS_FNIDX__IBM_PLATFORM_DUMP] = { 282 .name = "ibm,platform-dump", 283 .filter = &(const struct rtas_filter) { 284 .buf_idx1 = 4, .size_idx1 = 5, 285 .buf_idx2 = -1, .size_idx2 = -1, 286 }, 287 }, 288 [RTAS_FNIDX__IBM_POWER_OFF_UPS] = { 289 .name = "ibm,power-off-ups", 290 }, 291 [RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = { 292 .name = "ibm,query-interrupt-source-number", 293 }, 294 [RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = { 295 .name = "ibm,query-pe-dma-window", 296 }, 297 [RTAS_FNIDX__IBM_READ_PCI_CONFIG] = { 298 .name = "ibm,read-pci-config", 299 }, 300 [RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = { 301 .name = "ibm,read-slot-reset-state", 302 .filter = &(const struct rtas_filter) { 303 .buf_idx1 = -1, .size_idx1 = -1, 304 .buf_idx2 = -1, .size_idx2 = -1, 305 }, 306 }, 307 [RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = { 308 .name = "ibm,read-slot-reset-state2", 309 }, 310 [RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = { 311 .name = "ibm,remove-pe-dma-window", 312 }, 313 [RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOWS] = { 314 .name = "ibm,reset-pe-dma-windows", 315 }, 316 [RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = { 317 .name = "ibm,scan-log-dump", 318 .filter = &(const struct rtas_filter) { 319 .buf_idx1 = 0, .size_idx1 = 1, 320 .buf_idx2 = -1, .size_idx2 = -1, 321 }, 322 }, 323 [RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = { 324 .name = "ibm,set-dynamic-indicator", 325 .filter = &(const struct rtas_filter) { 326 .buf_idx1 = 2, .size_idx1 = -1, 327 .buf_idx2 = -1, .size_idx2 = -1, 328 }, 329 }, 330 [RTAS_FNIDX__IBM_SET_EEH_OPTION] = { 331 .name = "ibm,set-eeh-option", 332 .filter = &(const struct rtas_filter) { 333 .buf_idx1 = -1, .size_idx1 = -1, 334 .buf_idx2 = -1, .size_idx2 = -1, 335 }, 336 }, 337 [RTAS_FNIDX__IBM_SET_SLOT_RESET] = { 338 .name = "ibm,set-slot-reset", 339 }, 340 [RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = { 341 .name = "ibm,set-system-parameter", 342 .filter = &(const struct rtas_filter) { 343 .buf_idx1 = 1, .size_idx1 = -1, 344 .buf_idx2 = -1, .size_idx2 = -1, 345 }, 346 }, 347 [RTAS_FNIDX__IBM_SET_XIVE] = { 348 .name = "ibm,set-xive", 349 }, 350 [RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = { 351 .name = "ibm,slot-error-detail", 352 }, 353 [RTAS_FNIDX__IBM_SUSPEND_ME] = { 354 .name = "ibm,suspend-me", 355 .banned_for_syscall_on_le = true, 356 .filter = &(const struct rtas_filter) { 357 .buf_idx1 = -1, .size_idx1 = -1, 358 .buf_idx2 = -1, .size_idx2 = -1, 359 }, 360 }, 361 [RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = { 362 .name = "ibm,tune-dma-parms", 363 }, 364 [RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = { 365 .name = "ibm,update-flash-64-and-reboot", 366 }, 367 [RTAS_FNIDX__IBM_UPDATE_NODES] = { 368 .name = "ibm,update-nodes", 369 .banned_for_syscall_on_le = true, 370 .filter = &(const struct rtas_filter) { 371 .buf_idx1 = 0, .size_idx1 = -1, 372 .buf_idx2 = -1, .size_idx2 = -1, 373 .fixed_size = 4096, 374 }, 375 }, 376 [RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = { 377 .name = "ibm,update-properties", 378 .banned_for_syscall_on_le = true, 379 .filter = &(const struct rtas_filter) { 380 .buf_idx1 = 0, .size_idx1 = -1, 381 .buf_idx2 = -1, .size_idx2 = -1, 382 .fixed_size = 4096, 383 }, 384 }, 385 [RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = { 386 .name = "ibm,validate-flash-image", 387 }, 388 [RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = { 389 .name = "ibm,write-pci-config", 390 }, 391 [RTAS_FNIDX__NVRAM_FETCH] = { 392 .name = "nvram-fetch", 393 }, 394 [RTAS_FNIDX__NVRAM_STORE] = { 395 .name = "nvram-store", 396 }, 397 [RTAS_FNIDX__POWER_OFF] = { 398 .name = "power-off", 399 }, 400 [RTAS_FNIDX__PUT_TERM_CHAR] = { 401 .name = "put-term-char", 402 }, 403 [RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = { 404 .name = "query-cpu-stopped-state", 405 }, 406 [RTAS_FNIDX__READ_PCI_CONFIG] = { 407 .name = "read-pci-config", 408 }, 409 [RTAS_FNIDX__RTAS_LAST_ERROR] = { 410 .name = "rtas-last-error", 411 }, 412 [RTAS_FNIDX__SET_INDICATOR] = { 413 .name = "set-indicator", 414 .filter = &(const struct rtas_filter) { 415 .buf_idx1 = -1, .size_idx1 = -1, 416 .buf_idx2 = -1, .size_idx2 = -1, 417 }, 418 }, 419 [RTAS_FNIDX__SET_POWER_LEVEL] = { 420 .name = "set-power-level", 421 .filter = &(const struct rtas_filter) { 422 .buf_idx1 = -1, .size_idx1 = -1, 423 .buf_idx2 = -1, .size_idx2 = -1, 424 }, 425 }, 426 [RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = { 427 .name = "set-time-for-power-on", 428 .filter = &(const struct rtas_filter) { 429 .buf_idx1 = -1, .size_idx1 = -1, 430 .buf_idx2 = -1, .size_idx2 = -1, 431 }, 432 }, 433 [RTAS_FNIDX__SET_TIME_OF_DAY] = { 434 .name = "set-time-of-day", 435 .filter = &(const struct rtas_filter) { 436 .buf_idx1 = -1, .size_idx1 = -1, 437 .buf_idx2 = -1, .size_idx2 = -1, 438 }, 439 }, 440 [RTAS_FNIDX__START_CPU] = { 441 .name = "start-cpu", 442 }, 443 [RTAS_FNIDX__STOP_SELF] = { 444 .name = "stop-self", 445 }, 446 [RTAS_FNIDX__SYSTEM_REBOOT] = { 447 .name = "system-reboot", 448 }, 449 [RTAS_FNIDX__THAW_TIME_BASE] = { 450 .name = "thaw-time-base", 451 }, 452 [RTAS_FNIDX__WRITE_PCI_CONFIG] = { 453 .name = "write-pci-config", 454 }, 455 }; 456 457 /* 458 * Nearly all RTAS calls need to be serialized. All uses of the 459 * default rtas_args block must hold rtas_lock. 460 * 461 * Exceptions to the RTAS serialization requirement (e.g. stop-self) 462 * must use a separate rtas_args structure. 463 */ 464 static DEFINE_RAW_SPINLOCK(rtas_lock); 465 static struct rtas_args rtas_args; 466 467 /** 468 * rtas_function_token() - RTAS function token lookup. 469 * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN. 470 * 471 * Context: Any context. 472 * Return: the token value for the function if implemented by this platform, 473 * otherwise RTAS_UNKNOWN_SERVICE. 474 */ 475 s32 rtas_function_token(const rtas_fn_handle_t handle) 476 { 477 const size_t index = handle.index; 478 const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table); 479 480 if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index)) 481 return RTAS_UNKNOWN_SERVICE; 482 /* 483 * Various drivers attempt token lookups on non-RTAS 484 * platforms. 485 */ 486 if (!rtas.dev) 487 return RTAS_UNKNOWN_SERVICE; 488 489 return rtas_function_table[index].token; 490 } 491 EXPORT_SYMBOL_GPL(rtas_function_token); 492 493 static int rtas_function_cmp(const void *a, const void *b) 494 { 495 const struct rtas_function *f1 = a; 496 const struct rtas_function *f2 = b; 497 498 return strcmp(f1->name, f2->name); 499 } 500 501 /* 502 * Boot-time initialization of the function table needs the lookup to 503 * return a non-const-qualified object. Use rtas_name_to_function() 504 * in all other contexts. 