1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2000 Tilmann Bitterberg 4 * (tilmann@bitterberg.de) 5 * 6 * RTAS (Runtime Abstraction Services) stuff 7 * Intention is to provide a clean user interface 8 * to use the RTAS. 9 * 10 * TODO: 11 * Split off a header file and maybe move it to a different 12 * location. Write Documentation on what the /proc/rtas/ entries 13 * actually do. 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/sched.h> 18 #include <linux/proc_fs.h> 19 #include <linux/stat.h> 20 #include <linux/ctype.h> 21 #include <linux/time.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/seq_file.h> 25 #include <linux/bitops.h> 26 #include <linux/rtc.h> 27 28 #include <linux/uaccess.h> 29 #include <asm/processor.h> 30 #include <asm/io.h> 31 #include <asm/prom.h> 32 #include <asm/rtas.h> 33 #include <asm/machdep.h> /* for ppc_md */ 34 #include <asm/time.h> 35 36 /* Token for Sensors */ 37 #define KEY_SWITCH 0x0001 38 #define ENCLOSURE_SWITCH 0x0002 39 #define THERMAL_SENSOR 0x0003 40 #define LID_STATUS 0x0004 41 #define POWER_SOURCE 0x0005 42 #define BATTERY_VOLTAGE 0x0006 43 #define BATTERY_REMAINING 0x0007 44 #define BATTERY_PERCENTAGE 0x0008 45 #define EPOW_SENSOR 0x0009 46 #define BATTERY_CYCLESTATE 0x000a 47 #define BATTERY_CHARGING 0x000b 48 49 /* IBM specific sensors */ 50 #define IBM_SURVEILLANCE 0x2328 /* 9000 */ 51 #define IBM_FANRPM 0x2329 /* 9001 */ 52 #define IBM_VOLTAGE 0x232a /* 9002 */ 53 #define IBM_DRCONNECTOR 0x232b /* 9003 */ 54 #define IBM_POWERSUPPLY 0x232c /* 9004 */ 55 56 /* Status return values */ 57 #define SENSOR_CRITICAL_HIGH 13 58 #define SENSOR_WARNING_HIGH 12 59 #define SENSOR_NORMAL 11 60 #define SENSOR_WARNING_LOW 10 61 #define SENSOR_CRITICAL_LOW 9 62 #define SENSOR_SUCCESS 0 63 #define SENSOR_HW_ERROR -1 64 #define SENSOR_BUSY -2 65 #define SENSOR_NOT_EXIST -3 66 #define SENSOR_DR_ENTITY -9000 67 68 /* Location Codes */ 69 #define LOC_SCSI_DEV_ADDR 'A' 70 #define LOC_SCSI_DEV_LOC 'B' 71 #define LOC_CPU 'C' 72 #define LOC_DISKETTE 'D' 73 #define LOC_ETHERNET 'E' 74 #define LOC_FAN 'F' 75 #define LOC_GRAPHICS 'G' 76 /* reserved / not used 'H' */ 77 #define LOC_IO_ADAPTER 'I' 78 /* reserved / not used 'J' */ 79 #define LOC_KEYBOARD 'K' 80 #define LOC_LCD 'L' 81 #define LOC_MEMORY 'M' 82 #define LOC_NV_MEMORY 'N' 83 #define LOC_MOUSE 'O' 84 #define LOC_PLANAR 'P' 85 #define LOC_OTHER_IO 'Q' 86 #define LOC_PARALLEL 'R' 87 #define LOC_SERIAL 'S' 88 #define LOC_DEAD_RING 'T' 89 #define LOC_RACKMOUNTED 'U' /* for _u_nit is rack mounted */ 90 #define LOC_VOLTAGE 'V' 91 #define LOC_SWITCH_ADAPTER 'W' 92 #define LOC_OTHER 'X' 93 #define LOC_FIRMWARE 'Y' 94 #define LOC_SCSI 'Z' 95 96 /* Tokens for indicators */ 97 #define TONE_FREQUENCY 0x0001 /* 0 - 1000 (HZ)*/ 98 #define TONE_VOLUME 0x0002 /* 0 - 100 (%) */ 99 #define SYSTEM_POWER_STATE 0x0003 100 #define WARNING_LIGHT 0x0004 101 #define DISK_ACTIVITY_LIGHT 0x0005 102 #define HEX_DISPLAY_UNIT 0x0006 103 #define BATTERY_WARNING_TIME 0x0007 104 #define CONDITION_CYCLE_REQUEST 0x0008 105 #define SURVEILLANCE_INDICATOR 0x2328 /* 9000 */ 106 #define DR_ACTION 0x2329 /* 9001 */ 107 #define DR_INDICATOR 0x232a /* 9002 */ 108 /* 9003 - 9004: Vendor specific */ 109 /* 9006 - 9999: Vendor specific */ 110 111 /* other */ 112 #define MAX_SENSORS 17 /* I only know of 17 sensors */ 113 #define MAX_LINELENGTH 256 114 #define SENSOR_PREFIX "ibm,sensor-" 115 #define