1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Procedures for interfacing to the RTAS on CHRP machines. 5 * 6 * Peter Bergner, IBM March 2001. 7 * Copyright (C) 2001 IBM. 8 */ 9 10 #include <stdarg.h> 11 #include <linux/kernel.h> 12 #include <linux/types.h> 13 #include <linux/spinlock.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/capability.h> 17 #include <linux/delay.h> 18 #include <linux/cpu.h> 19 #include <linux/sched.h> 20 #include <linux/smp.h> 21 #include <linux/completion.h> 22 #include <linux/cpumask.h> 23 #include <linux/memblock.h> 24 #include <linux/slab.h> 25 #include <linux/reboot.h> 26 #include <linux/syscalls.h> 27 28 #include <asm/prom.h> 29 #include <asm/rtas.h> 30 #include <asm/hvcall.h> 31 #include <asm/machdep.h> 32 #include <asm/firmware.h> 33 #include <asm/page.h> 34 #include <asm/param.h> 35 #include <asm/delay.h> 36 #include <linux/uaccess.h> 37 #include <asm/udbg.h> 38 #include <asm/syscalls.h> 39 #include <asm/smp.h> 40 #include <linux/atomic.h> 41 #include <asm/time.h> 42 #include <asm/mmu.h> 43 #include <asm/topology.h> 44 #include <asm/paca.h> 45 46 /* This is here deliberately so it's only used in this file */ 47 void enter_rtas(unsigned long); 48 49 struct rtas_t rtas = { 50 .lock = __ARCH_SPIN_LOCK_UNLOCKED 51 }; 52 EXPORT_SYMBOL(rtas); 53 54 DEFINE_SPINLOCK(rtas_data_buf_lock); 55 EXPORT_SYMBOL(rtas_data_buf_lock); 56 57 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned; 58 EXPORT_SYMBOL(rtas_data_buf); 59 60 unsigned long rtas_rmo_buf; 61 62 /* 63 * If non-NULL, this gets called when the kernel terminates. 64 * This is done like this so rtas_flash can be a module. 65 */ 66 void (*rtas_flash_term_hook)(int); 67 EXPORT_SYMBOL(rtas_flash_term_hook); 68 69 /* RTAS use home made raw locking instead of spin_lock_irqsave 70 * because those can be called from within really nasty contexts 71 * such as having the timebase stopped which would lockup with 72 * normal locks and spinlock debugging enabled 73 */ 74 static unsigned long lock_rtas(void) 75 { 76 unsigned long flags; 77 78 local_irq_save(flags); 79 preempt_disable(); 80 arch_spin_lock(&rtas.lock); 81 return flags; 82 } 83 84 static void unlock_rtas(unsigned long flags) 85 { 86 arch_spin_unlock(&rtas.lock); 87 local_irq_restore(flags); 88 preempt_enable(); 89 } 90 91 /* 92 * call_rtas_display_status and call_rtas_display_status_delay 93 * are designed only for very early low-level debugging, which 94 * is why the token is hard-coded to 10. 95 */ 96 static void call_rtas_display_status(unsigned char c) 97 { 98 unsigned long s; 99 100 if (!rtas.base) 101 return; 102 103 s = lock_rtas(); 104 rtas_call_unlocked(&rtas.args, 10, 1, 1, NULL, c); 105 unlock_rtas(s); 106 } 107 108 static void call_rtas_display_status_delay(char c) 109 { 110 static int pending_newline = 0; /* did last write end with unprinted newline? */ 111 static int width = 16; 112 113 if (c == '\n') { 114 while (width-- > 0) 115 call_rtas_display_status(' '); 116 width = 16; 117 mdelay(500); 118 pending_newline = 1; 119 } else { 120 if (pending_newline) { 121 call_rtas_display_status('\r'); 122 call_rtas_display_status('\n'); 123 } 124 pending_newline = 0; 125 if (width--) { 126 call_rtas_display_status(c); 127 udelay(10000); 128 } 129 } 130 } 131 132 void __init udbg_init_rtas_panel(void) 133 { 134 udbg_putc = call_rtas_display_status_delay; 135 } 136 137 #ifdef CONFIG_UDBG_RTAS_CONSOLE 138 139 /* If you think you're dying before early_init_dt_scan_rtas() does its 140 * work, you can hard code the token values for your firmware here and 141 * hardcode rtas.base/entry etc. 142 */ 143 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE; 144 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE; 145 146 static void udbg_rtascon_putc(char c) 147 { 148 int tries; 149 150 if (!rtas.base) 151 return; 152 153 /* Add CRs before LFs */ 154 if (c == '\n') 155 udbg_rtascon_putc('\r'); 156 157 /* if there is more than one character to be displayed, wait a bit */ 158 for (tries = 0; tries < 16; tries++) { 159 if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0) 160 break; 161 udelay(1000); 162 } 163 } 164 165 static int udbg_rtascon_getc_poll(void) 166 { 167 int c; 168 169 if (!rtas.base) 170 return -1; 171 172 if (rtas_call(rtas_getchar_token, 0, 2, &c)) 173 return -1; 174 175 return c; 176 } 177 178 static int