505 */ 506 static struct rtas_function *__rtas_name_to_function(const char *name) 507 { 508 const struct rtas_function key = { 509 .name = name, 510 }; 511 struct rtas_function *found; 512 513 found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table), 514 sizeof(rtas_function_table[0]), rtas_function_cmp); 515 516 return found; 517 } 518 519 static const struct rtas_function *rtas_name_to_function(const char *name) 520 { 521 return __rtas_name_to_function(name); 522 } 523 524 static DEFINE_XARRAY(rtas_token_to_function_xarray); 525 526 static int __init rtas_token_to_function_xarray_init(void) 527 { 528 int err = 0; 529 530 for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) { 531 const struct rtas_function *func = &rtas_function_table[i]; 532 const s32 token = func->token; 533 534 if (token == RTAS_UNKNOWN_SERVICE) 535 continue; 536 537 err = xa_err(xa_store(&rtas_token_to_function_xarray, 538 token, (void *)func, GFP_KERNEL)); 539 if (err) 540 break; 541 } 542 543 return err; 544 } 545 arch_initcall(rtas_token_to_function_xarray_init); 546 547 /* 548 * For use by sys_rtas(), where the token value is provided by user 549 * space and we don't want to warn on failed lookups. 550 */ 551 static const struct rtas_function *rtas_token_to_function_untrusted(s32 token) 552 { 553 return xa_load(&rtas_token_to_function_xarray, token); 554 } 555 556 /* 557 * Reverse lookup for deriving the function descriptor from a 558 * known-good token value in contexts where the former is not already 559 * available. @token must be valid, e.g. derived from the result of a 560 * prior lookup against the function table. 561 */ 562 static const struct rtas_function *rtas_token_to_function(s32 token) 563 { 564 const struct rtas_function *func; 565 566 if (WARN_ONCE(token < 0, "invalid token %d", token)) 567 return NULL; 568 569 func = rtas_token_to_function_untrusted(token); 570 571 if (WARN_ONCE(!func, "unexpected failed lookup for token %d", token)) 572 return NULL; 573 574 return func; 575 } 576 577 /* This is here deliberately so it's only used in this file */ 578 void enter_rtas(unsigned long); 579 580 static void __do_enter_rtas(struct rtas_args *args) 581 { 582 enter_rtas(__pa(args)); 583 srr_regs_clobbered(); /* rtas uses SRRs, invalidate */ 584 } 585 586 static void __do_enter_rtas_trace(struct rtas_args *args) 587 { 588 const char *name = NULL; 589 590 if (args == &rtas_args) 591 lockdep_assert_held(&rtas_lock); 592 /* 593 * If the tracepoints that consume the function name aren't 594 * active, avoid the lookup. 595 */ 596 if ((trace_rtas_input_enabled() || trace_rtas_output_enabled())) { 597 const s32 token = be32_to_cpu(args->token); 598 const struct rtas_function *func = rtas_token_to_function(token); 599 600 name = func->name; 601 } 602 603 trace_rtas_input(args, name); 604 trace_rtas_ll_entry(args); 605 606 __do_enter_rtas(args); 607 608 trace_rtas_ll_exit(args); 609 trace_rtas_output(args, name); 610 } 611 612 static void do_enter_rtas(struct rtas_args *args) 613 { 614 const unsigned long msr = mfmsr(); 615 /* 616 * Situations where we want to skip any active tracepoints for 617 * safety reasons: 618 * 619 * 1. The last code executed on an offline CPU as it stops, 620 * i.e. we're about to call stop-self. The tracepoints' 621 * function name lookup uses xarray, which uses RCU, which 622 * isn't valid to call on an offline CPU. Any events 623 * emitted on an offline CPU will be discarded anyway. 624 * 625 * 2. In real mode, as when invoking ibm,nmi-interlock from 626 * the pseries MCE handler. We cannot count on trace 627 * buffers or the entries in rtas_token_to_function_xarray 628 * to be contained in the RMO. 629 */ 630 const unsigned long mask = MSR_IR | MSR_DR; 631 const bool can_trace = likely(cpu_online(raw_smp_processor_id()) && 632 (msr & mask) == mask); 633 /* 634 * Make sure MSR[RI] is currently enabled as it will be forced later 635 * in enter_rtas. 636 */ 637 BUG_ON(!(msr & MSR_RI)); 638 639 BUG_ON(!irqs_disabled()); 640 641 hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */ 642 643 if (can_trace) 644 __do_enter_rtas_trace(args); 645 else 646 __do_enter_rtas(args); 647 } 648 649 struct rtas_t rtas; 650 651 DEFINE_SPINLOCK(rtas_data_buf_lock); 652 EXPORT_SYMBOL_GPL(rtas_data_buf_lock); 653 654 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K); 655 EXPORT_SYMBOL_GPL(rtas_data_buf); 656 657 unsigned long rtas_rmo_buf; 658 659 /* 660 * If non-NULL, this gets called when the kernel terminates. 661 * This is done like this so rtas_flash can be a module. 662 */ 663 void (*rtas_flash_term_hook)(int); 664 EXPORT_SYMBOL_GPL(rtas_flash_term_hook); 665 666 /* 667 * call_rtas_display_status and call_rtas_display_status_delay 668 * are designed only for very early low-level debugging, which 669 * is why the token is hard-coded to 10. 670 */ 671 static void call_rtas_display_status(unsigned char c) 672 { 673 unsigned long flags; 674 675 if (!rtas.base) 676 return; 677 678 raw_spin_lock_irqsave(&rtas_lock, flags); 679 rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c); 680 raw_spin_unlock_irqrestore(&rtas_lock, flags); 681 } 682 683 static void call_rtas_display_status_delay(char c) 684 { 685 static int pending_newline = 0; /* did last write end with unprinted newline? */ 686 static int width = 16; 687 688 if (c == '\n') { 689 while (width-- > 0) 690 call_rtas_display_status(' '); 691 width = 16; 692 mdelay(500); 693 pending_newline = 1; 694 } else { 695 if (pending_newline) { 696 call_rtas_display_status('\r'); 697 call_rtas_display_status('\n'); 698 } 699 pending_newline = 0; 700 if (width--) { 701 call_rtas_display_status(c); 702 udelay(10000); 703 } 704 } 705 } 706 707 void __init udbg_init_rtas_panel(void) 708 { 709 udbg_putc = call_rtas_display_status_delay; 710 } 711 712 #ifdef CONFIG_UDBG_RTAS_CONSOLE 713 714 /* If you think you're dying before early_init_dt_scan_rtas() does its 715 * work, you can hard code the token values for your firmware here and 716 * hardcode rtas.base/entry etc. 717 */ 718 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE; 719 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE; 720 721 static void udbg_rtascon_putc(char c) 722 { 723 int tries; 724 725 if (!rtas.base) 726 return; 727 728 /* Add CRs before LFs */ 729 if (c == '\n') 730 udbg_rtascon_putc('\r'); 731 732 /* if there is more than one character to be displayed, wait a bit */ 733 for (tries = 0; tries < 16; tries++) { 734 