xref: /openbmc/linux/arch/powerpc/kernel/rtas.c (revision 236a9bf2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Procedures for interfacing to the RTAS on CHRP machines.
5  *
6  * Peter Bergner, IBM	March 2001.
7  * Copyright (C) 2001 IBM.
8  */
9 
10 #define pr_fmt(fmt)	"rtas: " fmt
11 
12 #include <linux/bsearch.h>
13 #include <linux/capability.h>
14 #include <linux/delay.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/kconfig.h>
18 #include <linux/kernel.h>
19 #include <linux/lockdep.h>
20 #include <linux/memblock.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/reboot.h>
24 #include <linux/sched.h>
25 #include <linux/security.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/stdarg.h>
29 #include <linux/syscalls.h>
30 #include <linux/types.h>
31 #include <linux/uaccess.h>
32 #include <linux/xarray.h>
33 
34 #include <asm/delay.h>
35 #include <asm/firmware.h>
36 #include <asm/interrupt.h>
37 #include <asm/machdep.h>
38 #include <asm/mmu.h>
39 #include <asm/page.h>
40 #include <asm/rtas-work-area.h>
41 #include <asm/rtas.h>
42 #include <asm/time.h>
43 #include <asm/trace.h>
44 #include <asm/udbg.h>
45 
46 struct rtas_filter {
47 	/* Indexes into the args buffer, -1 if not used */
48 	const int buf_idx1;
49 	const int size_idx1;
50 	const int buf_idx2;
51 	const int size_idx2;
52 	/*
53 	 * Assumed buffer size per the spec if the function does not
54 	 * have a size parameter, e.g. ibm,errinjct. 0 if unused.
55 	 */
56 	const int fixed_size;
57 };
58 
59 /**
60  * struct rtas_function - Descriptor for RTAS functions.
61  *
62  * @token: Value of @name if it exists under the /rtas node.
63  * @name: Function name.
64  * @filter: If non-NULL, invoking this function via the rtas syscall is
65  *          generally allowed, and @filter describes constraints on the
66  *          arguments. See also @banned_for_syscall_on_le.
67  * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
68  *                            but specifically restricted on ppc64le. Such
69  *                            functions are believed to have no users on
70  *                            ppc64le, and we want to keep it that way. It does
71  *                            not make sense for this to be set when @filter
72  *                            is NULL.
73  */
74 struct rtas_function {
75 	s32 token;
76 	const bool banned_for_syscall_on_le:1;
77 	const char * const name;
78 	const struct rtas_filter *filter;
79 };
80 
81 static struct rtas_function rtas_function_table[] __ro_after_init = {
82 	[RTAS_FNIDX__CHECK_EXCEPTION] = {
83 		.name = "check-exception",
84 	},
85 	[RTAS_FNIDX__DISPLAY_CHARACTER] = {
86 		.name = "display-character",
87 		.filter = &(const struct rtas_filter) {
88 			.buf_idx1 = -1, .size_idx1 = -1,
89 			.buf_idx2 = -1, .size_idx2 = -1,
90 		},
91 	},
92 	[RTAS_FNIDX__EVENT_SCAN] = {
93 		.name = "event-scan",
94 	},
95 	[RTAS_FNIDX__FREEZE_TIME_BASE] = {
96 		.name = "freeze-time-base",
97 	},
98 	[RTAS_FNIDX__GET_POWER_LEVEL] = {
99 		.name = "get-power-level",
100 		.filter = &(const struct rtas_filter) {
101 			.buf_idx1 = -1, .size_idx1 = -1,
102 			.buf_idx2 = -1, .size_idx2 = -1,
103 		},
104 	},
105 	[RTAS_FNIDX__GET_SENSOR_STATE] = {
106 		.name = "get-sensor-state",
107 		.filter = &(const struct rtas_filter) {
108 			.buf_idx1 = -1, .size_idx1 = -1,
109 			.buf_idx2 = -1, .size_idx2 = -1,
110 		},
111 	},
112 	[RTAS_FNIDX__GET_TERM_CHAR] = {
113 		.name = "get-term-char",
114 	},
115 	[RTAS_FNIDX__GET_TIME_OF_DAY] = {
116 		.name = "get-time-of-day",
117 		.filter = &(const struct rtas_filter) {
118 			.buf_idx1 = -1, .size_idx1 = -1,
119 			.buf_idx2 = -1, .size_idx2 = -1,
120 		},
121 	},
122 	[RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
123 		.name = "ibm,activate-firmware",
124 		.filter = &(const struct rtas_filter) {
125 			.buf_idx1 = -1, .size_idx1 = -1,
126 			.buf_idx2 = -1, .size_idx2 = -1,
127 		},
128 	},
129 	[RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
130 		.name = "ibm,cbe-start-ptcal",
131 	},
132 	[RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
133 		.name = "ibm,cbe-stop-ptcal",
134 	},
135 	[RTAS_FNIDX__IBM_CHANGE_MSI] = {
136 		.name = "ibm,change-msi",
137 	},
138 	[RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
139 		.name = "ibm,close-errinjct",
140 		.filter = &(const struct rtas_filter) {
141 			.buf_idx1 = -1, .size_idx1 = -1,
142 			.buf_idx2 = -1, .size_idx2 = -1,
143 		},
144 	},
145 	[RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
146 		.name = "ibm,configure-bridge",
147 	},
148 	[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
149 		.name = "ibm,configure-connector",
150 		.filter = &(const struct rtas_filter) {
151 			.buf_idx1 = 0, .size_idx1 = -1,
152 			.buf_idx2 = 1, .size_idx2 = -1,
153 			.fixed_size = 4096,
154 		},
155 	},
156 	[RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
157 		.name = "ibm,configure-kernel-dump",
158 	},
159 	[RTAS_FNIDX__IBM_CONFIGURE_PE] = {
160 		.name = "ibm,configure-pe",
161 	},
162 	[RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
163 		.name = "ibm,create-pe-dma-window",
164 	},
165 	[RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
166 		.name = "ibm,display-message",
167 		.filter = &(const struct rtas_filter) {
168 			.buf_idx1 = 0, .size_idx1 = -1,
169 			.buf_idx2 = -1, .size_idx2 = -1,
170 		},
171 	},
172 	[RTAS_FNIDX__IBM_ERRINJCT] = {
173 		.name = "ibm,errinjct",
174 		.filter = &(const struct rtas_filter) {
175 			.buf_idx1 = 2, .size_idx1 = -1,
176 			.buf_idx2 = -1, .size_idx2 = -1,
177 			.fixed_size = 1024,
178 		},
179 	},
180 	[RTAS_FNIDX__IBM_EXTI2C] = {
181 		.name = "ibm,exti2c",
182 	},
183 	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
184 		.name = "ibm,get-config-addr-info",
185 	},
186 	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
187 		.name = "ibm,get-config-addr-info2",
188 		.filter = &(const struct rtas_filter) {
189 			.buf_idx1 = -1, .size_idx1 = -1,
190 			.buf_idx2 = -1, .size_idx2 = -1,
191 		},
192 	},
193 	[RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
194 		.name = "ibm,get-dynamic-sensor-state",
195 		.filter = &(const struct rtas_filter) {
196 			.buf_idx1 = 1, .size_idx1 = -1,
197 			.buf_idx2 = -1, .size_idx2 = -1,
198 		},
199 	},
200 	[RTAS_FNIDX__IBM_GET_INDICES] = {
201 		.name = "ibm,get-indices",
202 		.filter = &(const struct rtas_filter) {
203 			.buf_idx1 = 2, .size_idx1 = 3,
204 			.buf_idx2 = -1, .size_idx2 = -1,
205 		},
206 	},
207 	[RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
208 		.name = "ibm,get-rio-topology",
209 	},
210 	[RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
211 		.name = "ibm,get-system-parameter",
212 		.filter = &(const struct rtas_filter) {
213 			.buf_idx1 = 1, .size_idx1 = 2,
214 			.buf_idx2 = -1, .size_idx2 = -1,
215 		},
216 	},
217 	[RTAS_FNIDX__IBM_GET_VPD] = {
218 		.name = "ibm,get-vpd",
219 		.filter = &(const struct rtas_filter) {
220 			.buf_idx1 = 0, .size_idx1 = -1,
221 			.buf_idx2 = 1, .size_idx2 = 2,
222 		},
223 	},
224 	[RTAS_FNIDX__IBM_GET_XIVE] = {
225 		.name = "ibm,get-xive",
226 	},
227 	[RTAS_FNIDX__IBM_INT_OFF] = {
228 		.name = "ibm,int-off",
229 	},
230 	[RTAS_FNIDX__IBM_INT_ON] = {
231 		.name = "ibm,int-on",
232 	},
233 	[RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
234 		.name = "ibm,io-quiesce-ack",
235 	},
236 	[RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
237 		.name = "ibm,lpar-perftools",
238 		.filter = &(const struct rtas_filter) {