udbg_rtascon_getc(void) 179 { 180 int c; 181 182 while ((c = udbg_rtascon_getc_poll()) == -1) 183 ; 184 185 return c; 186 } 187 188 189 void __init udbg_init_rtas_console(void) 190 { 191 udbg_putc = udbg_rtascon_putc; 192 udbg_getc = udbg_rtascon_getc; 193 udbg_getc_poll = udbg_rtascon_getc_poll; 194 } 195 #endif /* CONFIG_UDBG_RTAS_CONSOLE */ 196 197 void rtas_progress(char *s, unsigned short hex) 198 { 199 struct device_node *root; 200 int width; 201 const __be32 *p; 202 char *os; 203 static int display_character, set_indicator; 204 static int display_width, display_lines, form_feed; 205 static const int *row_width; 206 static DEFINE_SPINLOCK(progress_lock); 207 static int current_line; 208 static int pending_newline = 0; /* did last write end with unprinted newline? */ 209 210 if (!rtas.base) 211 return; 212 213 if (display_width == 0) { 214 display_width = 0x10; 215 if ((root = of_find_node_by_path("/rtas"))) { 216 if ((p = of_get_property(root, 217 "ibm,display-line-length", NULL))) 218 display_width = be32_to_cpu(*p); 219 if ((p = of_get_property(root, 220 "ibm,form-feed", NULL))) 221 form_feed = be32_to_cpu(*p); 222 if ((p = of_get_property(root, 223 "ibm,display-number-of-lines", NULL))) 224 display_lines = be32_to_cpu(*p); 225 row_width = of_get_property(root, 226 "ibm,display-truncation-length", NULL); 227 of_node_put(root); 228 } 229 display_character = rtas_token("display-character"); 230 set_indicator = rtas_token("set-indicator"); 231 } 232 233 if (display_character == RTAS_UNKNOWN_SERVICE) { 234 /* use hex display if available */ 235 if (set_indicator != RTAS_UNKNOWN_SERVICE) 236 rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex); 237 return; 238 } 239 240 spin_lock(&progress_lock); 241 242 /* 243 * Last write ended with newline, but we didn't print it since 244 * it would just clear the bottom line of output. Print it now 245 * instead. 246 * 247 * If no newline is pending and form feed is supported, clear the 248 * display with a form feed; otherwise, print a CR to start output 249 * at the beginning of the line. 250 */ 251 if (pending_newline) { 252 rtas_call(display_character, 1, 1, NULL, '\r'); 253 rtas_call(display_character, 1, 1, NULL, '\n'); 254 pending_newline = 0; 255 } else { 256 current_line = 0; 257 if (form_feed) 258 rtas_call(display_character, 1, 1, NULL, 259 (char)form_feed); 260 else 261 rtas_call(display_character, 1, 1, NULL, '\r'); 262 } 263 264 if (row_width) 265 width = row_width[current_line]; 266 else 267 width = display_width; 268 os = s; 269 while (*os) { 270 if (*os == '\n' || *os == '\r') { 271 /* If newline is the last character, save it 272 * until next call to avoid bumping up the 273 * display output. 274 */ 275 if (*os == '\n' && !os[1]) { 276 pending_newline = 1; 277 current_line++; 278 if (current_line > display_lines-1) 279 current_line = display_lines-1; 280 spin_unlock(&progress_lock); 281 return; 282 } 283 284 /* RTAS wants CR-LF, not just LF */ 285 286 if (*os == '\n') { 287 rtas_call(display_character, 1, 1, NULL, '\r'); 288 rtas_call(display_character, 1, 1, NULL, '\n'); 289 } else { 290 /* CR might be used to re-draw a line, so we'll 291 * leave it alone and not add LF. 292 */ 293 rtas_call(display_character, 1, 1, NULL, *os); 294 } 295 296 if (row_width) 297 width = row_width[current_line]; 298 else 299 width = display_width; 300 } else { 301 width--; 302 rtas_call(display_character, 1, 1, NULL, *os); 303 } 304 305 os++; 306 307 /* if we overwrite the screen length */ 308 if (width <= 0) 309 while ((*os != 0) && (*os != '\n') && (*os != '\r')) 310 os++; 311 } 312 313 spin_unlock(&progress_lock); 314 } 315 EXPORT_SYMBOL(rtas_progress); /* needed by rtas_flash module */ 316 317 int rtas_token(const char *service) 318 { 319 const __be32 *tokp; 320 if (rtas.dev == NULL) 321 return RTAS_UNKNOWN_SERVICE; 322 tokp = of_get_property(rtas.dev, service, NULL); 323 return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE; 324 } 325 EXPORT_SYMBOL(rtas_token); 326 327 int rtas_service_present(const char *service) 328 { 329 return rtas_token(service) != RTAS_UNKNOWN_SERVICE; 330 } 331 EXPORT_SYMBOL(rtas_service_present); 332 333 #ifdef CONFIG_RTAS_ERROR_LOGGING 334 /* 335 * Return the firmware-specified size of the error log buffer 336 * for all rtas calls that require an error buffer argument. 337 * This includes 'check-exception' and 'rtas-last-error'. 