if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0) 735 break; 736 udelay(1000); 737 } 738 } 739 740 static int udbg_rtascon_getc_poll(void) 741 { 742 int c; 743 744 if (!rtas.base) 745 return -1; 746 747 if (rtas_call(rtas_getchar_token, 0, 2, &c)) 748 return -1; 749 750 return c; 751 } 752 753 static int udbg_rtascon_getc(void) 754 { 755 int c; 756 757 while ((c = udbg_rtascon_getc_poll()) == -1) 758 ; 759 760 return c; 761 } 762 763 764 void __init udbg_init_rtas_console(void) 765 { 766 udbg_putc = udbg_rtascon_putc; 767 udbg_getc = udbg_rtascon_getc; 768 udbg_getc_poll = udbg_rtascon_getc_poll; 769 } 770 #endif /* CONFIG_UDBG_RTAS_CONSOLE */ 771 772 void rtas_progress(char *s, unsigned short hex) 773 { 774 struct device_node *root; 775 int width; 776 const __be32 *p; 777 char *os; 778 static int display_character, set_indicator; 779 static int display_width, display_lines, form_feed; 780 static const int *row_width; 781 static DEFINE_SPINLOCK(progress_lock); 782 static int current_line; 783 static int pending_newline = 0; /* did last write end with unprinted newline? */ 784 785 if (!rtas.base) 786 return; 787 788 if (display_width == 0) { 789 display_width = 0x10; 790 if ((root = of_find_node_by_path("/rtas"))) { 791 if ((p = of_get_property(root, 792 "ibm,display-line-length", NULL))) 793 display_width = be32_to_cpu(*p); 794 if ((p = of_get_property(root, 795 "ibm,form-feed", NULL))) 796 form_feed = be32_to_cpu(*p); 797 if ((p = of_get_property(root, 798 "ibm,display-number-of-lines", NULL))) 799 display_lines = be32_to_cpu(*p); 800 row_width = of_get_property(root, 801 "ibm,display-truncation-length", NULL); 802 of_node_put(root); 803 } 804 display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER); 805 set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR); 806 } 807 808 if (display_character == RTAS_UNKNOWN_SERVICE) { 809 /* use hex display if available */ 810 if (set_indicator != RTAS_UNKNOWN_SERVICE) 811 rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex); 812 return; 813 } 814 815 spin_lock(&progress_lock); 816 817 /* 818 * Last write ended with newline, but we didn't print it since 819 * it would just clear the bottom line of output. Print it now 820 * instead. 821 * 822 * If no newline is pending and form feed is supported, clear the 823 * display with a form feed; otherwise, print a CR to start output 824 * at the beginning of the line. 825 */ 826 if (pending_newline) { 827 rtas_call(display_character, 1, 1, NULL, '\r'); 828 rtas_call(display_character, 1, 1, NULL, '\n'); 829 pending_newline = 0; 830 } else { 831 current_line = 0; 832 if (form_feed) 833 rtas_call(display_character, 1, 1, NULL, 834 (char)form_feed); 835 else 836 rtas_call(display_character, 1, 1, NULL, '\r'); 837 } 838 839 if (row_width) 840 width = row_width[current_line]; 841 else 842 width = display_width; 843 os = s; 844 while (*os) { 845 if (*os == '\n' || *os == '\r') { 846 /* If newline is the last character, save it 847 * until next call to avoid bumping up the 848 * display output. 849 */ 850 if (*os == '\n' && !os[1]) { 851 pending_newline = 1; 852 current_line++; 853 if (current_line > display_lines-1) 854 current_line = display_lines-1; 855 spin_unlock(&progress_lock); 856 return; 857 } 858 859 /* RTAS wants CR-LF, not just LF */ 860 861 if (*os == '\n') { 862 rtas_call(display_character, 1, 1, NULL, '\r'); 863 rtas_call(display_character, 1, 1, NULL, '\n'); 864 } else { 865 /* CR might be used to re-draw a line, so we'll 866 * leave it alone and not add LF. 867 */ 868 rtas_call(display_character, 1, 1, NULL, *os); 869 } 870 871 if (row_width) 872 width = row_width[current_line]; 873 else 874 width = display_width; 875 } else { 876 width--; 877 rtas_call(display_character, 1, 1, NULL, *os); 878 } 879 880 os++; 881 882 /* if we overwrite the screen length */ 883 if (width <= 0) 884 while ((*os != 0) && (*os != '\n') && (*os != '\r')) 885 os++; 886 } 887 888 spin_unlock(&progress_lock); 889 } 890 EXPORT_SYMBOL_GPL(rtas_progress); /* needed by rtas_flash module */ 891 892 int rtas_token(const char *service) 893 { 894 const struct rtas_function *func; 895 const __be32 *tokp; 896 897 if (rtas.dev == NULL) 898 return RTAS_UNKNOWN_SERVICE; 899 900 func = rtas_name_to_function(service); 901 if (func) 902 return func->token; 903 /* 904 * The caller is looking up a name that is not known to be an 905 * RTAS function. Either it's a function that needs to be 906 * added to the table, or they're misusing rtas_token() to 907 * access non-function properties of the /rtas node. Warn and 908 * fall back to the legacy behavior. 909 */ 910 WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n", 911 service); 912 913 tokp = of_get_property(rtas.dev, service, NULL); 914 return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE; 915 } 916 EXPORT_SYMBOL_GPL(rtas_token); 917 918 int rtas_service_present(const char *service) 919 { 920 return rtas_token(service) != RTAS_UNKNOWN_SERVICE; 921 } 922 923 #ifdef CONFIG_RTAS_ERROR_LOGGING 924 925 static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX; 926 927 /* 928 * Return the firmware-specified size of the error log buffer 929 * for all rtas calls that require an error buffer argument. 930 * This includes 'check-exception' and 'rtas-last-error'. 931 */ 932 int rtas_get_error_log_max(void) 933 { 934 return rtas_error_log_max; 935 } 936 937 static void __init init_error_log_max(void) 938 { 939 static const char propname[] __initconst = "rtas-error-log-max"; 940 u32 max; 941 942 if (of_property_read_u32(rtas.dev, propname, &max)) { 943 pr_warn("%s not found, using default of %u\n", 944 propname, RTAS_ERROR_LOG_MAX); 945 max = RTAS_ERROR_LOG_MAX; 946 } 947 948 if (max > RTAS_ERROR_LOG_MAX) { 949 pr_warn("%s = %u, clamping max error log size to %u\n", 950 propname, max, RTAS_ERROR_LOG_MAX); 951 max = RTAS_ERROR_LOG_MAX; 952 } 953 954 rtas_error_log_max = max; 955 } 956 957 958 static char rtas_err_buf[RTAS_ERROR_LOG_MAX]; 959 960 /** Return a copy of the detailed error text associated with the 961 * most recent failed call to rtas. Because the error text 962 * might go stale if there are any other intervening rtas calls, 963 * this routine must be called atomically with whatever produced 964 * the error (i.e. with rtas_lock still held from the previous call). 