cel_to_fahr(x) ((x*9/5)+32) 116 117 struct individual_sensor { 118 unsigned int token; 119 unsigned int quant; 120 }; 121 122 struct rtas_sensors { 123 struct individual_sensor sensor[MAX_SENSORS]; 124 unsigned int quant; 125 }; 126 127 /* Globals */ 128 static struct rtas_sensors sensors; 129 static struct device_node *rtas_node = NULL; 130 static unsigned long power_on_time = 0; /* Save the time the user set */ 131 static char progress_led[MAX_LINELENGTH]; 132 133 static unsigned long rtas_tone_frequency = 1000; 134 static unsigned long rtas_tone_volume = 0; 135 136 /* ****************************************************************** */ 137 /* Declarations */ 138 static int ppc_rtas_sensors_show(struct seq_file *m, void *v); 139 static int ppc_rtas_clock_show(struct seq_file *m, void *v); 140 static ssize_t ppc_rtas_clock_write(struct file *file, 141 const char __user *buf, size_t count, loff_t *ppos); 142 static int ppc_rtas_progress_show(struct seq_file *m, void *v); 143 static ssize_t ppc_rtas_progress_write(struct file *file, 144 const char __user *buf, size_t count, loff_t *ppos); 145 static int ppc_rtas_poweron_show(struct seq_file *m, void *v); 146 static ssize_t ppc_rtas_poweron_write(struct file *file, 147 const char __user *buf, size_t count, loff_t *ppos); 148 149 static ssize_t ppc_rtas_tone_freq_write(struct file *file, 150 const char __user *buf, size_t count, loff_t *ppos); 151 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v); 152 static ssize_t ppc_rtas_tone_volume_write(struct file *file, 153 const char __user *buf, size_t count, loff_t *ppos); 154 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v); 155 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v); 156 157 static int poweron_open(struct inode *inode, struct file *file) 158 { 159 return single_open(file, ppc_rtas_poweron_show, NULL); 160 } 161 162 static const struct proc_ops ppc_rtas_poweron_proc_ops = { 163 .proc_open = poweron_open, 164 .proc_read = seq_read, 165 .proc_lseek = seq_lseek, 166 .proc_write = ppc_rtas_poweron_write, 167 .proc_release = single_release, 168 }; 169 170 static int progress_open(struct inode *inode, struct file *file) 171 { 172 return single_open(file, ppc_rtas_progress_show, NULL); 173 } 174 175 static const struct proc_ops ppc_rtas_progress_proc_ops = { 176 .proc_open = progress_open, 177 .proc_read = seq_read, 178 .proc_lseek = seq_lseek, 179 .proc_write = ppc_rtas_progress_write, 180 .proc_release = single_release, 181 }; 182 183 static int clock_open(struct inode *inode, struct file *file) 184 { 185 return single_open(file, ppc_rtas_clock_show, NULL); 186 } 187 188 static const struct proc_ops ppc_rtas_clock_proc_ops = { 189 .proc_open = clock_open, 190 .proc_read = seq_read, 191 .proc_lseek = seq_lseek, 192 .proc_write = ppc_rtas_clock_write, 193 .proc_release = single_release, 194 }; 195 196 static int tone_freq_open(struct inode *inode, struct file *file) 197 { 198 return single_open(file, ppc_rtas_tone_freq_show, NULL); 199 } 200 201 static const struct proc_ops ppc_rtas_tone_freq_proc_ops = { 202 .proc_open = tone_freq_open, 203 .proc_read = seq_read, 204 .proc_lseek = seq_lseek, 205 .proc_write = ppc_rtas_tone_freq_write, 206 .proc_release = single_release, 207 }; 208 209 static int tone_volume_open(struct inode *inode, struct file *file) 210 { 211 return single_open(file, ppc_rtas_tone_volume_show, NULL); 212 } 213 214 