239 			.buf_idx1 = 2, .size_idx1 = 3,
240 			.buf_idx2 = -1, .size_idx2 = -1,
241 		},
242 	},
243 	[RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
244 		.name = "ibm,manage-flash-image",
245 	},
246 	[RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
247 		.name = "ibm,manage-storage-preservation",
248 	},
249 	[RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
250 		.name = "ibm,nmi-interlock",
251 	},
252 	[RTAS_FNIDX__IBM_NMI_REGISTER] = {
253 		.name = "ibm,nmi-register",
254 	},
255 	[RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
256 		.name = "ibm,open-errinjct",
257 		.filter = &(const struct rtas_filter) {
258 			.buf_idx1 = -1, .size_idx1 = -1,
259 			.buf_idx2 = -1, .size_idx2 = -1,
260 		},
261 	},
262 	[RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
263 		.name = "ibm,open-sriov-allow-unfreeze",
264 	},
265 	[RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
266 		.name = "ibm,open-sriov-map-pe-number",
267 	},
268 	[RTAS_FNIDX__IBM_OS_TERM] = {
269 		.name = "ibm,os-term",
270 	},
271 	[RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
272 		.name = "ibm,partner-control",
273 	},
274 	[RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
275 		.name = "ibm,physical-attestation",
276 		.filter = &(const struct rtas_filter) {
277 			.buf_idx1 = 0, .size_idx1 = 1,
278 			.buf_idx2 = -1, .size_idx2 = -1,
279 		},
280 	},
281 	[RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
282 		.name = "ibm,platform-dump",
283 		.filter = &(const struct rtas_filter) {
284 			.buf_idx1 = 4, .size_idx1 = 5,
285 			.buf_idx2 = -1, .size_idx2 = -1,
286 		},
287 	},
288 	[RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
289 		.name = "ibm,power-off-ups",
290 	},
291 	[RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
292 		.name = "ibm,query-interrupt-source-number",
293 	},
294 	[RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
295 		.name = "ibm,query-pe-dma-window",
296 	},
297 	[RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
298 		.name = "ibm,read-pci-config",
299 	},
300 	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
301 		.name = "ibm,read-slot-reset-state",
302 		.filter = &(const struct rtas_filter) {
303 			.buf_idx1 = -1, .size_idx1 = -1,
304 			.buf_idx2 = -1, .size_idx2 = -1,
305 		},
306 	},
307 	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
308 		.name = "ibm,read-slot-reset-state2",
309 	},
310 	[RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
311 		.name = "ibm,remove-pe-dma-window",
312 	},
313 	[RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOWS] = {
314 		.name = "ibm,reset-pe-dma-windows",
315 	},
316 	[RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
317 		.name = "ibm,scan-log-dump",
318 		.filter = &(const struct rtas_filter) {
319 			.buf_idx1 = 0, .size_idx1 = 1,
320 			.buf_idx2 = -1, .size_idx2 = -1,
321 		},
322 	},
323 	[RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
324 		.name = "ibm,set-dynamic-indicator",
325 		.filter = &(const struct rtas_filter) {
326 			.buf_idx1 = 2, .size_idx1 = -1,
327 			.buf_idx2 = -1, .size_idx2 = -1,
328 		},
329 	},
330 	[RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
331 		.name = "ibm,set-eeh-option",
332 		.filter = &(const struct rtas_filter) {
333 			.buf_idx1 = -1, .size_idx1 = -1,
334 			.buf_idx2 = -1, .size_idx2 = -1,
335 		},
336 	},
337 	[RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
338 		.name = "ibm,set-slot-reset",
339 	},
340 	[RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
341 		.name = "ibm,set-system-parameter",
342 		.filter = &(const struct rtas_filter) {
343 			.buf_idx1 = 1, .size_idx1 = -1,
344 			.buf_idx2 = -1, .size_idx2 = -1,
345 		},
346 	},
347 	[RTAS_FNIDX__IBM_SET_XIVE] = {
348 		.name = "ibm,set-xive",
349 	},
350 	[RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
351 		.name = "ibm,slot-error-detail",
352 	},
353 	[RTAS_FNIDX__IBM_SUSPEND_ME] = {
354 		.name = "ibm,suspend-me",
355 		.banned_for_syscall_on_le = true,
356 		.filter = &(const struct rtas_filter) {
357 			.buf_idx1 = -1, .size_idx1 = -1,
358 			.buf_idx2 = -1, .size_idx2 = -1,
359 		},
360 	},
361 	[RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
362 		.name = "ibm,tune-dma-parms",
363 	},
364 	[RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
365 		.name = "ibm,update-flash-64-and-reboot",
366 	},
367 	[RTAS_FNIDX__IBM_UPDATE_NODES] = {
368 		.name = "ibm,update-nodes",
369 		.banned_for_syscall_on_le = true,
370 		.filter = &(const struct rtas_filter) {
371 			.buf_idx1 = 0, .size_idx1 = -1,
372 			.buf_idx2 = -1, .size_idx2 = -1,
373 			.fixed_size = 4096,
374 		},
375 	},
376 	[RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
377 		.name = "ibm,update-properties",
378 		.banned_for_syscall_on_le = true,
379 		.filter = &(const struct rtas_filter) {
380 			.buf_idx1 = 0, .size_idx1 = -1,
381 			.buf_idx2 = -1, .size_idx2 = -1,
382 			.fixed_size = 4096,
383 		},
384 	},
385 	[RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
386 		.name = "ibm,validate-flash-image",
387 	},
388 	[RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
389 		.name = "ibm,write-pci-config",
390 	},
391 	[RTAS_FNIDX__NVRAM_FETCH] = {
392 		.name = "nvram-fetch",
393 	},
394 	[RTAS_FNIDX__NVRAM_STORE] = {
395 		.name = "nvram-store",
396 	},
397 	[RTAS_FNIDX__POWER_OFF] = {
398 		.name = "power-off",
399 	},
400 	[RTAS_FNIDX__PUT_TERM_CHAR] = {
401 		.name = "put-term-char",
402 	},
403 	[RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
404 		.name = "query-cpu-stopped-state",
405 	},
406 	[RTAS_FNIDX__READ_PCI_CONFIG] = {
407 		.name = "read-pci-config",
408 	},
409 	[RTAS_FNIDX__RTAS_LAST_ERROR] = {
410 		.name = "rtas-last-error",
411 	},
412 	[RTAS_FNIDX__SET_INDICATOR] = {
413 		.name = "set-indicator",
414 		.filter = &(const struct rtas_filter) {
415 			.buf_idx1 = -1, .size_idx1 = -1,
416 			.buf_idx2 = -1, .size_idx2 = -1,
417 		},
418 	},
419 	[RTAS_FNIDX__SET_POWER_LEVEL] = {
420 		.name = "set-power-level",
421 		.filter = &(const struct rtas_filter) {
422 			.buf_idx1 = -1, .size_idx1 = -1,
423 			.buf_idx2 = -1, .size_idx2 = -1,
424 		},
425 	},
426 	[RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
427 		.name = "set-time-for-power-on",
428 		.filter = &(const struct rtas_filter) {
429 			.buf_idx1 = -1, .size_idx1 = -1,
430 			.buf_idx2 = -1, .size_idx2 = -1,
431 		},
432 	},
433 	[RTAS_FNIDX__SET_TIME_OF_DAY] = {
434 		.name = "set-time-of-day",
435 		.filter = &(const struct rtas_filter) {
436 			.buf_idx1 = -1, .size_idx1 = -1,
437 			.buf_idx2 = -1, .size_idx2 = -1,
438 		},
439 	},
440 	[RTAS_FNIDX__START_CPU] = {
441 		.name = "start-cpu",
442 	},
443 	[RTAS_FNIDX__STOP_SELF] = {
444 		.name = "stop-self",
445 	},
446 	[RTAS_FNIDX__SYSTEM_REBOOT] = {
447 		.name = "system-reboot",
448 	},
449 	[RTAS_FNIDX__THAW_TIME_BASE] = {
450 		.name = "thaw-time-base",
451 	},
452 	[RTAS_FNIDX__WRITE_PCI_CONFIG] = {
453 		.name = "write-pci-config",
454 	},
455 };
456 
457 /*
458  * Nearly all RTAS calls need to be serialized. All uses of the
459  * default rtas_args block must hold rtas_lock.
460  *
461  * Exceptions to the RTAS serialization requirement (e.g. stop-self)
462  * must use a separate rtas_args structure.
463  */
464 static DEFINE_RAW_SPINLOCK(rtas_lock);
465 static struct rtas_args rtas_args;
466 
467 /**
468  * rtas_function_token() - RTAS function token lookup.
469  * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
470  *
471  * Context: Any context.