965 */ 966 static char *__fetch_rtas_last_error(char *altbuf) 967 { 968 const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR); 969 struct rtas_args err_args, save_args; 970 u32 bufsz; 971 char *buf = NULL; 972 973 lockdep_assert_held(&rtas_lock); 974 975 if (token == -1) 976 return NULL; 977 978 bufsz = rtas_get_error_log_max(); 979 980 err_args.token = cpu_to_be32(token); 981 err_args.nargs = cpu_to_be32(2); 982 err_args.nret = cpu_to_be32(1); 983 err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf)); 984 err_args.args[1] = cpu_to_be32(bufsz); 985 err_args.args[2] = 0; 986 987 save_args = rtas_args; 988 rtas_args = err_args; 989 990 do_enter_rtas(&rtas_args); 991 992 err_args = rtas_args; 993 rtas_args = save_args; 994 995 /* Log the error in the unlikely case that there was one. */ 996 if (unlikely(err_args.args[2] == 0)) { 997 if (altbuf) { 998 buf = altbuf; 999 } else { 1000 buf = rtas_err_buf; 1001 if (slab_is_available()) 1002 buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); 1003 } 1004 if (buf) 1005 memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX); 1006 } 1007 1008 return buf; 1009 } 1010 1011 #define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL) 1012 1013 #else /* CONFIG_RTAS_ERROR_LOGGING */ 1014 #define __fetch_rtas_last_error(x) NULL 1015 #define get_errorlog_buffer() NULL 1016 static void __init init_error_log_max(void) {} 1017 #endif 1018 1019 1020 static void 1021 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, 1022 va_list list) 1023 { 1024 int i; 1025 1026 args->token = cpu_to_be32(token); 1027 args->nargs = cpu_to_be32(nargs); 1028 args->nret = cpu_to_be32(nret); 1029 args->rets = &(args->args[nargs]); 1030 1031 for (i = 0; i < nargs; ++i) 1032 args->args[i] = cpu_to_be32(va_arg(list, __u32)); 1033 1034 for (i = 0; i < nret; ++i) 1035 args->rets[i] = 0; 1036 1037 do_enter_rtas(args); 1038 } 1039 1040 /** 1041 * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization. 1042 * @args: RTAS parameter block to be used for the call, must obey RTAS addressing 1043 * constraints. 1044 * @token: Identifies the function being invoked. 1045 * @nargs: Number of input parameters. Does not include token. 1046 * @nret: Number of output parameters, including the call status. 1047 * @....: List of @nargs input parameters. 1048 * 1049 * Invokes the RTAS function indicated by @token, which the caller 1050 * should obtain via rtas_function_token(). 1051 * 1052 * This function is similar to rtas_call(), but must be used with a 1053 * limited set of RTAS calls specifically exempted from the general 1054 * requirement that only one RTAS call may be in progress at any 1055 * time. Examples include stop-self and ibm,nmi-interlock. 1056 */ 1057 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...) 1058 { 1059 va_list list; 1060 1061 va_start(list, nret); 1062 va_rtas_call_unlocked(args, token, nargs, nret, list); 1063 va_end(list); 1064 } 1065 1066 static bool token_is_restricted_errinjct(s32 token) 1067 { 1068 return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) || 1069 token == rtas_function_token(RTAS_FN_IBM_ERRINJCT); 1070 } 1071 1072 /** 1073 * rtas_call() - Invoke an RTAS firmware function. 1074 * @token: Identifies the function being invoked. 1075 * @nargs: Number of input parameters. Does not include token. 1076 * @nret: Number of output parameters, including the call status. 1077 * @outputs: Array of @nret output words. 1078 * @....: List of @nargs input parameters. 1079 * 1080 * Invokes the RTAS function indicated by @token, which the caller 1081 * should obtain via rtas_function_token(). 1082 * 1083 * The @nargs and @nret arguments must match the number of input and 1084 * output parameters specified for the RTAS function. 1085 * 1086 * rtas_call() returns RTAS status codes, not conventional Linux errno 1087 * values. Callers must translate any failure to an appropriate errno 1088 * in syscall context. Most callers of RTAS functions that can return 1089 * -2 or 990x should use rtas_busy_delay() to correctly handle those 1090 * statuses before calling again. 1091 * 1092 * The return value descriptions are adapted from 7.2.8 [RTAS] Return 1093 * Codes of the PAPR and CHRP specifications. 1094 * 1095 * Context: Process context preferably, interrupt context if 1096 * necessary. Acquires an internal spinlock and may perform 1097 * GFP_ATOMIC slab allocation in error path. Unsafe for NMI 1098 * context. 1099 * Return: 1100 * * 0 - RTAS function call succeeded. 1101 * * -1 - RTAS function encountered a hardware or 1102 * platform error, or the token is invalid, 1103 * or the function is restricted by kernel policy. 1104 * * -2 - Specs say "A necessary hardware device was busy, 1105 * and the requested function could not be 1106 * performed. The operation should be retried at 1107 * a later time." This is misleading, at least with 1108 * respect to current RTAS implementations. What it 1109 * usually means in practice is that the function 1110 * could not be completed while meeting RTAS's 1111 * deadline for returning control to the OS (250us 1112 * for PAPR/PowerVM, typically), but the call may be 1113 * immediately reattempted to resume work on it. 1114 * * -3 - Parameter error. 1115 * * -7 - Unexpected state change. 1116 * * 9000...9899 - Vendor-specific success codes. 1117 * * 9900...9905 - Advisory extended delay. Caller should try 1118 * again after ~10^x ms has elapsed, where x is 1119 * the last digit of the status [0-5]. Again going 1120 * beyond the PAPR text, 990x on PowerVM indicates 1121 * contention for RTAS-internal resources. Other 1122 * RTAS call sequences in progress should be 1123 * allowed to complete before reattempting the 1124 * call. 1125 * * -9000 - Multi-level isolation error. 1126 * * -9999...-9004 - Vendor-specific error codes. 1127 * * Additional negative values - Function-specific error. 1128 * * Additional positive values - Function-specific success. 1129 */ 1130 int rtas_call(int token, int nargs, int nret, int *outputs, ...) 1131 { 1132 struct pin_cookie cookie; 1133 va_list list; 1134 int i; 1135 unsigned long flags; 1136 struct rtas_args *args; 1137 char *buff_copy = NULL; 1138 int ret; 1139 1140 if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE) 1141 return -1; 1142 1143 if (token_is_restricted_errinjct(token)) { 1144 /* 1145 * It would be nicer to not discard the error value 1146 * from security_locked_down(), but callers expect an 1147 * RTAS status, not an errno. 