338 */ 339 int rtas_get_error_log_max(void) 340 { 341 static int rtas_error_log_max; 342 if (rtas_error_log_max) 343 return rtas_error_log_max; 344 345 rtas_error_log_max = rtas_token ("rtas-error-log-max"); 346 if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) || 347 (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) { 348 printk (KERN_WARNING "RTAS: bad log buffer size %d\n", 349 rtas_error_log_max); 350 rtas_error_log_max = RTAS_ERROR_LOG_MAX; 351 } 352 return rtas_error_log_max; 353 } 354 EXPORT_SYMBOL(rtas_get_error_log_max); 355 356 357 static char rtas_err_buf[RTAS_ERROR_LOG_MAX]; 358 static int rtas_last_error_token; 359 360 /** Return a copy of the detailed error text associated with the 361 * most recent failed call to rtas. Because the error text 362 * might go stale if there are any other intervening rtas calls, 363 * this routine must be called atomically with whatever produced 364 * the error (i.e. with rtas.lock still held from the previous call). 365 */ 366 static char *__fetch_rtas_last_error(char *altbuf) 367 { 368 struct rtas_args err_args, save_args; 369 u32 bufsz; 370 char *buf = NULL; 371 372 if (rtas_last_error_token == -1) 373 return NULL; 374 375 bufsz = rtas_get_error_log_max(); 376 377 err_args.token = cpu_to_be32(rtas_last_error_token); 378 err_args.nargs = cpu_to_be32(2); 379 err_args.nret = cpu_to_be32(1); 380 err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf)); 381 err_args.args[1] = cpu_to_be32(bufsz); 382 err_args.args[2] = 0; 383 384 save_args = rtas.args; 385 rtas.args = err_args; 386 387 enter_rtas(__pa(&rtas.args)); 388 389 err_args = rtas.args; 390 rtas.args = save_args; 391 392 /* Log the error in the unlikely case that there was one. */ 393 if (unlikely(err_args.args[2] == 0)) { 394 if (altbuf) { 395 buf = altbuf; 396 } else { 397 buf = rtas_err_buf; 398 if (slab_is_available()) 399 buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); 400 } 401 if (buf) 402 memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX); 403 } 404 405 return buf; 406 } 407 408 #define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL) 409 410 #else /* CONFIG_RTAS_ERROR_LOGGING */ 411 #define __fetch_rtas_last_error(x) NULL 412 #define get_errorlog_buffer() NULL 413 #endif 414 415 416 static void 417 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, 418 va_list list) 419 { 420 int i; 421 422 args->token = cpu_to_be32(token); 423 args->nargs = cpu_to_be32(nargs); 424 args->nret = cpu_to_be32(nret); 425 args->rets = &(args->args[nargs]); 426 427 for (i = 0; i < nargs; ++i) 428 args->args[i] = cpu_to_be32(va_arg(list, __u32)); 429 430 for (i = 0; i < nret; ++i) 431 args->rets[i] = 0; 432 433 enter_rtas(__pa(args)); 434 } 435 436 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...) 437 { 438 va_list list; 439 440 va_start(list, nret); 441 va_rtas_call_unlocked(args, token, nargs, nret, list); 442 va_end(list); 443 } 444 445 int rtas_call(int token, int nargs, int nret, int *outputs, ...) 446 { 447 va_list list; 448 int i; 449 unsigned long s; 450 struct rtas_args *rtas_args; 451 char *buff_copy = NULL; 452 int ret; 453 454 if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE) 455 return -1; 456 457 s = lock_rtas(); 458 459 /* We use the global rtas args buffer */ 460 rtas_args = &rtas.args; 461 462 va_start(list, outputs); 463 va_rtas_call_unlocked(rtas_args, token, nargs, nret, list); 464 va_end(list); 465 466 /* A -1 return code indicates that the last command couldn't 467 be completed due to a hardware error. */ 468 if (be32_to_cpu(rtas_args->rets[0]) == -1) 469 buff_copy = __fetch_rtas_last_error(NULL); 470 471 if (nret > 1 && outputs != NULL) 472 for (i = 0; i < nret-1; ++i) 473 outputs[i] = be32_to_cpu(rtas_args->rets[i+1]); 474 ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0; 475 476 unlock_rtas(s); 477 478 if (buff_copy) { 479 log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); 480 if (slab_is_available()) 481 kfree(buff_copy); 482 } 483 return ret; 484 } 485 EXPORT_SYMBOL(rtas_call); 486 487 /* For RTAS_BUSY (-2), delay for 1 millisecond. For an extended busy status 488 * code of 990n, perform the hinted delay of 10^n (last digit) milliseconds. 