472  * Return: the token value for the function if implemented by this platform,
473  *         otherwise RTAS_UNKNOWN_SERVICE.
474  */
475 s32 rtas_function_token(const rtas_fn_handle_t handle)
476 {
477 	const size_t index = handle.index;
478 	const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
479 
480 	if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
481 		return RTAS_UNKNOWN_SERVICE;
482 	/*
483 	 * Various drivers attempt token lookups on non-RTAS
484 	 * platforms.
485 	 */
486 	if (!rtas.dev)
487 		return RTAS_UNKNOWN_SERVICE;
488 
489 	return rtas_function_table[index].token;
490 }
491 EXPORT_SYMBOL_GPL(rtas_function_token);
492 
493 static int rtas_function_cmp(const void *a, const void *b)
494 {
495 	const struct rtas_function *f1 = a;
496 	const struct rtas_function *f2 = b;
497 
498 	return strcmp(f1->name, f2->name);
499 }
500 
501 /*
502  * Boot-time initialization of the function table needs the lookup to
503  * return a non-const-qualified object. Use rtas_name_to_function()
504  * in all other contexts.
505  */
506 static struct rtas_function *__rtas_name_to_function(const char *name)
507 {
508 	const struct rtas_function key = {
509 		.name = name,
510 	};
511 	struct rtas_function *found;
512 
513 	found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
514 			sizeof(rtas_function_table[0]), rtas_function_cmp);
515 
516 	return found;
517 }
518 
519 static const struct rtas_function *rtas_name_to_function(const char *name)
520 {
521 	return __rtas_name_to_function(name);
522 }
523 
524 static DEFINE_XARRAY(rtas_token_to_function_xarray);
525 
526 static int __init rtas_token_to_function_xarray_init(void)
527 {
528 	int err = 0;
529 
530 	for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
531 		const struct rtas_function *func = &rtas_function_table[i];
532 		const s32 token = func->token;
533 
534 		if (token == RTAS_UNKNOWN_SERVICE)
535 			continue;
536 
537 		err = xa_err(xa_store(&rtas_token_to_function_xarray,
538 				      token, (void *)func, GFP_KERNEL));
539 		if (err)
540 			break;
541 	}
542 
543 	return err;
544 }
545 arch_initcall(rtas_token_to_function_xarray_init);
546 
547 /*
548  * For use by sys_rtas(), where the token value is provided by user
549  * space and we don't want to warn on failed lookups.
550  */
551 static const struct rtas_function *rtas_token_to_function_untrusted(s32 token)
552 {
553 	return xa_load(&rtas_token_to_function_xarray, token);
554 }
555 
556 /*
557  * Reverse lookup for deriving the function descriptor from a
558  * known-good token value in contexts where the former is not already
559  * available. @token must be valid, e.g. derived from the result of a
560  * prior lookup against the function table.
561  */
562 static const struct rtas_function *rtas_token_to_function(s32 token)
563 {
564 	const struct rtas_function *func;
565 
566 	if (WARN_ONCE(token < 0, "invalid token %d", token))
567 		return NULL;
568 
569 	func = rtas_token_to_function_untrusted(token);
570 
571 	if (WARN_ONCE(!func, "unexpected failed lookup for token %d", token))
572 		return NULL;
573 
574 	return func;
575 }
576 
577 /* This is here deliberately so it's only used in this file */
578 void enter_rtas(unsigned long);
579 
580 static void __do_enter_rtas(struct rtas_args *args)
581 {
582 	enter_rtas(__pa(args));
583 	srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
584 }
585 
586 static void __do_enter_rtas_trace(struct rtas_args *args)
587 {
588 	const char *name = NULL;
589 
590 	if (args == &rtas_args)
591 		lockdep_assert_held(&rtas_lock);
592 	/*
593 	 * If the tracepoints that consume the function name aren't
594 	 * active, avoid the lookup.
595 	 */
596 	if ((trace_rtas_input_enabled() || trace_rtas_output_enabled())) {
597 		const s32 token = be32_to_cpu(args->token);
598 		const struct rtas_function *func = rtas_token_to_function(token);
599 
600 		name = func->name;
601 	}
602 
603 	trace_rtas_input(args, name);
604 	trace_rtas_ll_entry(args);
605 
606 	__do_enter_rtas(args);
607 
608 	trace_rtas_ll_exit(args);
609 	trace_rtas_output(args, name);
610 }
611 
612 static void do_enter_rtas(struct rtas_args *args)
613 {
614 	const unsigned long msr = mfmsr();
615 	/*
616 	 * Situations where we want to skip any active tracepoints for
617 	 * safety reasons:
618 	 *
619 	 * 1. The last code executed on an offline CPU as it stops,
620 	 *    i.e. we're about to call stop-self. The tracepoints'
621 	 *    function name lookup uses xarray, which uses RCU, which
622 	 *    isn't valid to call on an offline CPU.  Any events
623 	 *    emitted on an offline CPU will be discarded anyway.
624 	 *
625 	 * 2. In real mode, as when invoking ibm,nmi-interlock from
626 	 *    the pseries MCE handler. We cannot count on trace
627 	 *    buffers or the entries in rtas_token_to_function_xarray
628 	 *    to be contained in the RMO.
629 	 */
630 	const unsigned long mask = MSR_IR | MSR_DR;
631 	const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
632 				      (msr & mask) == mask);
633 	/*
634 	 * Make sure MSR[RI] is currently enabled as it will be forced later
635 	 * in enter_rtas.
636 	 */
637 	BUG_ON(!(msr & MSR_RI));
638 
639 	BUG_ON(!irqs_disabled());
640 
641 	hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
642 
643 	if (can_trace)
644 		__do_enter_rtas_trace(args);
645 	else
646 		__do_enter_rtas(args);
647 }
648 
649 struct rtas_t rtas;
650 
651 DEFINE_SPINLOCK(rtas_data_buf_lock);
652 EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
653 
654 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
655 EXPORT_SYMBOL_GPL(rtas_data_buf);
656 
657 unsigned long rtas_rmo_buf;
658 
659 /*
660  * If non-NULL, this gets called when the kernel terminates.
661  * This is done like this so rtas_flash can be a module.
662  */
663 void (*rtas_flash_term_hook)(int);
664 EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
665 
666 /*
667  * call_rtas_display_status and call_rtas_display_status_delay
668  * are designed only for very early low-level debugging, which
669  * is why the token is hard-coded to 10.
670  */
671 static void call_rtas_display_status(unsigned char c)
672 {
673 	unsigned long flags;
674 
675 	if (!rtas.base)
676 		return;
677 
678 	raw_spin_lock_irqsave(&rtas_lock, flags);
679 	rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
680 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
681 }
682 
683 static void call_rtas_display_status_delay(char c)
684 {
685 	static int pending_newline = 0;  /* did last write end with unprinted newline? */
686 	static int width = 16;
687 
688 	if (c == '\n') {
689 		while (width-- > 0)
690 			call_rtas_display_status(' ');
691 		width = 16;
692 		mdelay(500);
693 		pending_newline = 1;
694 	} else {
695 		if (pending_newline) {
696 			call_rtas_display_status('\r');
697 			call_rtas_display_status('\n');
698 		}
699 		pending_newline = 0;
700 		if (width--) {
701 			call_rtas_display_status(c);
702 			udelay(10000);
703 		}
704 	}
705 }
706 
707 void __init udbg_init_rtas_panel(void)
708 {
709 	udbg_putc = call_rtas_display_status_delay;
710 }
711 
712 #ifdef CONFIG_UDBG_RTAS_CONSOLE
713 
714 /* If you think you're dying before early_init_dt_scan_rtas() does its
715  * work, you can hard code the token values for your firmware here and
716  * hardcode rtas.base/entry etc.