1148 */ 1149 if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION)) 1150 return -1; 1151 } 1152 1153 if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) { 1154 WARN_ON_ONCE(1); 1155 return -1; 1156 } 1157 1158 raw_spin_lock_irqsave(&rtas_lock, flags); 1159 cookie = lockdep_pin_lock(&rtas_lock); 1160 1161 /* We use the global rtas args buffer */ 1162 args = &rtas_args; 1163 1164 va_start(list, outputs); 1165 va_rtas_call_unlocked(args, token, nargs, nret, list); 1166 va_end(list); 1167 1168 /* A -1 return code indicates that the last command couldn't 1169 be completed due to a hardware error. */ 1170 if (be32_to_cpu(args->rets[0]) == -1) 1171 buff_copy = __fetch_rtas_last_error(NULL); 1172 1173 if (nret > 1 && outputs != NULL) 1174 for (i = 0; i < nret-1; ++i) 1175 outputs[i] = be32_to_cpu(args->rets[i + 1]); 1176 ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0; 1177 1178 lockdep_unpin_lock(&rtas_lock, cookie); 1179 raw_spin_unlock_irqrestore(&rtas_lock, flags); 1180 1181 if (buff_copy) { 1182 log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); 1183 if (slab_is_available()) 1184 kfree(buff_copy); 1185 } 1186 return ret; 1187 } 1188 EXPORT_SYMBOL_GPL(rtas_call); 1189 1190 /** 1191 * rtas_busy_delay_time() - From an RTAS status value, calculate the 1192 * suggested delay time in milliseconds. 1193 * 1194 * @status: a value returned from rtas_call() or similar APIs which return 1195 * the status of a RTAS function call. 1196 * 1197 * Context: Any context. 1198 * 1199 * Return: 1200 * * 100000 - If @status is 9905. 1201 * * 10000 - If @status is 9904. 1202 * * 1000 - If @status is 9903. 1203 * * 100 - If @status is 9902. 1204 * * 10 - If @status is 9901. 1205 * * 1 - If @status is either 9900 or -2. This is "wrong" for -2, but 1206 * some callers depend on this behavior, and the worst outcome 1207 * is that they will delay for longer than necessary. 1208 * * 0 - If @status is not a busy or extended delay value. 1209 */ 1210 unsigned int rtas_busy_delay_time(int status) 1211 { 1212 int order; 1213 unsigned int ms = 0; 1214 1215 if (status == RTAS_BUSY) { 1216 ms = 1; 1217 } else if (status >= RTAS_EXTENDED_DELAY_MIN && 1218 status <= RTAS_EXTENDED_DELAY_MAX) { 1219 order = status - RTAS_EXTENDED_DELAY_MIN; 1220 for (ms = 1; order > 0; order--) 1221 ms *= 10; 1222 } 1223 1224 return ms; 1225 } 1226 1227 /* 1228 * Early boot fallback for rtas_busy_delay(). 1229 */ 1230 static bool __init rtas_busy_delay_early(int status) 1231 { 1232 static size_t successive_ext_delays __initdata; 1233 bool retry; 1234 1235 switch (status) { 1236 case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX: 1237 /* 1238 * In the unlikely case that we receive an extended 1239 * delay status in early boot, the OS is probably not 1240 * the cause, and there's nothing we can do to clear 1241 * the condition. Best we can do is delay for a bit 1242 * and hope it's transient. Lie to the caller if it 1243 * seems like we're stuck in a retry loop. 1244 */ 1245 mdelay(1); 1246 retry = true; 1247 successive_ext_delays += 1; 1248 if (successive_ext_delays > 1000) { 1249 pr_err("too many extended delays, giving up\n"); 1250 dump_stack(); 1251 retry = false; 1252 successive_ext_delays = 0; 1253 } 1254 break; 1255 case RTAS_BUSY: 1256 retry = true; 1257 successive_ext_delays = 0; 1258 break; 1259 default: 1260 retry = false; 1261 successive_ext_delays = 0; 1262 break; 1263 } 1264 1265 return retry; 1266 } 1267 1268 /** 1269 * rtas_busy_delay() - helper for RTAS busy and extended delay statuses 1270 * 1271 * @status: a value returned from rtas_call() or similar APIs which return 1272 * the status of a RTAS function call. 1273 * 1274 * Context: Process context. May sleep or schedule. 1275 * 1276 * Return: 1277 * * true - @status is RTAS_BUSY or an extended delay hint. The 1278 * caller may assume that the CPU has been yielded if necessary, 1279 * and that an appropriate delay for @status has elapsed. 1280 * Generally the caller should reattempt the RTAS call which 1281 * yielded @status. 1282 * 1283 * * false - @status is not @RTAS_BUSY nor an extended delay hint. The 1284 * caller is responsible for handling @status. 1285 */ 1286 bool __ref rtas_busy_delay(int status) 1287 { 1288 unsigned int ms; 1289 bool ret; 1290 1291 /* 1292 * Can't do timed sleeps before timekeeping is up. 1293 */ 1294 if (system_state < SYSTEM_SCHEDULING) 1295 return rtas_busy_delay_early(status); 1296 1297 switch (status) { 1298 case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX: 1299 ret = true; 1300 ms = rtas_busy_delay_time(status); 1301 /* 1302 * The extended delay hint can be as high as 100 seconds. 1303 * Surely any function returning such a status is either 1304 * buggy or isn't going to be significantly slowed by us 1305 * polling at 1HZ. Clamp the sleep time to one second. 1306 */ 1307 ms = clamp(ms, 1U, 1000U); 1308 /* 1309 * The delay hint is an order-of-magnitude suggestion, not 1310 * a minimum. It is fine, possibly even advantageous, for 1311 * us to pause for less time than hinted. For small values, 1312 * use usleep_range() to ensure we don't sleep much longer 1313 * than actually needed. 1314 * 1315 * See Documentation/timers/timers-howto.rst for 1316 * explanation of the threshold used here. In effect we use 1317 * usleep_range() for 9900 and 9901, msleep() for 1318 * 9902-9905. 1319 */ 1320 if (ms <= 20) 1321 usleep_range(ms * 100, ms * 1000); 1322 else 1323 msleep(ms); 1324 break; 1325 case RTAS_BUSY: 1326 ret = true; 1327 /* 1328 * We should call again immediately if there's no other 1329 * work to do. 1330 */ 1331 cond_resched(); 1332 break; 1333 default: 1334 ret = false; 1335 /* 1336 * Not a busy or extended delay status; the caller should 1337 * handle @status itself. Ensure we warn on misuses in 1338 * atomic context regardless. 1339 */ 1340 might_sleep(); 1341 break; 1342 } 1343 1344 return ret; 1345 } 1346 EXPORT_SYMBOL_GPL(rtas_busy_delay); 1347 1348 int rtas_error_rc(int rtas_rc) 1349 { 1350 int rc; 1351 1352 switch (rtas_rc) { 1353 case RTAS_HARDWARE_ERROR: /* Hardware Error */ 1354 rc = -EIO; 1355 break; 1356 case RTAS_INVALID_PARAMETER: /* Bad indicator/domain/etc */ 1357 rc = -EINVAL; 1358 break; 1359 case -9000: /* Isolation error */ 1360 rc = -EFAULT; 1361 break; 1362 case -9001: /* Outstanding TCE/PTE */ 1363 rc = -EEXIST; 1364 break; 1365 case -9002: /* No usable slot */ 1366 rc = -ENODEV; 1367 break; 1368 default: 1369 pr_err("%s: unexpected error %d\n", __func__, rtas_rc); 1370 rc = -ERANGE; 1371 break; 1372 } 1373 return rc; 1374 } 1375 EXPORT_SYMBOL_GPL(rtas_error_rc); 1376 1377 int rtas_get_power_level(int powerdomain, int *level) 1378 { 1379 int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL); 1380 int rc; 1381 1382 if (token == RTAS_UNKNOWN_SERVICE) 1383 return -ENOENT; 1384 1385 while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) 1386 udelay(1); 1387 1388 if (rc < 0) 1389 return rtas_error_rc(rc); 1390 return rc; 1391 } 1392 EXPORT_SYMBOL_GPL(rtas_get_power_level); 1393 1394 int rtas_set_power_level(int powerdomain, int level, int *setlevel) 1395 { 1396 