489 */ 490 unsigned int rtas_busy_delay_time(int status) 491 { 492 int order; 493 unsigned int ms = 0; 494 495 if (status == RTAS_BUSY) { 496 ms = 1; 497 } else if (status >= RTAS_EXTENDED_DELAY_MIN && 498 status <= RTAS_EXTENDED_DELAY_MAX) { 499 order = status - RTAS_EXTENDED_DELAY_MIN; 500 for (ms = 1; order > 0; order--) 501 ms *= 10; 502 } 503 504 return ms; 505 } 506 EXPORT_SYMBOL(rtas_busy_delay_time); 507 508 /* For an RTAS busy status code, perform the hinted delay. */ 509 unsigned int rtas_busy_delay(int status) 510 { 511 unsigned int ms; 512 513 might_sleep(); 514 ms = rtas_busy_delay_time(status); 515 if (ms && need_resched()) 516 msleep(ms); 517 518 return ms; 519 } 520 EXPORT_SYMBOL(rtas_busy_delay); 521 522 static int rtas_error_rc(int rtas_rc) 523 { 524 int rc; 525 526 switch (rtas_rc) { 527 case -1: /* Hardware Error */ 528 rc = -EIO; 529 break; 530 case -3: /* Bad indicator/domain/etc */ 531 rc = -EINVAL; 532 break; 533 case -9000: /* Isolation error */ 534 rc = -EFAULT; 535 break; 536 case -9001: /* Outstanding TCE/PTE */ 537 rc = -EEXIST; 538 break; 539 case -9002: /* No usable slot */ 540 rc = -ENODEV; 541 break; 542 default: 543 printk(KERN_ERR "%s: unexpected RTAS error %d\n", 544 __func__, rtas_rc); 545 rc = -ERANGE; 546 break; 547 } 548 return rc; 549 } 550 551 int rtas_get_power_level(int powerdomain, int *level) 552 { 553 int token = rtas_token("get-power-level"); 554 int rc; 555 556 if (token == RTAS_UNKNOWN_SERVICE) 557 return -ENOENT; 558 559 while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) 560 udelay(1); 561 562 if (rc < 0) 563 return rtas_error_rc(rc); 564 return rc; 565 } 566 EXPORT_SYMBOL(rtas_get_power_level); 567 568 int rtas_set_power_level(int powerdomain, int level, int *setlevel) 569 { 570 int token = rtas_token("set-power-level"); 571 int rc; 572 573 if (token == RTAS_UNKNOWN_SERVICE) 574 return -ENOENT; 575 576 do { 577 rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); 578 } while (rtas_busy_delay(rc)); 579 580 if (rc < 0) 581 return rtas_error_rc(rc); 582 return rc; 583 } 584 EXPORT_SYMBOL(rtas_set_power_level); 585 586 int rtas_get_sensor(int sensor, int index, int *state) 587 { 588 int token = rtas_token("get-sensor-state"); 589 int rc; 590 591 if (token == RTAS_UNKNOWN_SERVICE) 592 return -ENOENT; 593 594 do { 595 rc = rtas_call(token, 2, 2, state, sensor, index); 596 } while (rtas_busy_delay(rc)); 597 598 if (rc < 0) 599 return rtas_error_rc(rc); 600 return rc; 601 } 602 EXPORT_SYMBOL(rtas_get_sensor); 603 604 int rtas_get_sensor_fast(int sensor, int index, int *state) 605 { 606 int token = rtas_token("get-sensor-state"); 607 int rc; 608 609 if (token == RTAS_UNKNOWN_SERVICE) 610 return -ENOENT; 611 612 rc = rtas_call(token, 2, 2, state, sensor, index); 613 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && 614 rc <= RTAS_EXTENDED_DELAY_MAX)); 615 616 if (rc < 0) 617 return rtas_error_rc(rc); 618 return rc; 619 } 620 621 bool rtas_indicator_present(int token, int *maxindex) 622 { 623 int proplen, count, i; 624 const struct indicator_elem { 625 __be32 token; 626 __be32 maxindex; 627 } *indicators; 628 629 indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen); 630 if (!indicators) 631 return false; 632 633 count = proplen / sizeof(struct indicator_elem); 634 635 for (i = 0; i < count; i++) { 636 if (__be32_to_cpu(indicators[i].token) != token) 637 continue; 638 if (maxindex) 639 *maxindex = __be32_to_cpu(indicators[i].maxindex); 640 return true; 641 } 642 643 return false; 644 } 645 EXPORT_SYMBOL(rtas_indicator_present); 646 647 int rtas_set_indicator(int indicator, int index, int new_value) 648 { 649 int token = rtas_token("set-indicator"); 650 int rc; 651 652 if (token == RTAS_UNKNOWN_SERVICE) 653 return -ENOENT; 654 655 do { 656 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); 657 } while (rtas_busy_delay(rc)); 658 659 if (rc < 0) 660 return rtas_error_rc(rc); 661 return rc; 662 } 663 EXPORT_SYMBOL(rtas_set_indicator); 664 665 /* 666 * Ignoring RTAS extended delay 667 */ 668 int rtas_set_indicator_fast(int indicator, int index, int new_value) 669 { 670 int rc; 671 int token = rtas_token("set-indicator"); 672 673 if (token == RTAS_UNKNOWN_SERVICE) 674 return -ENOENT; 675 676 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); 677 678 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && 679 rc <= RTAS_EXTENDED_DELAY_MAX)); 680 681 if (rc < 0) 682 return rtas_error_rc(rc); 683 684 return rc; 685 } 686 687 void __noreturn