717  */
718 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
719 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
720 
721 static void udbg_rtascon_putc(char c)
722 {
723 	int tries;
724 
725 	if (!rtas.base)
726 		return;
727 
728 	/* Add CRs before LFs */
729 	if (c == '\n')
730 		udbg_rtascon_putc('\r');
731 
732 	/* if there is more than one character to be displayed, wait a bit */
733 	for (tries = 0; tries < 16; tries++) {
734 		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
735 			break;
736 		udelay(1000);
737 	}
738 }
739 
740 static int udbg_rtascon_getc_poll(void)
741 {
742 	int c;
743 
744 	if (!rtas.base)
745 		return -1;
746 
747 	if (rtas_call(rtas_getchar_token, 0, 2, &c))
748 		return -1;
749 
750 	return c;
751 }
752 
753 static int udbg_rtascon_getc(void)
754 {
755 	int c;
756 
757 	while ((c = udbg_rtascon_getc_poll()) == -1)
758 		;
759 
760 	return c;
761 }
762 
763 
764 void __init udbg_init_rtas_console(void)
765 {
766 	udbg_putc = udbg_rtascon_putc;
767 	udbg_getc = udbg_rtascon_getc;
768 	udbg_getc_poll = udbg_rtascon_getc_poll;
769 }
770 #endif /* CONFIG_UDBG_RTAS_CONSOLE */
771 
772 void rtas_progress(char *s, unsigned short hex)
773 {
774 	struct device_node *root;
775 	int width;
776 	const __be32 *p;
777 	char *os;
778 	static int display_character, set_indicator;
779 	static int display_width, display_lines, form_feed;
780 	static const int *row_width;
781 	static DEFINE_SPINLOCK(progress_lock);
782 	static int current_line;
783 	static int pending_newline = 0;  /* did last write end with unprinted newline? */
784 
785 	if (!rtas.base)
786 		return;
787 
788 	if (display_width == 0) {
789 		display_width = 0x10;
790 		if ((root = of_find_node_by_path("/rtas"))) {
791 			if ((p = of_get_property(root,
792 					"ibm,display-line-length", NULL)))
793 				display_width = be32_to_cpu(*p);
794 			if ((p = of_get_property(root,
795 					"ibm,form-feed", NULL)))
796 				form_feed = be32_to_cpu(*p);
797 			if ((p = of_get_property(root,
798 					"ibm,display-number-of-lines", NULL)))
799 				display_lines = be32_to_cpu(*p);
800 			row_width = of_get_property(root,
801 					"ibm,display-truncation-length", NULL);
802 			of_node_put(root);
803 		}
804 		display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
805 		set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
806 	}
807 
808 	if (display_character == RTAS_UNKNOWN_SERVICE) {
809 		/* use hex display if available */
810 		if (set_indicator != RTAS_UNKNOWN_SERVICE)
811 			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
812 		return;
813 	}
814 
815 	spin_lock(&progress_lock);
816 
817 	/*
818 	 * Last write ended with newline, but we didn't print it since
819 	 * it would just clear the bottom line of output. Print it now
820 	 * instead.
821 	 *
822 	 * If no newline is pending and form feed is supported, clear the
823 	 * display with a form feed; otherwise, print a CR to start output
824 	 * at the beginning of the line.
825 	 */
826 	if (pending_newline) {
827 		rtas_call(display_character, 1, 1, NULL, '\r');
828 		rtas_call(display_character, 1, 1, NULL, '\n');
829 		pending_newline = 0;
830 	} else {
831 		current_line = 0;
832 		if (form_feed)
833 			rtas_call(display_character, 1, 1, NULL,
834 				  (char)form_feed);
835 		else
836 			rtas_call(display_character, 1, 1, NULL, '\r');
837 	}
838 
839 	if (row_width)
840 		width = row_width[current_line];
841 	else
842 		width = display_width;
843 	os = s;
844 	while (*os) {
845 		if (*os == '\n' || *os == '\r') {
846 			/* If newline is the last character, save it
847 			 * until next call to avoid bumping up the
848 			 * display output.
849 			 */
850 			if (*os == '\n' && !os[1]) {
851 				pending_newline = 1;
852 				current_line++;
853 				if (current_line > display_lines-1)
854 					current_line = display_lines-1;
855 				spin_unlock(&progress_lock);
856 				return;
857 			}
858 
859 			/* RTAS wants CR-LF, not just LF */
860 
861 			if (*os == '\n') {
862 				rtas_call(display_character, 1, 1, NULL, '\r');
863 				rtas_call(display_character, 1, 1, NULL, '\n');
864 			} else {
865 				/* CR might be used to re-draw a line, so we'll
866 				 * leave it alone and not add LF.
867 				 */
868 				rtas_call(display_character, 1, 1, NULL, *os);
869 			}
870 
871 			if (row_width)
872 				width = row_width[current_line];
873 			else
874 				width = display_width;
875 		} else {
876 			width--;
877 			rtas_call(display_character, 1, 1, NULL, *os);
878 		}
879 
880 		os++;
881 
882 		/* if we overwrite the screen length */
883 		if (width <= 0)
884 			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
885 				os++;
886 	}
887 
888 	spin_unlock(&progress_lock);
889 }
890 EXPORT_SYMBOL_GPL(rtas_progress);		/* needed by rtas_flash module */
891 
892 int rtas_token(const char *service)
893 {
894 	const struct rtas_function *func;
895 	const __be32 *tokp;
896 
897 	if (rtas.dev == NULL)
898 		return RTAS_UNKNOWN_SERVICE;
899 
900 	func = rtas_name_to_function(service);
901 	if (func)
902 		return func->token;
903 	/*
904 	 * The caller is looking up a name that is not known to be an
905 	 * RTAS function. Either it's a function that needs to be
906 	 * added to the table, or they're misusing rtas_token() to
907 	 * access non-function properties of the /rtas node. Warn and
908 	 * fall back to the legacy behavior.
909 	 */
910 	WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
911 		  service);
912 
913 	tokp = of_get_property(rtas.dev, service, NULL);
914 	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
915 }
916 EXPORT_SYMBOL_GPL(rtas_token);
917 
918 int rtas_service_present(const char *service)
919 {
920 	return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
921 }
922 
923 #ifdef CONFIG_RTAS_ERROR_LOGGING
924 
925 static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
926 
927 /*
928  * Return the firmware-specified size of the error log buffer
929  *  for all rtas calls that require an error buffer argument.
930  *  This includes 'check-exception' and 'rtas-last-error'.
931  */
932 int rtas_get_error_log_max(void)
933 {
934 	return rtas_error_log_max;
935 }
936 
937 static void __init init_error_log_max(void)
938 {
939 	static const char propname[] __initconst = "rtas-error-log-max";
940 	u32 max;
941 
942 	if (of_property_read_u32(rtas.dev, propname, &max)) {
943 		pr_warn("%s not found, using default of %u\n",
944 			propname, RTAS_ERROR_LOG_MAX);
945 		max = RTAS_ERROR_LOG_MAX;
946 	}
947 
948 	if (max > RTAS_ERROR_LOG_MAX) {
949 		pr_warn("%s = %u, clamping max error log size to %u\n",
950 			propname, max, RTAS_ERROR_LOG_MAX);
951 		max = RTAS_ERROR_LOG_MAX;
952 	}
953 
954 	rtas_error_log_max = max;
955 }
956 
957 
958 static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
959 
960 /** Return a copy of the detailed error text associated with the
961  *  most recent failed call to rtas.  Because the error text
962  *  might go stale if there are any other intervening rtas calls,
963  *  this routine must be called atomically with whatever produced
964  *  the error (i.e. with rtas_lock still held from the previous call).
965  */
966 static char *__fetch_rtas_last_error(char *altbuf)
967 {
968 	const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
969 	struct rtas_args err_args, save_args;
970 	u32 bufsz;
971 	char *buf = NULL;
972 
973 	lockdep_assert_held(&rtas_lock);
974 
975 	if (token == -1)
976 		return NULL;
977 
978 	bufsz = rtas_get_error_log_max();
979 
980 	err_args.token = cpu_to_be32(token);
981 	err_args.nargs = cpu_to_be32(2);
982 	err_args.nret = cpu_to_be32(1);
983 	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
984 	err_args.args[1] = cpu_to_be32(bufsz);
985 	err_args.args[2] = 0;
986 
987 	save_args = rtas_args;
988 	rtas_args = err_args;
989 
990 	do_enter_rtas(&rtas_args);
991 
992 	err_args = rtas_args;
993 	rtas_args = save_args;
994 
995 	/* Log the error in the unlikely case that there was one. */
996 	if (unlikely(err_args.args[2] == 0)) {
997 		if (altbuf) {
998 			buf = altbuf;
999 		} else {
1000 			buf = rtas_err_buf;
1001 			if (slab_is_available())
1002 				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
1003 		}
1004 		if (buf)
1005 			memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
1006 	}
1007 
1008 	return buf;
1009 }
1010 
1011 #define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
1012 
1013 #else /* CONFIG_RTAS_ERROR_LOGGING */
1014 #define __fetch_rtas_last_error(x)	NULL
1015 #define get_errorlog_buffer()		NULL
1016 static void __init init_error_log_max(void) {}
1017 #endif
1018 
1019 
1020 static void
1021 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
1022 		      va_list list)
1023 {
1024 	int i;
1025 
1026 	args->token = cpu_to_be32(token);
1027 	args->nargs = cpu_to_be32(nargs);
1028 	args->nret  = cpu_to_be32(nret);
1029 	args->rets  = &(args->args[nargs]);
1030 
1031 	for (i = 0; i < nargs; ++i)
1032 		args->args[i] = cpu_to_be32(va_arg(list, __u32));
1033 
1034 	for (i = 0; i < nret; ++i)
1035 		args->rets[i] = 0;
1036 
1037 	do_enter_rtas(args);
1038 }
1039 
1040 /**
1041  * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
1042  * @args: RTAS parameter block to be used for the call, must obey RTAS addressing
1043  *        constraints.