int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL); 1397 int rc; 1398 1399 if (token == RTAS_UNKNOWN_SERVICE) 1400 return -ENOENT; 1401 1402 do { 1403 rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); 1404 } while (rtas_busy_delay(rc)); 1405 1406 if (rc < 0) 1407 return rtas_error_rc(rc); 1408 return rc; 1409 } 1410 EXPORT_SYMBOL_GPL(rtas_set_power_level); 1411 1412 int rtas_get_sensor(int sensor, int index, int *state) 1413 { 1414 int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE); 1415 int rc; 1416 1417 if (token == RTAS_UNKNOWN_SERVICE) 1418 return -ENOENT; 1419 1420 do { 1421 rc = rtas_call(token, 2, 2, state, sensor, index); 1422 } while (rtas_busy_delay(rc)); 1423 1424 if (rc < 0) 1425 return rtas_error_rc(rc); 1426 return rc; 1427 } 1428 EXPORT_SYMBOL_GPL(rtas_get_sensor); 1429 1430 int rtas_get_sensor_fast(int sensor, int index, int *state) 1431 { 1432 int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE); 1433 int rc; 1434 1435 if (token == RTAS_UNKNOWN_SERVICE) 1436 return -ENOENT; 1437 1438 rc = rtas_call(token, 2, 2, state, sensor, index); 1439 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && 1440 rc <= RTAS_EXTENDED_DELAY_MAX)); 1441 1442 if (rc < 0) 1443 return rtas_error_rc(rc); 1444 return rc; 1445 } 1446 1447 bool rtas_indicator_present(int token, int *maxindex) 1448 { 1449 int proplen, count, i; 1450 const struct indicator_elem { 1451 __be32 token; 1452 __be32 maxindex; 1453 } *indicators; 1454 1455 indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen); 1456 if (!indicators) 1457 return false; 1458 1459 count = proplen / sizeof(struct indicator_elem); 1460 1461 for (i = 0; i < count; i++) { 1462 if (__be32_to_cpu(indicators[i].token) != token) 1463 continue; 1464 if (maxindex) 1465 *maxindex = __be32_to_cpu(indicators[i].maxindex); 1466 return true; 1467 } 1468 1469 return false; 1470 } 1471 1472 int rtas_set_indicator(int indicator, int index, int new_value) 1473 { 1474 int token = rtas_function_token(RTAS_FN_SET_INDICATOR); 1475 int rc; 1476 1477 if (token == RTAS_UNKNOWN_SERVICE) 1478 return -ENOENT; 1479 1480 do { 1481 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); 1482 } while (rtas_busy_delay(rc)); 1483 1484 if (rc < 0) 1485 return rtas_error_rc(rc); 1486 return rc; 1487 } 1488 EXPORT_SYMBOL_GPL(rtas_set_indicator); 1489 1490 /* 1491 * Ignoring RTAS extended delay 1492 */ 1493 int rtas_set_indicator_fast(int indicator, int index, int new_value) 1494 { 1495 int token = rtas_function_token(RTAS_FN_SET_INDICATOR); 1496 int rc; 1497 1498 if (token == RTAS_UNKNOWN_SERVICE) 1499 return -ENOENT; 1500 1501 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); 1502 1503 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && 1504 rc <= RTAS_EXTENDED_DELAY_MAX)); 1505 1506 if (rc < 0) 1507 return rtas_error_rc(rc); 1508 1509 return rc; 1510 } 1511 1512 /** 1513 * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR. 1514 * 1515 * @fw_status: RTAS call status will be placed here if not NULL. 1516 * 1517 * rtas_ibm_suspend_me() should be called only on a CPU which has 1518 * received H_CONTINUE from the H_JOIN hcall. All other active CPUs 1519 * should be waiting to return from H_JOIN. 1520 * 1521 * rtas_ibm_suspend_me() may suspend execution of the OS 1522 * indefinitely. Callers should take appropriate measures upon return, such as 1523 * resetting watchdog facilities. 1524 * 1525 * Callers may choose to retry this call if @fw_status is 1526 * %RTAS_THREADS_ACTIVE. 1527 * 1528 * Return: 1529 * 0 - The partition has resumed from suspend, possibly after 1530 * migration to a different host. 1531 * -ECANCELED - The operation was aborted. 1532 * -EAGAIN - There were other CPUs not in H_JOIN at the time of the call. 1533 * -EBUSY - Some other condition prevented the suspend from succeeding. 1534 * -EIO - Hardware/platform error. 1535 */ 1536 int rtas_ibm_suspend_me(int *fw_status) 1537 { 1538 int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME); 1539 int fwrc; 1540 int ret; 1541 1542 fwrc = rtas_call(token, 0, 1, NULL); 1543 1544 switch (fwrc) { 1545 case 0: 1546 ret = 0; 1547 break; 1548 case RTAS_SUSPEND_ABORTED: 1549 ret = -ECANCELED; 1550 break; 1551 case RTAS_THREADS_ACTIVE: 1552 ret = -EAGAIN; 1553 break; 1554 case RTAS_NOT_SUSPENDABLE: 1555 case RTAS_OUTSTANDING_COPROC: 1556 ret = -EBUSY; 1557 break; 1558 case -1: 1559 default: 1560 ret = -EIO; 1561 break; 1562 } 1563 1564 if (fw_status) 1565 *fw_status = fwrc; 1566 1567 return ret; 1568 } 1569 1570 void __noreturn rtas_restart(char *cmd) 1571 { 1572 if (rtas_flash_term_hook) 1573 rtas_flash_term_hook(SYS_RESTART); 1574 pr_emerg("system-reboot returned %d\n", 1575 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL)); 1576 for (;;); 1577 } 1578 1579 void rtas_power_off(void) 1580 { 1581 if (rtas_flash_term_hook) 1582 rtas_flash_term_hook(SYS_POWER_OFF); 1583 /* allow power on only with power button press */ 1584 pr_emerg("power-off returned %d\n", 1585 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1)); 1586 for (;;); 1587 } 1588 1589 void __noreturn rtas_halt(void) 1590 { 1591 if (rtas_flash_term_hook) 1592 rtas_flash_term_hook(SYS_HALT); 1593 /* allow power on only with power button press */ 1594 pr_emerg("power-off returned %d\n", 1595 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1)); 1596 for (;;); 1597 } 1598 1599 /* Must be in the RMO region, so we place it here */ 1600 static char rtas_os_term_buf[2048]; 1601 static bool ibm_extended_os_term; 1602 1603 void rtas_os_term(char *str) 1604 { 1605 s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM); 1606 static struct rtas_args args; 1607 int status; 1608 1609 /* 1610 * Firmware with the ibm,extended-os-term property is guaranteed 1611 * to always return from an ibm,os-term call. Earlier versions without 1612 * this property may terminate the partition which we want to avoid 1613 * since it interferes with panic_timeout. 1614 */ 1615 1616 if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term) 1617 return; 1618 1619 snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); 1620 1621 /* 1622 * Keep calling as long as RTAS returns a "try again" status, 1623 * but don't use rtas_busy_delay(), which potentially 1624 * schedules. 1625 */ 1626 do { 1627 rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf)); 1628 status = be32_to_cpu(args.rets[0]); 1629 } while (rtas_busy_delay_time(status)); 1630 1631 if (status != 0) 1632 pr_emerg("ibm,os-term call failed %d\n", status); 1633 } 1634 1635 /** 1636 * rtas_activate_firmware() - Activate a new version of firmware. 1637 * 1638 * Context: This function may sleep. 