rtas_restart(char *cmd) 688 { 689 if (rtas_flash_term_hook) 690 rtas_flash_term_hook(SYS_RESTART); 691 printk("RTAS system-reboot returned %d\n", 692 rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); 693 for (;;); 694 } 695 696 void rtas_power_off(void) 697 { 698 if (rtas_flash_term_hook) 699 rtas_flash_term_hook(SYS_POWER_OFF); 700 /* allow power on only with power button press */ 701 printk("RTAS power-off returned %d\n", 702 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); 703 for (;;); 704 } 705 706 void __noreturn rtas_halt(void) 707 { 708 if (rtas_flash_term_hook) 709 rtas_flash_term_hook(SYS_HALT); 710 /* allow power on only with power button press */ 711 printk("RTAS power-off returned %d\n", 712 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); 713 for (;;); 714 } 715 716 /* Must be in the RMO region, so we place it here */ 717 static char rtas_os_term_buf[2048]; 718 719 void rtas_os_term(char *str) 720 { 721 int status; 722 723 /* 724 * Firmware with the ibm,extended-os-term property is guaranteed 725 * to always return from an ibm,os-term call. Earlier versions without 726 * this property may terminate the partition which we want to avoid 727 * since it interferes with panic_timeout. 728 */ 729 if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term") || 730 RTAS_UNKNOWN_SERVICE == rtas_token("ibm,extended-os-term")) 731 return; 732 733 snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); 734 735 do { 736 status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL, 737 __pa(rtas_os_term_buf)); 738 } while (rtas_busy_delay(status)); 739 740 if (status != 0) 741 printk(KERN_EMERG "ibm,os-term call failed %d\n", status); 742 } 743 744 static int ibm_suspend_me_token = RTAS_UNKNOWN_SERVICE; 745 #ifdef CONFIG_PPC_PSERIES 746 static int __rtas_suspend_last_cpu(struct rtas_suspend_me_data *data, int wake_when_done) 747 { 748 u16 slb_size = mmu_slb_size; 749 int rc = H_MULTI_THREADS_ACTIVE; 750 int cpu; 751 752 slb_set_size(SLB_MIN_SIZE); 753 printk(KERN_DEBUG "calling ibm,suspend-me on cpu %i\n", smp_processor_id()); 754 755 while (rc == H_MULTI_THREADS_ACTIVE && !atomic_read(&data->done) && 756 !atomic_read(&data->error)) 757 rc = rtas_call(data->token, 0, 1, NULL); 758 759 if (rc || atomic_read(&data->error)) { 760 printk(KERN_DEBUG "ibm,suspend-me returned %d\n", rc); 761 slb_set_size(slb_size); 762 } 763 764 if (atomic_read(&data->error)) 765 rc = atomic_read(&data->error); 766 767 atomic_set(&data->error, rc); 768 pSeries_coalesce_init(); 769 770 if (wake_when_done) { 771 atomic_set(&data->done, 1); 772 773 for_each_online_cpu(cpu) 774 plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); 775 } 776 777 if (atomic_dec_return(&data->working) == 0) 778 complete(data->complete); 779 780 return rc; 781 } 782 783 int rtas_suspend_last_cpu(struct rtas_suspend_me_data *data) 784 { 785 atomic_inc(&data->working); 786 return __rtas_suspend_last_cpu(data, 0); 787 } 788 789 static int __rtas_suspend_cpu(struct rtas_suspend_me_data *data, int wake_when_done) 790 { 791 long rc = H_SUCCESS; 792 unsigned long msr_save; 793 int cpu; 794 795 atomic_inc(&data->working); 796 797 /* really need to ensure MSR.EE is off for H_JOIN */ 798 msr_save = mfmsr(); 799 mtmsr(msr_save & ~(MSR_EE)); 800 801 while (rc == H_SUCCESS && !atomic_read(&data->done) && !atomic_read(&data->error)) 802 rc = plpar_hcall_norets(H_JOIN); 803 804 mtmsr(msr_save); 805 806 if (rc == H_SUCCESS) { 807 /* This cpu was prodded and the suspend is complete. */ 808 goto out; 809 } else if (rc == H_CONTINUE) { 810 /* All other cpus are in H_JOIN, this cpu does 811 * the suspend. 812 */ 813 return __rtas_suspend_last_cpu(data, wake_when_done); 814 } else { 815 printk(KERN_ERR "H_JOIN on cpu %i failed with rc = %ld\n", 816 smp_processor_id(), rc); 817 atomic_set(&data->error, rc); 818 } 819 820 if (wake_when_done) { 821 atomic_set(&data->done, 1); 822 823 /* This cpu did the suspend or got an error; in either case, 824 * we need to prod all other other cpus out of join state. 825 * Extra prods are harmless. 