static const struct proc_ops ppc_rtas_tone_volume_proc_ops = { 215 .proc_open = tone_volume_open, 216 .proc_read = seq_read, 217 .proc_lseek = seq_lseek, 218 .proc_write = ppc_rtas_tone_volume_write, 219 .proc_release = single_release, 220 }; 221 222 static int ppc_rtas_find_all_sensors(void); 223 static void ppc_rtas_process_sensor(struct seq_file *m, 224 struct individual_sensor *s, int state, int error, const char *loc); 225 static char *ppc_rtas_process_error(int error); 226 static void get_location_code(struct seq_file *m, 227 struct individual_sensor *s, const char *loc); 228 static void check_location_string(struct seq_file *m, const char *c); 229 static void check_location(struct seq_file *m, const char *c); 230 231 static int __init proc_rtas_init(void) 232 { 233 if (!machine_is(pseries)) 234 return -ENODEV; 235 236 rtas_node = of_find_node_by_name(NULL, "rtas"); 237 if (rtas_node == NULL) 238 return -ENODEV; 239 240 proc_create("powerpc/rtas/progress", 0644, NULL, 241 &ppc_rtas_progress_proc_ops); 242 proc_create("powerpc/rtas/clock", 0644, NULL, 243 &ppc_rtas_clock_proc_ops); 244 proc_create("powerpc/rtas/poweron", 0644, NULL, 245 &ppc_rtas_poweron_proc_ops); 246 proc_create_single("powerpc/rtas/sensors", 0444, NULL, 247 ppc_rtas_sensors_show); 248 proc_create("powerpc/rtas/frequency", 0644, NULL, 249 &ppc_rtas_tone_freq_proc_ops); 250 proc_create("powerpc/rtas/volume", 0644, NULL, 251 &ppc_rtas_tone_volume_proc_ops); 252 proc_create_single("powerpc/rtas/rmo_buffer", 0400, NULL, 253 ppc_rtas_rmo_buf_show); 254 return 0; 255 } 256 257 __initcall(proc_rtas_init); 258 259 static int parse_number(const char __user *p, size_t count, u64 *val) 260 { 261 char buf[40]; 262 char *end; 263 264 if (count > 39) 265 return -EINVAL; 266 267 if (copy_from_user(buf, p, count)) 268 return -EFAULT; 269 270 buf[count] = 0; 271 272 *val = simple_strtoull(buf, &end, 10); 273 if (*end && *end != '\n') 274 return -EINVAL; 275 276 return 0; 277 } 278 279 /* ****************************************************************** */ 280 /* POWER-ON-TIME */ 281 /* ****************************************************************** */ 282 static ssize_t ppc_rtas_poweron_write(struct file *file, 283 const char __user *buf, size_t count, loff_t *ppos) 284 { 285 struct rtc_time tm; 286 time64_t nowtime; 287 int error = parse_number(buf, count, &nowtime); 288 if (error) 289 return error; 290 291 power_on_time = nowtime; /* save the time */ 292 293 rtc_time64_to_tm(nowtime, &tm); 294 295 error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 296 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, 297 tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */); 298 if (error) 299 printk(KERN_WARNING "error: setting poweron time returned: %s\n", 300 ppc_rtas_process_error(error)); 301 return count; 302 } 303 /* ****************************************************************** */ 304 static int ppc_rtas_poweron_show(struct seq_file *m, void *v) 305 { 306 if (power_on_time == 0) 307 seq_printf(m, "Power on time not set\n"); 308 else 309 seq_printf(m, "%lu\n",power_on_time); 310 return 0; 311 } 312 313 /* ****************************************************************** */ 314 /* PROGRESS */ 315 /* ****************************************************************** */ 316 static ssize_t ppc_rtas_progress_write(struct file *file, 317 const char __user *buf, size_t count, loff_t *ppos) 318 { 319 unsigned long hex; 320 321 if (count >= MAX_LINELENGTH) 322 count = MAX_LINELENGTH -1; 323 if (copy_from_user(progress_led, buf, count)) { /* save the string */ 324 return -EFAULT; 325 } 326 progress_led[count] = 0; 327 328 /* Lets see if the user passed hexdigits */ 329 hex = simple_strtoul(progress_led, NULL, 10); 330 331 rtas_progress ((char *)progress_led, hex); 332 return count; 333 334 /* clear the line */ 335 /* rtas_progress(" ", 0xffff);*/ 336 } 337 /* ****************************************************************** */ 338 static int ppc_rtas_progress_show(struct seq_file *m, void *v) 339 { 340 if (progress_led[0]) 341 seq_printf(m, "%s\n", progress_led); 342 return 0; 343 } 344 345 /* ****************************************************************** */ 346 /* CLOCK */ 347 /* ****************************************************************** */ 348 static ssize_t ppc_rtas_clock_write(struct file *file, 349 const char __user *buf, size_t count, loff_t *ppos) 350 { 351 struct rtc_time tm; 352 time64_t nowtime; 353 int error = parse_number(buf, count, &nowtime); 354 if (error) 355 return error; 356 357 rtc_time64_to_tm(nowtime, &tm); 358 error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 359 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, 360 tm.tm_hour, tm.tm_min, tm.tm_sec, 0); 361 if (error) 362 printk(KERN_WARNING "error: setting the clock returned: %s\n", 363 ppc_rtas_process_error(error)); 364 return count; 365 } 366 /* ****************************************************************** */ 367 static int ppc_rtas_clock_show(struct seq_file *m, void *v) 368 { 369 int ret[8]; 370 int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret); 371 372 if (error) { 373 printk(KERN_WARNING "error: reading the clock returned: %s\n", 374 ppc_rtas_process_error(error)); 375 seq_printf(m, "0"); 376 } else { 377 unsigned int year, mon, day, hour, min, sec; 378 year = ret[0]; mon = ret[1]; day = ret[2]; 379 hour = ret[3]; min = ret[4]; sec = ret[5]; 380 seq_printf(m, "%lld\n", 381 mktime64(year, mon, day, hour, min, sec)); 382 } 383 return 0; 384 } 385 386 /* ****************************************************************** */ 387 /* SENSOR STUFF */ 388 /* ****************************************************************** */ 389 static int ppc_rtas_sensors_show(struct seq_file *m, void *v) 390 { 391 int i,j; 392 int state, error; 393 int get_sensor_state = rtas_token("get-sensor-state"); 394 395 seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n"); 396 seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n"); 397 seq_printf(m, "********************************************************\n"); 398 399 if (ppc_rtas_find_all_sensors() != 0) { 400 seq_printf(m, "\nNo sensors are available\n"); 401 return 0; 402 } 403 404 for (i=0; i<sensors.quant; i++) { 405 struct individual_sensor *p = &sensors.sensor[i]; 406 char rstr[64]; 407 const char *loc; 408 int llen, offs; 409 410 sprintf (rstr, SENSOR_PREFIX"%04d", p->token); 411 loc = of_get_property(rtas_node, rstr, &llen); 412 413 /* A sensor may have multiple instances */ 414 for (j = 0, offs = 0; j <= p->quant; j++) { 415 error = rtas_call(get_sensor_state, 2, 2, &state, 416 p->token, j); 417 418 ppc_rtas_process_sensor(m, p, state, error, loc); 419 seq_putc(m, '\n'); 420 if (loc) { 421 offs += strlen(loc) + 1; 422 loc += strlen(loc) + 1; 423 if (offs >= llen) 