1044  * @token: Identifies the function being invoked.
1045  * @nargs: Number of input parameters. Does not include token.
1046  * @nret: Number of output parameters, including the call status.
1047  * @....: List of @nargs input parameters.
1048  *
1049  * Invokes the RTAS function indicated by @token, which the caller
1050  * should obtain via rtas_function_token().
1051  *
1052  * This function is similar to rtas_call(), but must be used with a
1053  * limited set of RTAS calls specifically exempted from the general
1054  * requirement that only one RTAS call may be in progress at any
1055  * time. Examples include stop-self and ibm,nmi-interlock.
1056  */
1057 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
1058 {
1059 	va_list list;
1060 
1061 	va_start(list, nret);
1062 	va_rtas_call_unlocked(args, token, nargs, nret, list);
1063 	va_end(list);
1064 }
1065 
1066 static bool token_is_restricted_errinjct(s32 token)
1067 {
1068 	return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
1069 	       token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
1070 }
1071 
1072 /**
1073  * rtas_call() - Invoke an RTAS firmware function.
1074  * @token: Identifies the function being invoked.
1075  * @nargs: Number of input parameters. Does not include token.
1076  * @nret: Number of output parameters, including the call status.
1077  * @outputs: Array of @nret output words.
1078  * @....: List of @nargs input parameters.
1079  *
1080  * Invokes the RTAS function indicated by @token, which the caller
1081  * should obtain via rtas_function_token().
1082  *
1083  * The @nargs and @nret arguments must match the number of input and
1084  * output parameters specified for the RTAS function.
1085  *
1086  * rtas_call() returns RTAS status codes, not conventional Linux errno
1087  * values. Callers must translate any failure to an appropriate errno
1088  * in syscall context. Most callers of RTAS functions that can return
1089  * -2 or 990x should use rtas_busy_delay() to correctly handle those
1090  * statuses before calling again.
1091  *
1092  * The return value descriptions are adapted from 7.2.8 [RTAS] Return
1093  * Codes of the PAPR and CHRP specifications.
1094  *
1095  * Context: Process context preferably, interrupt context if
1096  *          necessary.  Acquires an internal spinlock and may perform
1097  *          GFP_ATOMIC slab allocation in error path. Unsafe for NMI
1098  *          context.
1099  * Return:
1100  * *                          0 - RTAS function call succeeded.
1101  * *                         -1 - RTAS function encountered a hardware or
1102  *                                platform error, or the token is invalid,
1103  *                                or the function is restricted by kernel policy.
1104  * *                         -2 - Specs say "A necessary hardware device was busy,
1105  *                                and the requested function could not be
1106  *                                performed. The operation should be retried at
1107  *                                a later time." This is misleading, at least with
1108  *                                respect to current RTAS implementations. What it
1109  *                                usually means in practice is that the function
1110  *                                could not be completed while meeting RTAS's
1111  *                                deadline for returning control to the OS (250us
1112  *                                for PAPR/PowerVM, typically), but the call may be
1113  *                                immediately reattempted to resume work on it.
1114  * *                         -3 - Parameter error.
1115  * *                         -7 - Unexpected state change.
1116  * *                9000...9899 - Vendor-specific success codes.
1117  * *                9900...9905 - Advisory extended delay. Caller should try
1118  *                                again after ~10^x ms has elapsed, where x is
1119  *                                the last digit of the status [0-5]. Again going
1120  *                                beyond the PAPR text, 990x on PowerVM indicates
1121  *                                contention for RTAS-internal resources. Other
1122  *                                RTAS call sequences in progress should be
1123  *                                allowed to complete before reattempting the
1124  *                                call.
1125  * *                      -9000 - Multi-level isolation error.
1126  * *              -9999...-9004 - Vendor-specific error codes.
1127  * * Additional negative values - Function-specific error.
1128  * * Additional positive values - Function-specific success.
1129  */
1130 int rtas_call(int token, int nargs, int nret, int *outputs, ...)
1131 {
1132 	struct pin_cookie cookie;
1133 	va_list list;
1134 	int i;
1135 	unsigned long flags;
1136 	struct rtas_args *args;
1137 	char *buff_copy = NULL;
1138 	int ret;
1139 
1140 	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
1141 		return -1;
1142 
1143 	if (token_is_restricted_errinjct(token)) {
1144 		/*
1145 		 * It would be nicer to not discard the error value
1146 		 * from security_locked_down(), but callers expect an
1147 		 * RTAS status, not an errno.
1148 		 */
1149 		if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
1150 			return -1;
1151 	}
1152 
1153 	if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
1154 		WARN_ON_ONCE(1);
1155 		return -1;
1156 	}
1157 
1158 	raw_spin_lock_irqsave(&rtas_lock, flags);
1159 	cookie = lockdep_pin_lock(&rtas_lock);
1160 
1161 	/* We use the global rtas args buffer */
1162 	args = &rtas_args;
1163 
1164 	va_start(list, outputs);
1165 	va_rtas_call_unlocked(args, token, nargs, nret, list);
1166 	va_end(list);
1167 
1168 	/* A -1 return code indicates that the last command couldn't
1169 	   be completed due to a hardware error. */
1170 	if (be32_to_cpu(args->rets[0]) == -1)
1171 		buff_copy = __fetch_rtas_last_error(NULL);
1172 
1173 	if (nret > 1 && outputs != NULL)
1174 		for (i = 0; i < nret-1; ++i)
1175 			outputs[i] = be32_to_cpu(args->rets[i + 1]);
1176 	ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
1177 
1178 	lockdep_unpin_lock(&rtas_lock, cookie);
1179 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1180 
1181 	if (buff_copy) {
1182 		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
1183 		if (slab_is_available())
1184 			kfree(buff_copy);
1185 	}
1186 	return ret;
1187 }
1188 EXPORT_SYMBOL_GPL(rtas_call);
1189 
1190 /**
1191  * rtas_busy_delay_time() - From an RTAS status value, calculate the
1192  *                          suggested delay time in milliseconds.
1193  *
1194  * @status: a value returned from rtas_call() or similar APIs which return
1195  *          the status of a RTAS function call.
1196  *
1197  * Context: Any context.
1198  *
1199  * Return:
1200  * * 100000 - If @status is 9905.
1201  * * 10000  - If @status is 9904.
1202  * * 1000   - If @status is 9903.
1203  * * 100    - If @status is 9902.
1204  * * 10     - If @status is 9901.
1205  * * 1      - If @status is either 9900 or -2. This is "wrong" for -2, but
1206  *            some callers depend on this behavior, and the worst outcome
1207  *            is that they will delay for longer than necessary.
1208  * * 0      - If @status is not a busy or extended delay value.
1209  */
1210 unsigned int rtas_busy_delay_time(int status)
1211 {
1212 	int order;
1213 	unsigned int ms = 0;
1214 
1215 	if (status == RTAS_BUSY) {
1216 		ms = 1;
1217 	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
1218 		   status <= RTAS_EXTENDED_DELAY_MAX) {
1219 		order = status - RTAS_EXTENDED_DELAY_MIN;
1220 		for (ms = 1; order > 0; order--)
1221 			ms *= 10;
1222 	}
1223 
1224 	return ms;
1225 }
1226 
1227 /*
1228  * Early boot fallback for rtas_busy_delay().
1229  */
1230 static bool __init rtas_busy_delay_early(int status)
1231 {
1232 	static size_t successive_ext_delays __initdata;
1233 	bool retry;
1234 
1235 	switch (status) {
1236 	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1237 		/*
1238 		 * In the unlikely case that we receive an extended
1239 		 * delay status in early boot, the OS is probably not
1240 		 * the cause, and there's nothing we can do to clear
1241 		 * the condition. Best we can do is delay for a bit
1242 		 * and hope it's transient. Lie to the caller if it
1243 		 * seems like we're stuck in a retry loop.
1244 		 */
1245 		mdelay(1);
1246 		retry = true;
1247 		successive_ext_delays += 1;
1248 		if (successive_ext_delays > 1000) {
1249 			pr_err("too many extended delays, giving up\n");
1250 			dump_stack();
1251 			retry = false;
1252 			successive_ext_delays = 0;
1253 		}
1254 		break;
1255 	case RTAS_BUSY:
1256 		retry = true;
1257 		successive_ext_delays = 0;
1258 		break;
1259 	default:
1260 		retry = false;
1261 		successive_ext_delays = 0;
1262 		break;
1263 	}
1264 
1265 	return retry;
1266 }
1267 
1268 /**
1269  * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
1270  *
1271  * @status: a value returned from rtas_call() or similar APIs which return
1272  *          the status of a RTAS function call.
1273  *
1274  * Context: Process context. May sleep or schedule.