826 */ 827 for_each_online_cpu(cpu) 828 plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); 829 } 830 out: 831 if (atomic_dec_return(&data->working) == 0) 832 complete(data->complete); 833 return rc; 834 } 835 836 int rtas_suspend_cpu(struct rtas_suspend_me_data *data) 837 { 838 return __rtas_suspend_cpu(data, 0); 839 } 840 841 static void rtas_percpu_suspend_me(void *info) 842 { 843 __rtas_suspend_cpu((struct rtas_suspend_me_data *)info, 1); 844 } 845 846 enum rtas_cpu_state { 847 DOWN, 848 UP, 849 }; 850 851 #ifndef CONFIG_SMP 852 static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, 853 cpumask_var_t cpus) 854 { 855 if (!cpumask_empty(cpus)) { 856 cpumask_clear(cpus); 857 return -EINVAL; 858 } else 859 return 0; 860 } 861 #else 862 /* On return cpumask will be altered to indicate CPUs changed. 863 * CPUs with states changed will be set in the mask, 864 * CPUs with status unchanged will be unset in the mask. */ 865 static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, 866 cpumask_var_t cpus) 867 { 868 int cpu; 869 int cpuret = 0; 870 int ret = 0; 871 872 if (cpumask_empty(cpus)) 873 return 0; 874 875 for_each_cpu(cpu, cpus) { 876 struct device *dev = get_cpu_device(cpu); 877 878 switch (state) { 879 case DOWN: 880 cpuret = device_offline(dev); 881 break; 882 case UP: 883 cpuret = device_online(dev); 884 break; 885 } 886 if (cpuret < 0) { 887 pr_debug("%s: cpu_%s for cpu#%d returned %d.\n", 888 __func__, 889 ((state == UP) ? "up" : "down"), 890 cpu, cpuret); 891 if (!ret) 892 ret = cpuret; 893 if (state == UP) { 894 /* clear bits for unchanged cpus, return */ 895 cpumask_shift_right(cpus, cpus, cpu); 896 cpumask_shift_left(cpus, cpus, cpu); 897 break; 898 } else { 899 /* clear bit for unchanged cpu, continue */ 900 cpumask_clear_cpu(cpu, cpus); 901 } 902 } 903 cond_resched(); 904 } 905 906 return ret; 907 } 908 #endif 909 910 int rtas_online_cpus_mask(cpumask_var_t cpus) 911 { 912 int ret; 913 914 ret = rtas_cpu_state_change_mask(UP, cpus); 915 916 if (ret) { 917 cpumask_var_t tmp_mask; 918 919 if (!alloc_cpumask_var(&tmp_mask, GFP_KERNEL)) 920 return ret; 921 922 /* Use tmp_mask to preserve cpus mask from first failure */ 923 cpumask_copy(tmp_mask, cpus); 924 rtas_offline_cpus_mask(tmp_mask); 925 free_cpumask_var(tmp_mask); 926 } 927 928 return ret; 929 } 930 931 int rtas_offline_cpus_mask(cpumask_var_t cpus) 932 { 933 return rtas_cpu_state_change_mask(DOWN, cpus); 934 } 935 936 int rtas_ibm_suspend_me(u64 handle) 937 { 938 long state; 939 long rc; 940 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 941 struct rtas_suspend_me_data data; 942 DECLARE_COMPLETION_ONSTACK(done); 943 cpumask_var_t offline_mask; 944 int cpuret; 945 946 if (!rtas_service_present("ibm,suspend-me")) 947 return -ENOSYS; 948 949 /* Make sure the state is valid */ 950 rc = plpar_hcall(H_VASI_STATE, retbuf, handle); 951 952 state = retbuf[0]; 953 954 if (rc) { 955 printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc); 956 return rc; 957 } else if (state == H_VASI_ENABLED) { 958 return -EAGAIN; 959 } else if (state != H_VASI_SUSPENDING) { 960 printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n", 961 state); 962 return -EIO; 963 } 964 965 if (!alloc_cpumask_var(&offline_mask, GFP_KERNEL)) 966 return -ENOMEM; 967 968 atomic_set(&data.working, 0); 969 atomic_set(&data.done, 0); 970 atomic_set(&data.error, 0); 971 data.token = rtas_token("ibm,suspend-me"); 972 data.complete = &done; 973 974 lock_device_hotplug(); 975 976 /* All present CPUs must be online */ 977 cpumask_andnot(offline_mask, cpu_present_mask, cpu_online_mask); 978 cpuret = rtas_online_cpus_mask(offline_mask); 979 if (cpuret) { 980 pr_err("%s: Could not bring present CPUs online.\n", __func__); 981 atomic_set(&data.error, cpuret); 982 goto out; 983 } 984 985 cpu_hotplug_disable(); 986 987 /* Check if we raced with a CPU-Offline Operation */ 988 if (!cpumask_equal(cpu_present_mask, cpu_online_mask)) { 989 pr_info("%s: Raced against a concurrent CPU-Offline\n", __func__); 990 atomic_set(&data.error, -EAGAIN); 991 goto out_hotplug_enable; 992 } 993 994 /* Call function on all CPUs. One of us will make the 995 * rtas call 996 */ 997 on_each_cpu(rtas_percpu_suspend_me, &data, 0); 998 999 wait_for_completion(&done); 1000 1001 if (atomic_read(&data.error) != 0) 1002 printk(KERN_ERR "Error doing global join\n"); 1003 1004 out_hotplug_enable: 1005 cpu_hotplug_enable(); 1006 1007 /* Take down CPUs not online prior to suspend */ 1008 cpuret = rtas_offline_cpus_mask(offline_mask); 1009 if (cpuret) 1010 pr_warn("%s: Could not restore CPUs to offline state.