1639 * 1640 * Activate a new version of partition firmware. The OS must call this 1641 * after resuming from a partition hibernation or migration in order 1642 * to maintain the ability to perform live firmware updates. It's not 1643 * catastrophic for this method to be absent or to fail; just log the 1644 * condition in that case. 1645 */ 1646 void rtas_activate_firmware(void) 1647 { 1648 int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE); 1649 int fwrc; 1650 1651 if (token == RTAS_UNKNOWN_SERVICE) { 1652 pr_notice("ibm,activate-firmware method unavailable\n"); 1653 return; 1654 } 1655 1656 do { 1657 fwrc = rtas_call(token, 0, 1, NULL); 1658 } while (rtas_busy_delay(fwrc)); 1659 1660 if (fwrc) 1661 pr_err("ibm,activate-firmware failed (%i)\n", fwrc); 1662 } 1663 1664 /** 1665 * get_pseries_errorlog() - Find a specific pseries error log in an RTAS 1666 * extended event log. 1667 * @log: RTAS error/event log 1668 * @section_id: two character section identifier 1669 * 1670 * Return: A pointer to the specified errorlog or NULL if not found. 1671 */ 1672 noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log, 1673 uint16_t section_id) 1674 { 1675 struct rtas_ext_event_log_v6 *ext_log = 1676 (struct rtas_ext_event_log_v6 *)log->buffer; 1677 struct pseries_errorlog *sect; 1678 unsigned char *p, *log_end; 1679 uint32_t ext_log_length = rtas_error_extended_log_length(log); 1680 uint8_t log_format = rtas_ext_event_log_format(ext_log); 1681 uint32_t company_id = rtas_ext_event_company_id(ext_log); 1682 1683 /* Check that we understand the format */ 1684 if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) || 1685 log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG || 1686 company_id != RTAS_V6EXT_COMPANY_ID_IBM) 1687 return NULL; 1688 1689 log_end = log->buffer + ext_log_length; 1690 p = ext_log->vendor_log; 1691 1692 while (p < log_end) { 1693 sect = (struct pseries_errorlog *)p; 1694 if (pseries_errorlog_id(sect) == section_id) 1695 return sect; 1696 p += pseries_errorlog_length(sect); 1697 } 1698 1699 return NULL; 1700 } 1701 1702 /* 1703 * The sys_rtas syscall, as originally designed, allows root to pass 1704 * arbitrary physical addresses to RTAS calls. A number of RTAS calls 1705 * can be abused to write to arbitrary memory and do other things that 1706 * are potentially harmful to system integrity, and thus should only 1707 * be used inside the kernel and not exposed to userspace. 1708 * 1709 * All known legitimate users of the sys_rtas syscall will only ever 1710 * pass addresses that fall within the RMO buffer, and use a known 1711 * subset of RTAS calls. 1712 * 1713 * Accordingly, we filter RTAS requests to check that the call is 1714 * permitted, and that provided pointers fall within the RMO buffer. 1715 * If a function is allowed to be invoked via the syscall, then its 1716 * entry in the rtas_functions table points to a rtas_filter that 1717 * describes its constraints, with the indexes of the parameters which 1718 * are expected to contain addresses and sizes of buffers allocated 1719 * inside the RMO buffer. 1720 */ 1721 1722 static bool in_rmo_buf(u32 base, u32 end) 1723 { 1724 return base >= rtas_rmo_buf && 1725 base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) && 1726 base <= end && 1727 end >= rtas_rmo_buf && 1728 end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE); 1729 } 1730 1731 static bool block_rtas_call(int token, int nargs, 1732 struct rtas_args *args) 1733 { 1734 const struct rtas_function *func; 1735 const struct rtas_filter *f; 1736 const bool is_platform_dump = token == rtas_function_token(RTAS_FN_IBM_PLATFORM_DUMP); 1737 const bool is_config_conn = token == rtas_function_token(RTAS_FN_IBM_CONFIGURE_CONNECTOR); 1738 u32 base, size, end; 1739 1740 /* 1741 * If this token doesn't correspond to a function the kernel 1742 * understands, you're not allowed to call it. 1743 */ 1744 func = rtas_token_to_function_untrusted(token); 1745 if (!func) 1746 goto err; 1747 /* 1748 * And only functions with filters attached are allowed. 1749 */ 1750 f = func->filter; 1751 if (!f) 1752 goto err; 1753 /* 1754 * And some functions aren't allowed on LE. 1755 */ 1756 if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le) 1757 goto err; 1758 1759 if (f->buf_idx1 != -1) { 1760 base = be32_to_cpu(args->args[f->buf_idx1]); 1761 if (f->size_idx1 != -1) 1762 size = be32_to_cpu(args->args[f->size_idx1]); 1763 else if (f->fixed_size) 1764 size = f->fixed_size; 1765 else 1766 size = 1; 1767 1768 end = base + size - 1; 1769 1770 /* 1771 * Special case for ibm,platform-dump - NULL buffer 1772 * address is used to indicate end of dump processing 1773 */ 1774 if (is_platform_dump && base == 0) 1775 return false; 1776 1777 if (!in_rmo_buf(base, end)) 1778 goto err; 1779 } 1780 1781 if (f->buf_idx2 != -1) { 1782 base = be32_to_cpu(args->args[f->buf_idx2]); 1783 if (f->size_idx2 != -1) 1784 size = be32_to_cpu(args->args[f->size_idx2]); 1785 else if (f->fixed_size) 1786 size = f->fixed_size; 1787 else 1788 size = 1; 1789 end = base + size - 1; 1790 1791 /* 1792 * Special case for ibm,configure-connector where the 1793 * address can be 0 1794 */ 1795 if (is_config_conn && base == 0) 1796 return false; 1797 1798 if (!in_rmo_buf(base, end)) 1799 goto err; 1800 } 1801 1802 return false; 1803 err: 1804 pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n"); 1805 pr_err_ratelimited("sys_rtas: token=0x%x, nargs=%d (called by %s)\n", 1806 token, nargs, current->comm); 1807 return true; 1808 } 1809 1810 /* We assume to be passed big endian arguments */ 1811 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs) 1812 { 1813 struct pin_cookie cookie; 1814 struct rtas_args args; 1815 unsigned long flags; 1816 char *buff_copy, *errbuf = NULL; 1817 int nargs, nret, token; 1818 1819 if (!capable(CAP_SYS_ADMIN)) 1820 return -EPERM; 1821 1822 if (!rtas.entry) 1823 return -EINVAL; 1824 1825 if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) 1826 return -EFAULT; 1827 1828 nargs = be32_to_cpu(args.nargs); 1829 nret = be32_to_cpu(args.nret); 1830 token = be32_to_cpu(args.token); 1831 1832 if (nargs >= ARRAY_SIZE(args.args) 1833 || nret > ARRAY_SIZE(args.args) 1834 || nargs + nret > ARRAY_SIZE(args.args)) 1835 return -EINVAL; 1836 1837 /* Copy in args. */ 1838 if (copy_from_user(args.args, uargs->args, 1839 nargs * sizeof(rtas_arg_t)) != 0) 1840 return -EFAULT; 1841 1842 if (token == RTAS_UNKNOWN_SERVICE) 1843 return -EINVAL; 1844 1845 args.rets = &args.args[nargs]; 1846 memset(args.rets, 0, nret * sizeof(rtas_arg_t)); 1847 1848 if (block_rtas_call(token, nargs, &args)) 1849 return -EINVAL; 1850 1851 if (token_is_restricted_errinjct(token)) { 1852 int err; 1853 1854 err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION); 1855 if (err) 1856 return err; 1857 } 1858 1859 /* Need to handle ibm,suspend_me call specially */ 1860 if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) { 1861 1862 /* 1863 * rtas_ibm_suspend_me assumes the streamid handle is in cpu 1864 * endian, or at least the hcall within it requires it. 1865 */ 1866 int rc = 0; 1867 u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32) 1868 | be32_to_cpu(args.args[1]); 1869 rc = rtas_syscall_dispatch_ibm_suspend_me(handle); 1870 if (rc == -EAGAIN) 1871 args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE); 1872 else if (rc == -EIO) 1873 args.rets[0] = cpu_to_be32(-1); 1874 else if (rc) 1875 return rc; 1876 goto copy_return; 1877 } 1878 1879 buff_copy = get_errorlog_buffer(); 1880 1881 raw_spin_lock_irqsave(&rtas_lock, flags); 1882 cookie = lockdep_pin_lock(&rtas_lock); 1883 1884 rtas_args = args; 1885 do_enter_rtas(&rtas_args); 1886 args = rtas_args; 1887 1888 /* A -1 return code indicates that the last command couldn't 1889 be completed due to a hardware error. */ 1890 if (be32_to_cpu(args.rets[0]) == -1) 1891 errbuf = __fetch_rtas_last_error(buff_copy); 1892 1893 lockdep_unpin_lock(&rtas_lock, cookie); 1894 raw_spin_unlock_irqrestore(&rtas_lock, flags); 1895 1896 if (buff_copy) { 1897 if (errbuf) 1898 log_error(errbuf, ERR_TYPE_RTAS_LOG, 0); 1899 kfree(buff_copy); 1900 } 1901 1902 copy_return: 1903 /* Copy out args. */ 1904 if (copy_to_user(uargs->args + nargs, 1905 args.args + nargs, 1906 nret * sizeof(rtas_arg_t)) != 0) 1907 return -EFAULT; 1908 1909 return 0; 1910 } 1911 1912 static void __init rtas_function_table_init(void) 1913 { 1914 struct property *prop; 1915 1916 for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) { 1917 struct rtas_function *curr = &rtas_function_table[i]; 1918 struct rtas_function *prior; 1919 int cmp; 1920 1921 curr->token = RTAS_UNKNOWN_SERVICE; 1922 1923 if (i == 0) 1924 continue; 1925 /* 1926 * Ensure table is sorted correctly for binary search 1927 * on function names. 1928 */ 1929 prior = &rtas_function_table[i - 1]; 1930 1931 cmp = strcmp(prior->name, curr->name); 1932 if (cmp < 0) 1933 continue; 1934 1935 if (cmp == 0) { 1936 pr_err("'%s' has duplicate function table entries\n", 1937 curr->name); 1938 } else { 1939 pr_err("function table unsorted: '%s' wrongly precedes '%s'\n", 1940 prior->name, curr->name); 1941 } 1942 } 1943 1944 for_each_property_of_node(rtas.dev, prop) { 1945 struct rtas_function *func; 1946 1947 if (prop->length != sizeof(u32)) 1948 continue; 1949 1950 func = __rtas_name_to_function(prop->name); 1951 if (!func) 1952 continue; 1953 1954 func->token = be32_to_cpup((__be32 *)prop->value); 1955 1956 pr_debug("function %s has token %u\n", func->name, func->token); 1957 } 1958 } 1959 1960 /* 1961 * Call early during boot, before mem init, to retrieve the RTAS 1962 * information from the device-tree and allocate the RMO buffer for userland 1963 * accesses. 1964 */ 1965 void __init rtas_initialize(void) 1966 { 1967 unsigned long rtas_region = RTAS_INSTANTIATE_MAX; 1968 u32 base, size, entry; 1969 int no_base, no_size, no_entry; 1970 1971 /* Get RTAS dev node and fill up our "rtas" structure with infos 1972 * about it. 1973 */ 1974 rtas.dev = of_find_node_by_name(NULL, "rtas"); 1975 if (!rtas.dev) 1976 return; 1977 1978 no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base); 1979 no_size = of_property_read_u32(rtas.dev, "rtas-size", &size); 1980 if (no_base || no_size) { 1981 of_node_put(rtas.dev); 1982 rtas.dev = NULL; 1983 return; 1984 } 1985 1986 rtas.base = base; 1987 rtas.size = size; 1988 no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry); 1989 rtas.entry = no_entry ? rtas.base : entry; 1990 1991 init_error_log_max(); 1992 1993 /* Must be called before any function token lookups */ 1994 rtas_function_table_init(); 1995 1996 /* 1997 * Discover this now to avoid a device tree lookup in the 1998 * panic path. 1999 */ 2000 ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term"); 2001 2002 /* If RTAS was found, allocate the RMO buffer for it and look for 2003 * the stop-self token if any 2004 */ 2005 #ifdef CONFIG_PPC64 2006 if (firmware_has_feature(FW_FEATURE_LPAR)) 2007 rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX); 2008 #endif 2009 rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE, 2010 0, rtas_region); 2011 if (!rtas_rmo_buf) 2012 panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n", 2013 PAGE_SIZE, &rtas_region); 2014 2015 rtas_work_area_reserve_arena(rtas_region); 2016 } 2017 2018 int __init early_init_dt_scan_rtas(unsigned long node, 2019 const char *uname, int depth, void *data) 2020 { 2021 const u32 *basep, *entryp, *sizep; 2022 2023 if (depth != 1 || strcmp(uname, "rtas") != 0) 2024 return 0; 2025 2026 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL); 2027 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL); 2028 sizep = of_get_flat_dt_prop(node, "rtas-size", NULL); 2029 2030 #ifdef CONFIG_PPC64 2031 /* need this feature to decide the crashkernel offset */ 2032 if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL)) 2033 powerpc_firmware_features |= FW_FEATURE_LPAR; 2034 #endif 2035 2036 if (basep && entryp && sizep) { 2037 rtas.base = *basep; 2038 rtas.entry = *entryp; 2039 rtas.size = *sizep; 2040 } 2041 2042 #ifdef CONFIG_UDBG_RTAS_CONSOLE 2043 basep = of_get_flat_dt_prop(node, "put-term-char", NULL); 2044 if (basep) 2045 rtas_putchar_token = *basep; 2046 2047 basep = of_get_flat_dt_prop(node, "get-term-char", NULL); 2048 if (basep) 2049 rtas_getchar_token = *basep; 2050 2051 if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE && 2052 rtas_getchar_token != RTAS_UNKNOWN_SERVICE) 2053 udbg_init_rtas_console(); 2054 2055 #endif 2056 2057 /* break now */ 2058 return 1; 2059 } 2060 2061 static DEFINE_RAW_SPINLOCK(timebase_lock); 2062 static u64 timebase = 0; 2063 2064 void rtas_give_timebase(void) 2065 { 2066 unsigned long flags; 2067 2068 raw_spin_lock_irqsave(&timebase_lock, flags); 2069 hard_irq_disable(); 2070 rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL); 2071 timebase = get_tb(); 2072 raw_spin_unlock(&timebase_lock); 2073 2074 while (timebase) 2075 barrier(); 2076 rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL); 2077 local_irq_restore(flags); 2078 } 2079 2080 void rtas_take_timebase(void) 2081 { 2082 while (!timebase) 2083 barrier(); 2084 raw_spin_lock(&timebase_lock); 2085 set_tb(timebase >> 32, timebase & 0xffffffff); 2086 timebase = 0; 2087 raw_spin_unlock(&timebase_lock); 2088 } 2089