1275  *
1276  * Return:
1277  * * true  - @status is RTAS_BUSY or an extended delay hint. The
1278  *           caller may assume that the CPU has been yielded if necessary,
1279  *           and that an appropriate delay for @status has elapsed.
1280  *           Generally the caller should reattempt the RTAS call which
1281  *           yielded @status.
1282  *
1283  * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
1284  *           caller is responsible for handling @status.
1285  */
1286 bool __ref rtas_busy_delay(int status)
1287 {
1288 	unsigned int ms;
1289 	bool ret;
1290 
1291 	/*
1292 	 * Can't do timed sleeps before timekeeping is up.
1293 	 */
1294 	if (system_state < SYSTEM_SCHEDULING)
1295 		return rtas_busy_delay_early(status);
1296 
1297 	switch (status) {
1298 	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1299 		ret = true;
1300 		ms = rtas_busy_delay_time(status);
1301 		/*
1302 		 * The extended delay hint can be as high as 100 seconds.
1303 		 * Surely any function returning such a status is either
1304 		 * buggy or isn't going to be significantly slowed by us
1305 		 * polling at 1HZ. Clamp the sleep time to one second.
1306 		 */
1307 		ms = clamp(ms, 1U, 1000U);
1308 		/*
1309 		 * The delay hint is an order-of-magnitude suggestion, not
1310 		 * a minimum. It is fine, possibly even advantageous, for
1311 		 * us to pause for less time than hinted. For small values,
1312 		 * use usleep_range() to ensure we don't sleep much longer
1313 		 * than actually needed.
1314 		 *
1315 		 * See Documentation/timers/timers-howto.rst for
1316 		 * explanation of the threshold used here. In effect we use
1317 		 * usleep_range() for 9900 and 9901, msleep() for
1318 		 * 9902-9905.
1319 		 */
1320 		if (ms <= 20)
1321 			usleep_range(ms * 100, ms * 1000);
1322 		else
1323 			msleep(ms);
1324 		break;
1325 	case RTAS_BUSY:
1326 		ret = true;
1327 		/*
1328 		 * We should call again immediately if there's no other
1329 		 * work to do.
1330 		 */
1331 		cond_resched();
1332 		break;
1333 	default:
1334 		ret = false;
1335 		/*
1336 		 * Not a busy or extended delay status; the caller should
1337 		 * handle @status itself. Ensure we warn on misuses in
1338 		 * atomic context regardless.
1339 		 */
1340 		might_sleep();
1341 		break;
1342 	}
1343 
1344 	return ret;
1345 }
1346 EXPORT_SYMBOL_GPL(rtas_busy_delay);
1347 
1348 int rtas_error_rc(int rtas_rc)
1349 {
1350 	int rc;
1351 
1352 	switch (rtas_rc) {
1353 	case RTAS_HARDWARE_ERROR:	/* Hardware Error */
1354 		rc = -EIO;
1355 		break;
1356 	case RTAS_INVALID_PARAMETER:	/* Bad indicator/domain/etc */
1357 		rc = -EINVAL;
1358 		break;
1359 	case -9000:			/* Isolation error */
1360 		rc = -EFAULT;
1361 		break;
1362 	case -9001:			/* Outstanding TCE/PTE */
1363 		rc = -EEXIST;
1364 		break;
1365 	case -9002:			/* No usable slot */
1366 		rc = -ENODEV;
1367 		break;
1368 	default:
1369 		pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
1370 		rc = -ERANGE;
1371 		break;
1372 	}
1373 	return rc;
1374 }
1375 EXPORT_SYMBOL_GPL(rtas_error_rc);
1376 
1377 int rtas_get_power_level(int powerdomain, int *level)
1378 {
1379 	int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
1380 	int rc;
1381 
1382 	if (token == RTAS_UNKNOWN_SERVICE)
1383 		return -ENOENT;
1384 
1385 	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
1386 		udelay(1);
1387 
1388 	if (rc < 0)
1389 		return rtas_error_rc(rc);
1390 	return rc;
1391 }
1392 EXPORT_SYMBOL_GPL(rtas_get_power_level);
1393 
1394 int rtas_set_power_level(int powerdomain, int level, int *setlevel)
1395 {
1396 	int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
1397 	int rc;
1398 
1399 	if (token == RTAS_UNKNOWN_SERVICE)
1400 		return -ENOENT;
1401 
1402 	do {
1403 		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
1404 	} while (rtas_busy_delay(rc));
1405 
1406 	if (rc < 0)
1407 		return rtas_error_rc(rc);
1408 	return rc;
1409 }
1410 EXPORT_SYMBOL_GPL(rtas_set_power_level);
1411 
1412 int rtas_get_sensor(int sensor, int index, int *state)
1413 {
1414 	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1415 	int rc;
1416 
1417 	if (token == RTAS_UNKNOWN_SERVICE)
1418 		return -ENOENT;
1419 
1420 	do {
1421 		rc = rtas_call(token, 2, 2, state, sensor, index);
1422 	} while (rtas_busy_delay(rc));
1423 
1424 	if (rc < 0)
1425 		return rtas_error_rc(rc);
1426 	return rc;
1427 }
1428 EXPORT_SYMBOL_GPL(rtas_get_sensor);
1429 
1430 int rtas_get_sensor_fast(int sensor, int index, int *state)
1431 {
1432 	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1433 	int rc;
1434 
1435 	if (token == RTAS_UNKNOWN_SERVICE)
1436 		return -ENOENT;
1437 
1438 	rc = rtas_call(token, 2, 2, state, sensor, index);
1439 	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1440 				    rc <= RTAS_EXTENDED_DELAY_MAX));
1441 
1442 	if (rc < 0)
1443 		return rtas_error_rc(rc);
1444 	return rc;
1445 }
1446 
1447 bool rtas_indicator_present(int token, int *maxindex)
1448 {
1449 	int proplen, count, i;
1450 	const struct indicator_elem {
1451 		__be32 token;
1452 		__be32 maxindex;
1453 	} *indicators;
1454 
1455 	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
1456 	if (!indicators)
1457 		return false;
1458 
1459 	count = proplen / sizeof(struct indicator_elem);
1460 
1461 	for (i = 0; i < count; i++) {
1462 		if (__be32_to_cpu(indicators[i].token) != token)
1463 			continue;
1464 		if (maxindex)
1465 			*maxindex = __be32_to_cpu(indicators[i].maxindex);
1466 		return true;
1467 	}
1468 
1469 	return false;
1470 }
1471 
1472 int rtas_set_indicator(int indicator, int index, int new_value)
1473 {
1474 	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1475 	int rc;
1476 
1477 	if (token == RTAS_UNKNOWN_SERVICE)
1478 		return -ENOENT;
1479 
1480 	do {
1481 		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1482 	} while (rtas_busy_delay(rc));
1483 
1484 	if (rc < 0)
1485 		return rtas_error_rc(rc);
1486 	return rc;
1487 }
1488 EXPORT_SYMBOL_GPL(rtas_set_indicator);
1489 
1490 /*
1491  * Ignoring RTAS extended delay
1492  */
1493 int rtas_set_indicator_fast(int indicator, int index, int new_value)
1494 {
1495 	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1496 	int rc;
1497 
1498 	if (token == RTAS_UNKNOWN_SERVICE)
1499 		return -ENOENT;
1500 
1501 	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1502 
1503 	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1504 				    rc <= RTAS_EXTENDED_DELAY_MAX));
1505 
1506 	if (rc < 0)
1507 		return rtas_error_rc(rc);
1508 
1509 	return rc;
1510 }
1511 
1512 /**
1513  * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
1514  *
1515  * @fw_status: RTAS call status will be placed here if not NULL.
1516  *
1517  * rtas_ibm_suspend_me() should be called only on a CPU which has
1518  * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
1519  * should be waiting to return from H_JOIN.
1520  *
1521  * rtas_ibm_suspend_me() may suspend execution of the OS
1522  * indefinitely. Callers should take appropriate measures upon return, such as
1523  * resetting watchdog facilities.
1524  *
1525  * Callers may choose to retry this call if @fw_status is
1526  * %RTAS_THREADS_ACTIVE.
1527  *
1528  * Return:
1529  * 0          - The partition has resumed from suspend, possibly after
1530  *              migration to a different host.
1531  * -ECANCELED - The operation was aborted.
1532  * -EAGAIN    - There were other CPUs not in H_JOIN at the time of the call.
1533  * -EBUSY     - Some other condition prevented the suspend from succeeding.
1534  * -EIO       - Hardware/platform error.