\n", 1011 __func__); 1012 1013 out: 1014 unlock_device_hotplug(); 1015 free_cpumask_var(offline_mask); 1016 return atomic_read(&data.error); 1017 } 1018 1019 /** 1020 * rtas_call_reentrant() - Used for reentrant rtas calls 1021 * @token: Token for desired reentrant RTAS call 1022 * @nargs: Number of Input Parameters 1023 * @nret: Number of Output Parameters 1024 * @outputs: Array of outputs 1025 * @...: Inputs for desired RTAS call 1026 * 1027 * According to LoPAR documentation, only "ibm,int-on", "ibm,int-off", 1028 * "ibm,get-xive" and "ibm,set-xive" are currently reentrant. 1029 * Reentrant calls need their own rtas_args buffer, so not using rtas.args, but 1030 * PACA one instead. 1031 * 1032 * Return: -1 on error, 1033 * First output value of RTAS call if (nret > 0), 1034 * 0 otherwise, 1035 */ 1036 int rtas_call_reentrant(int token, int nargs, int nret, int *outputs, ...) 1037 { 1038 va_list list; 1039 struct rtas_args *args; 1040 unsigned long flags; 1041 int i, ret = 0; 1042 1043 if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE) 1044 return -1; 1045 1046 local_irq_save(flags); 1047 preempt_disable(); 1048 1049 /* We use the per-cpu (PACA) rtas args buffer */ 1050 args = local_paca->rtas_args_reentrant; 1051 1052 va_start(list, outputs); 1053 va_rtas_call_unlocked(args, token, nargs, nret, list); 1054 va_end(list); 1055 1056 if (nret > 1 && outputs) 1057 for (i = 0; i < nret - 1; ++i) 1058 outputs[i] = be32_to_cpu(args->rets[i + 1]); 1059 1060 if (nret > 0) 1061 ret = be32_to_cpu(args->rets[0]); 1062 1063 local_irq_restore(flags); 1064 preempt_enable(); 1065 1066 return ret; 1067 } 1068 1069 #else /* CONFIG_PPC_PSERIES */ 1070 int rtas_ibm_suspend_me(u64 handle) 1071 { 1072 return -ENOSYS; 1073 } 1074 #endif 1075 1076 /** 1077 * Find a specific pseries error log in an RTAS extended event log. 1078 * @log: RTAS error/event log 1079 * @section_id: two character section identifier 1080 * 1081 * Returns a pointer to the specified errorlog or NULL if not found. 1082 */ 1083 struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log, 1084 uint16_t section_id) 1085 { 1086 struct rtas_ext_event_log_v6 *ext_log = 1087 (struct rtas_ext_event_log_v6 *)log->buffer; 1088 struct pseries_errorlog *sect; 1089 unsigned char *p, *log_end; 1090 uint32_t ext_log_length = rtas_error_extended_log_length(log); 1091 uint8_t log_format = rtas_ext_event_log_format(ext_log); 1092 uint32_t company_id = rtas_ext_event_company_id(ext_log); 1093 1094 /* Check that we understand the format */ 1095 if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) || 1096 log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG || 1097 company_id != RTAS_V6EXT_COMPANY_ID_IBM) 1098 return NULL; 1099 1100 log_end = log->buffer + ext_log_length; 1101 p = ext_log->vendor_log; 1102 1103 while (p < log_end) { 1104 sect = (struct pseries_errorlog *)p; 1105 if (pseries_errorlog_id(sect) == section_id) 1106 return sect; 1107 p += pseries_errorlog_length(sect); 1108 } 1109 1110 return NULL; 1111 } 1112 1113 /* We assume to be passed big endian arguments */ 1114 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs) 1115 { 1116 struct rtas_args args; 1117 unsigned long flags; 1118 char *buff_copy, *errbuf = NULL; 1119 int nargs, nret, token; 1120 1121 if (!capable(CAP_SYS_ADMIN)) 1122 return -EPERM; 1123 1124 if (!rtas.entry) 1125 return -EINVAL; 1126 1127 if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) 1128 return -EFAULT; 1129 1130 nargs = be32_to_cpu(args.nargs); 1131 nret = be32_to_cpu(args.nret); 1132 token = be32_to_cpu(args.token); 1133 1134 if (nargs >= ARRAY_SIZE(args.args) 1135 || nret > ARRAY_SIZE(args.args) 1136 || nargs + nret > ARRAY_SIZE(args.args)) 1137 return -EINVAL; 1138 1139 /* Copy in args. */ 1140 if (copy_from_user(args.args, uargs->args, 1141 nargs * sizeof(rtas_arg_t)) != 0) 1142 return -EFAULT; 1143 1144 if (token == RTAS_UNKNOWN_SERVICE) 1145 return -EINVAL; 1146 1147 args.rets = &args.args[nargs]; 1148 memset(args.rets, 0, nret * sizeof(rtas_arg_t)); 1149 1150 /* Need to handle ibm,suspend_me call specially */ 1151 if (token == ibm_suspend_me_token) { 1152 1153 /* 1154 * rtas_ibm_suspend_me assumes the streamid handle is in cpu 1155 * endian, or at least the hcall within it requires it. 1156 */ 1157 int rc = 0; 1158 u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32) 1159 | be32_to_cpu(args.args[1]); 1160 rc = rtas_ibm_suspend_me(handle); 