1535  */
1536 int rtas_ibm_suspend_me(int *fw_status)
1537 {
1538 	int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
1539 	int fwrc;
1540 	int ret;
1541 
1542 	fwrc = rtas_call(token, 0, 1, NULL);
1543 
1544 	switch (fwrc) {
1545 	case 0:
1546 		ret = 0;
1547 		break;
1548 	case RTAS_SUSPEND_ABORTED:
1549 		ret = -ECANCELED;
1550 		break;
1551 	case RTAS_THREADS_ACTIVE:
1552 		ret = -EAGAIN;
1553 		break;
1554 	case RTAS_NOT_SUSPENDABLE:
1555 	case RTAS_OUTSTANDING_COPROC:
1556 		ret = -EBUSY;
1557 		break;
1558 	case -1:
1559 	default:
1560 		ret = -EIO;
1561 		break;
1562 	}
1563 
1564 	if (fw_status)
1565 		*fw_status = fwrc;
1566 
1567 	return ret;
1568 }
1569 
1570 void __noreturn rtas_restart(char *cmd)
1571 {
1572 	if (rtas_flash_term_hook)
1573 		rtas_flash_term_hook(SYS_RESTART);
1574 	pr_emerg("system-reboot returned %d\n",
1575 		 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
1576 	for (;;);
1577 }
1578 
1579 void rtas_power_off(void)
1580 {
1581 	if (rtas_flash_term_hook)
1582 		rtas_flash_term_hook(SYS_POWER_OFF);
1583 	/* allow power on only with power button press */
1584 	pr_emerg("power-off returned %d\n",
1585 		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1586 	for (;;);
1587 }
1588 
1589 void __noreturn rtas_halt(void)
1590 {
1591 	if (rtas_flash_term_hook)
1592 		rtas_flash_term_hook(SYS_HALT);
1593 	/* allow power on only with power button press */
1594 	pr_emerg("power-off returned %d\n",
1595 		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1596 	for (;;);
1597 }
1598 
1599 /* Must be in the RMO region, so we place it here */
1600 static char rtas_os_term_buf[2048];
1601 static bool ibm_extended_os_term;
1602 
1603 void rtas_os_term(char *str)
1604 {
1605 	s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
1606 	static struct rtas_args args;
1607 	int status;
1608 
1609 	/*
1610 	 * Firmware with the ibm,extended-os-term property is guaranteed
1611 	 * to always return from an ibm,os-term call. Earlier versions without
1612 	 * this property may terminate the partition which we want to avoid
1613 	 * since it interferes with panic_timeout.
1614 	 */
1615 
1616 	if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
1617 		return;
1618 
1619 	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
1620 
1621 	/*
1622 	 * Keep calling as long as RTAS returns a "try again" status,
1623 	 * but don't use rtas_busy_delay(), which potentially
1624 	 * schedules.
1625 	 */
1626 	do {
1627 		rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
1628 		status = be32_to_cpu(args.rets[0]);
1629 	} while (rtas_busy_delay_time(status));
1630 
1631 	if (status != 0)
1632 		pr_emerg("ibm,os-term call failed %d\n", status);
1633 }
1634 
1635 /**
1636  * rtas_activate_firmware() - Activate a new version of firmware.
1637  *
1638  * Context: This function may sleep.
1639  *
1640  * Activate a new version of partition firmware. The OS must call this
1641  * after resuming from a partition hibernation or migration in order
1642  * to maintain the ability to perform live firmware updates. It's not
1643  * catastrophic for this method to be absent or to fail; just log the
1644  * condition in that case.
1645  */
1646 void rtas_activate_firmware(void)
1647 {
1648 	int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
1649 	int fwrc;
1650 
1651 	if (token == RTAS_UNKNOWN_SERVICE) {
1652 		pr_notice("ibm,activate-firmware method unavailable\n");
1653 		return;
1654 	}
1655 
1656 	do {
1657 		fwrc = rtas_call(token, 0, 1, NULL);
1658 	} while (rtas_busy_delay(fwrc));
1659 
1660 	if (fwrc)
1661 		pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
1662 }
1663 
1664 /**
1665  * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1666  *                          extended event log.
1667  * @log: RTAS error/event log
1668  * @section_id: two character section identifier
1669  *
1670  * Return: A pointer to the specified errorlog or NULL if not found.
1671  */
1672 noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1673 						      uint16_t section_id)
1674 {
1675 	struct rtas_ext_event_log_v6 *ext_log =
1676 		(struct rtas_ext_event_log_v6 *)log->buffer;
1677 	struct pseries_errorlog *sect;
1678 	unsigned char *p, *log_end;
1679 	uint32_t ext_log_length = rtas_error_extended_log_length(log);
1680 	uint8_t log_format = rtas_ext_event_log_format(ext_log);
1681 	uint32_t company_id = rtas_ext_event_company_id(ext_log);
1682 
1683 	/* Check that we understand the format */
1684 	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1685 	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1686 	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1687 		return NULL;
1688 
1689 	log_end = log->buffer + ext_log_length;
1690 	p = ext_log->vendor_log;
1691 
1692 	while (p < log_end) {
1693 		sect = (struct pseries_errorlog *)p;
1694 		if (pseries_errorlog_id(sect) == section_id)
1695 			return sect;
1696 		p += pseries_errorlog_length(sect);
1697 	}
1698 
1699 	return NULL;
1700 }
1701 
1702 /*
1703  * The sys_rtas syscall, as originally designed, allows root to pass
1704  * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1705  * can be abused to write to arbitrary memory and do other things that
1706  * are potentially harmful to system integrity, and thus should only
1707  * be used inside the kernel and not exposed to userspace.
1708  *
1709  * All known legitimate users of the sys_rtas syscall will only ever
1710  * pass addresses that fall within the RMO buffer, and use a known
1711  * subset of RTAS calls.
1712  *
1713  * Accordingly, we filter RTAS requests to check that the call is
1714  * permitted, and that provided pointers fall within the RMO buffer.
1715  * If a function is allowed to be invoked via the syscall, then its
1716  * entry in the rtas_functions table points to a rtas_filter that
1717  * describes its constraints, with the indexes of the parameters which
1718  * are expected to contain addresses and sizes of buffers allocated
1719  * inside the RMO buffer.
1720  */
1721 
1722 static bool in_rmo_buf(u32 base, u32 end)
1723 {
1724 	return base >= rtas_rmo_buf &&
1725 		base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1726 		base <= end &&
1727 		end >= rtas_rmo_buf &&
1728 		end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1729 }
1730 
1731 static bool block_rtas_call(int token, int nargs,
1732 			    struct rtas_args *args)
1733 {
1734 	const struct rtas_function *func;
1735 	const struct rtas_filter *f;
1736 	const bool is_platform_dump = token == rtas_function_token(RTAS_FN_IBM_PLATFORM_DUMP);
1737 	const bool is_config_conn = token == rtas_function_token(RTAS_FN_IBM_CONFIGURE_CONNECTOR);
1738 	u32 base, size, end;
1739 
1740 	/*
1741 	 * If this token doesn't correspond to a function the kernel
1742 	 * understands, you're not allowed to call it.
1743 	 */
1744 	func = rtas_token_to_function_untrusted(token);
1745 	if (!func)
1746 		goto err;
1747 	/*
1748 	 * And only functions with filters attached are allowed.
1749 	 */
1750 	f = func->filter;
1751 	if (!f)
1752 		goto err;
1753 	/*
1754 	 * And some functions aren't allowed on LE.
1755 	 */
1756 	if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
1757 		goto err;
1758 
1759 	if (f->buf_idx1 != -1) {
1760 		base = be32_to_cpu(args->args[f->buf_idx1]);
1761 		if (f->size_idx1 != -1)
1762 			size = be32_to_cpu(args->args[f->size_idx1]);
1763 		else if (f->fixed_size)
1764 			size = f->fixed_size;
1765 		else
1766 			size = 1;
1767 
1768 		end = base + size - 1;
1769 
1770 		/*
1771 		 * Special case for ibm,platform-dump - NULL buffer
1772 		 * address is used to indicate end of dump processing
1773 		 */
1774 		if (is_platform_dump && base == 0)
1775 			return false;
1776 
1777 		if (!in_rmo_buf(base, end))
1778 			goto err;
1779 	}
1780 
1781 	if (f->buf_idx2 != -1) {
1782 		base = be32_to_cpu(args->args[f->buf_idx2]);
1783 		if (f->size_idx2 != -1)
1784 			size = be32_to_cpu(args->args[f->size_idx2]);
1785 		else if (f->fixed_size)
1786 			size = f->fixed_size;
1787 		else
1788 			size = 1;
1789 		end = base + size - 1;
1790 
1791 		/*
1792 		 * Special case for ibm,configure-connector where the
1793 		 * address can be 0
1794 		 */
1795 		if (is_config_conn && base == 0)
1796 			return false;
1797 
1798 		if (!in_rmo_buf(base, end))
1799 			goto err;
1800 	}
1801 
1802 	return false;
1803 err:
1804 	pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1805 	pr_err_ratelimited("sys_rtas: token=0x%x, nargs=%d (called by %s)\n",
1806 			   token, nargs, current->comm);
1807 	return true;
1808 }
1809 
1810 /* We assume to be passed big endian arguments */
1811 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1812 {
1813 	struct pin_cookie cookie;
1814 	struct rtas_args args;
1815 	unsigned long flags;
1816 	char *buff_copy, *errbuf = NULL;
1817 	int nargs, nret, token;
1818 
1819 	if (!capable(CAP_SYS_ADMIN))
1820 		return -EPERM;
1821 
1822 	if (!rtas.entry)
1823 		return -EINVAL;
1824 
1825 	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1826 		return -EFAULT;
1827 
1828 	nargs = be32_to_cpu(args.nargs);
1829 	nret  = be32_to_cpu(args.nret);
1830 	token = be32_to_cpu(args.token);
1831 
1832 	if (nargs >= ARRAY_SIZE(args.args)
1833 	    || nret > ARRAY_SIZE(args.args)
1834 	    || nargs + nret > ARRAY_SIZE(args.args))
1835 		return -EINVAL;
1836 
1837 	/* Copy in args. */
1838 	if (copy_from_user(args.args, uargs->args,
1839 			   nargs * sizeof(rtas_arg_t)) != 0)
1840 		return -EFAULT;
1841 
1842 	if (token == RTAS_UNKNOWN_SERVICE)
1843 		return -EINVAL;
1844 
1845 	args.rets = &args.args[nargs];
1846 	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1847 
1848 	if (block_rtas_call(token, nargs, &args))
1849 		return -EINVAL;
1850 
1851 	if (token_is_restricted_errinjct(token)) {
1852 		int err;
1853 
1854 		err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1855 		if (err)
1856 			return err;
1857 	}
1858 
1859 	/* Need to handle ibm,suspend_me call specially */
1860 	if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
1861 
1862 		/*
1863 		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1864 		 * endian, or at least the hcall within it requires it.
1865 		 */
1866 		int rc = 0;
1867 		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1868 		              | be32_to_cpu(args.args[1]);
1869 		rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1870 		if (rc == -EAGAIN)
1871 			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1872 		else if (rc == -EIO)
1873 			args.rets[0] = cpu_to_be32(-1);
1874 		else if (rc)
1875 			return rc;
1876 		goto copy_return;
1877 	}
1878 
1879 	buff_copy = get_errorlog_buffer();
1880 
1881 	raw_spin_lock_irqsave(&rtas_lock, flags);
1882 	cookie = lockdep_pin_lock(&rtas_lock);
1883 
1884 	rtas_args = args;
1885 	do_enter_rtas(&rtas_args);
1886 	args = rtas_args;
1887 
1888 	/* A -1 return code indicates that the last command couldn't
1889 	   be completed due to a hardware error. */
1890 	if (be32_to_cpu(args.rets[0]) == -1)
1891 		errbuf = __fetch_rtas_last_error(buff_copy);
1892 
1893 	lockdep_unpin_lock(&rtas_lock, cookie);
1894 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1895 
1896 	if (buff_copy) {
1897 		if (errbuf)
1898 			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1899 		kfree(buff_copy);
1900 	}
1901 
1902  copy_return:
1903 	/* Copy out args. */
1904 	if (copy_to_user(uargs->args + nargs,
1905 			 args.args + nargs,
1906 			 nret * sizeof(rtas_arg_t)) != 0)
1907 		return -EFAULT;
1908 
1909 	return 0;
1910 }
1911 
1912 static void __init rtas_function_table_init(void)
1913 {
1914 	struct property *prop;
1915 
1916 	for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
1917 		struct rtas_function *curr = &rtas_function_table[i];
1918 		struct rtas_function *prior;
1919 		int cmp;
1920 
1921 		curr->token = RTAS_UNKNOWN_SERVICE;
1922 
1923 		if (i == 0)
1924 			continue;
1925 		/*
1926 		 * Ensure table is sorted correctly for binary search
1927 		 * on function names.
1928 		 */
1929 		prior = &rtas_function_table[i - 1];
1930 
1931 		cmp = strcmp(prior->name, curr->name);
1932 		if (cmp < 0)
1933 			continue;
1934 
1935 		if (cmp == 0) {
1936 			pr_err("'%s' has duplicate function table entries\n",
1937 			       curr->name);
1938 		} else {
1939 			pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
1940 			       prior->name, curr->name);
1941 		}
1942 	}
1943 
1944 	for_each_property_of_node(rtas.dev, prop) {
1945 		struct rtas_function *func;
1946 
1947 		if (prop->length != sizeof(u32))
1948 			continue;
1949 
1950 		func = __rtas_name_to_function(prop->name);
1951 		if (!func)
1952 			continue;
1953 
1954 		func->token = be32_to_cpup((__be32 *)prop->value);
1955 
1956 		pr_debug("function %s has token %u\n", func->name, func->token);
1957 	}
1958 }
1959 
1960 /*
1961  * Call early during boot, before mem init, to retrieve the RTAS
1962  * information from the device-tree and allocate the RMO buffer for userland
1963  * accesses.
1964  */
1965 void __init rtas_initialize(void)
1966 {
1967 	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
1968 	u32 base, size, entry;
1969 	int no_base, no_size, no_entry;
1970 
1971 	/* Get RTAS dev node and fill up our "rtas" structure with infos
1972 	 * about it.
1973 	 */
1974 	rtas.dev = of_find_node_by_name(NULL, "rtas");
1975 	if (!rtas.dev)
1976 		return;
1977 
1978 	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
1979 	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
1980 	if (no_base || no_size) {
1981 		of_node_put(rtas.dev);
1982 		rtas.dev = NULL;
1983 		return;
1984 	}
1985 
1986 	rtas.base = base;
1987 	rtas.size = size;
1988 	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
1989 	rtas.entry = no_entry ? rtas.base : entry;
1990 
1991 	init_error_log_max();
1992 
1993 	/* Must be called before any function token lookups */
1994 	rtas_function_table_init();
1995 
1996 	/*
1997 	 * Discover this now to avoid a device tree lookup in the
1998 	 * panic path.
1999 	 */
2000 	ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
2001 
2002 	/* If RTAS was found, allocate the RMO buffer for it and look for
2003 	 * the stop-self token if any
2004 	 */
2005 #ifdef CONFIG_PPC64
2006 	if (firmware_has_feature(FW_FEATURE_LPAR))
2007 		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
2008 #endif
2009 	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
2010 						 0, rtas_region);
2011 	if (!rtas_rmo_buf)
2012 		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
2013 		      PAGE_SIZE, &rtas_region);
2014 
2015 	rtas_work_area_reserve_arena(rtas_region);
2016 }
2017 
2018 int __init early_init_dt_scan_rtas(unsigned long node,
2019 		const char *uname, int depth, void *data)
2020 {
2021 	const u32 *basep, *entryp, *sizep;
2022 
2023 	if (depth != 1 || strcmp(uname, "rtas") != 0)
2024 		return 0;
2025 
2026 	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
2027 	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
2028 	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
2029 
2030 #ifdef CONFIG_PPC64
2031 	/* need this feature to decide the crashkernel offset */
2032 	if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
2033 		powerpc_firmware_features |= FW_FEATURE_LPAR;
2034 #endif
2035 
2036 	if (basep && entryp && sizep) {
2037 		rtas.base = *basep;
2038 		rtas.entry = *entryp;
2039 		rtas.size = *sizep;
2040 	}
2041 
2042 #ifdef CONFIG_UDBG_RTAS_CONSOLE
2043 	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
2044 	if (basep)
2045 		rtas_putchar_token = *basep;
2046 
2047 	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
2048 	if (basep)
2049 		rtas_getchar_token = *basep;
2050 
2051 	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
2052 	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
2053 		udbg_init_rtas_console();
2054 
2055 #endif
2056 
2057 	/* break now */
2058 	return 1;
2059 }
2060 
2061 static DEFINE_RAW_SPINLOCK(timebase_lock);
2062 static u64 timebase = 0;
2063 
2064 void rtas_give_timebase(void)
2065 {
2066 	unsigned long flags;
2067 
2068 	raw_spin_lock_irqsave(&timebase_lock, flags);
2069 	hard_irq_disable();
2070 	rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
2071 	timebase = get_tb();
2072 	raw_spin_unlock(&timebase_lock);
2073 
2074 	while (timebase)
2075 		barrier();
2076 	rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
2077 	local_irq_restore(flags);
2078 }
2079 
2080 void rtas_take_timebase(void)
2081 {
2082 	while (!timebase)
2083 		barrier();
2084 	raw_spin_lock(&timebase_lock);
2085 	set_tb(timebase >> 32, timebase & 0xffffffff);
2086 	timebase = 0;
2087 	raw_spin_unlock(&timebase_lock);
2088 }
2089