1161 if (rc == -EAGAIN) 1162 args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE); 1163 else if (rc == -EIO) 1164 args.rets[0] = cpu_to_be32(-1); 1165 else if (rc) 1166 return rc; 1167 goto copy_return; 1168 } 1169 1170 buff_copy = get_errorlog_buffer(); 1171 1172 flags = lock_rtas(); 1173 1174 rtas.args = args; 1175 enter_rtas(__pa(&rtas.args)); 1176 args = rtas.args; 1177 1178 /* A -1 return code indicates that the last command couldn't 1179 be completed due to a hardware error. */ 1180 if (be32_to_cpu(args.rets[0]) == -1) 1181 errbuf = __fetch_rtas_last_error(buff_copy); 1182 1183 unlock_rtas(flags); 1184 1185 if (buff_copy) { 1186 if (errbuf) 1187 log_error(errbuf, ERR_TYPE_RTAS_LOG, 0); 1188 kfree(buff_copy); 1189 } 1190 1191 copy_return: 1192 /* Copy out args. */ 1193 if (copy_to_user(uargs->args + nargs, 1194 args.args + nargs, 1195 nret * sizeof(rtas_arg_t)) != 0) 1196 return -EFAULT; 1197 1198 return 0; 1199 } 1200 1201 /* 1202 * Call early during boot, before mem init, to retrieve the RTAS 1203 * information from the device-tree and allocate the RMO buffer for userland 1204 * accesses. 1205 */ 1206 void __init rtas_initialize(void) 1207 { 1208 unsigned long rtas_region = RTAS_INSTANTIATE_MAX; 1209 u32 base, size, entry; 1210 int no_base, no_size, no_entry; 1211 1212 /* Get RTAS dev node and fill up our "rtas" structure with infos 1213 * about it. 1214 */ 1215 rtas.dev = of_find_node_by_name(NULL, "rtas"); 1216 if (!rtas.dev) 1217 return; 1218 1219 no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base); 1220 no_size = of_property_read_u32(rtas.dev, "rtas-size", &size); 1221 if (no_base || no_size) { 1222 of_node_put(rtas.dev); 1223 rtas.dev = NULL; 1224 return; 1225 } 1226 1227 rtas.base = base; 1228 rtas.size = size; 1229 no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry); 1230 rtas.entry = no_entry ? rtas.base : entry; 1231 1232 /* If RTAS was found, allocate the RMO buffer for it and look for 1233 * the stop-self token if any 1234 */ 1235 #ifdef CONFIG_PPC64 1236 if (firmware_has_feature(FW_FEATURE_LPAR)) { 1237 rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX); 1238 ibm_suspend_me_token = rtas_token("ibm,suspend-me"); 1239 } 1240 #endif 1241 rtas_rmo_buf = memblock_phys_alloc_range(RTAS_RMOBUF_MAX, PAGE_SIZE, 1242 0, rtas_region); 1243 if (!rtas_rmo_buf) 1244 panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n", 1245 PAGE_SIZE, &rtas_region); 1246 1247 #ifdef CONFIG_RTAS_ERROR_LOGGING 1248 rtas_last_error_token = rtas_token("rtas-last-error"); 1249 #endif 1250 } 1251 1252 int __init early_init_dt_scan_rtas(unsigned long node, 1253 const char *uname, int depth, void *data) 1254 { 1255 const u32 *basep, *entryp, *sizep; 1256 1257 if (depth != 1 || strcmp(uname, "rtas") != 0) 1258 return 0; 1259 1260 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL); 1261 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL); 1262 sizep = of_get_flat_dt_prop(node, "rtas-size", NULL); 1263 1264 if (basep && entryp && sizep) { 1265 rtas.base = *basep; 1266 rtas.entry = *entryp; 1267 rtas.size = *sizep; 1268 } 1269 1270 #ifdef CONFIG_UDBG_RTAS_CONSOLE 1271 basep = of_get_flat_dt_prop(node, "put-term-char", NULL); 1272 if (basep) 1273 rtas_putchar_token = *basep; 1274 1275 basep = of_get_flat_dt_prop(node, "get-term-char", NULL); 1276 if (basep) 1277 rtas_getchar_token = *basep; 1278 1279 if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE && 1280 rtas_getchar_token != RTAS_UNKNOWN_SERVICE) 1281 udbg_init_rtas_console(); 1282 1283 #endif 1284 1285 /* break now */ 1286 return 1; 1287 } 1288 1289 static arch_spinlock_t timebase_lock; 1290 static u64 timebase = 0; 1291 1292 void rtas_give_timebase(void) 1293 { 1294 unsigned long flags; 1295 1296 local_irq_save(flags); 1297 hard_irq_disable(); 1298 arch_spin_lock(&timebase_lock); 1299 rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL); 1300 timebase = get_tb(); 1301 arch_spin_unlock(&timebase_lock); 1302 1303 while (timebase) 1304 barrier(); 1305 rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL); 1306 local_irq_restore(flags); 1307 } 1308 1309 void rtas_take_timebase(void) 1310 { 1311 while (!timebase) 1312 barrier(); 1313 arch_spin_lock(&timebase_lock); 1314 set_tb(timebase >> 32, timebase & 0xffffffff); 1315 timebase = 0; 1316 arch_spin_unlock(&timebase_lock); 1317 } 1318