424 loc = NULL; 425 } 426 } 427 } 428 return 0; 429 } 430 431 /* ****************************************************************** */ 432 433 static int ppc_rtas_find_all_sensors(void) 434 { 435 const unsigned int *utmp; 436 int len, i; 437 438 utmp = of_get_property(rtas_node, "rtas-sensors", &len); 439 if (utmp == NULL) { 440 printk (KERN_ERR "error: could not get rtas-sensors\n"); 441 return 1; 442 } 443 444 sensors.quant = len / 8; /* int + int */ 445 446 for (i=0; i<sensors.quant; i++) { 447 sensors.sensor[i].token = *utmp++; 448 sensors.sensor[i].quant = *utmp++; 449 } 450 return 0; 451 } 452 453 /* ****************************************************************** */ 454 /* 455 * Builds a string of what rtas returned 456 */ 457 static char *ppc_rtas_process_error(int error) 458 { 459 switch (error) { 460 case SENSOR_CRITICAL_HIGH: 461 return "(critical high)"; 462 case SENSOR_WARNING_HIGH: 463 return "(warning high)"; 464 case SENSOR_NORMAL: 465 return "(normal)"; 466 case SENSOR_WARNING_LOW: 467 return "(warning low)"; 468 case SENSOR_CRITICAL_LOW: 469 return "(critical low)"; 470 case SENSOR_SUCCESS: 471 return "(read ok)"; 472 case SENSOR_HW_ERROR: 473 return "(hardware error)"; 474 case SENSOR_BUSY: 475 return "(busy)"; 476 case SENSOR_NOT_EXIST: 477 return "(non existent)"; 478 case SENSOR_DR_ENTITY: 479 return "(dr entity removed)"; 480 default: 481 return "(UNKNOWN)"; 482 } 483 } 484 485 /* ****************************************************************** */ 486 /* 487 * Builds a string out of what the sensor said 488 */ 489 490 static void ppc_rtas_process_sensor(struct seq_file *m, 491 struct individual_sensor *s, int state, int error, const char *loc) 492 { 493 /* Defined return vales */ 494 const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t", 495 "Maintenance" }; 496 const char * enclosure_switch[] = { "Closed", "Open" }; 497 const char * lid_status[] = { " ", "Open", "Closed" }; 498 const char * power_source[] = { "AC\t", "Battery", 499 "AC & Battery" }; 500 const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" }; 501 const char * epow_sensor[] = { 502 "EPOW Reset", "Cooling warning", "Power warning", 503 "System shutdown", "System halt", "EPOW main enclosure", 504 "EPOW power off" }; 505 const char * battery_cyclestate[] = { "None", "In progress", 506 "Requested" }; 507 const char * battery_charging[] = { "Charging", "Discharging", 508 "No current flow" }; 509 const char * ibm_drconnector[] = { "Empty", "Present", "Unusable", 510 "Exchange" }; 511 512 int have_strings = 0; 513 int num_states = 0; 514 int temperature = 0; 515 int unknown = 0; 516 517 /* What kind of sensor do we have here? */ 518 519 switch (s->token) { 520 case KEY_SWITCH: 521 seq_printf(m, "Key switch:\t"); 522 num_states = sizeof(key_switch) / sizeof(char *); 523 if (state < num_states) { 524 seq_printf(m, "%s\t", key_switch[state]); 525 have_strings = 1; 526 } 527 break; 528 case ENCLOSURE_SWITCH: 529 seq_printf(m, "Enclosure switch:\t"); 530 num_states = sizeof(enclosure_switch) / sizeof(char *); 531 if (state < num_states) { 532 seq_printf(m, "%s\t", 533 enclosure_switch[state]); 534 have_strings = 1; 535 } 536 break; 537 case THERMAL_SENSOR: 538 seq_printf(m, "Temp. (C/F):\t"); 539 temperature = 1; 540 break; 541 case LID_STATUS: 542 seq_printf(m, "Lid status:\t"); 543 num_states = sizeof(lid_status) / sizeof(char *); 544 if (state < num_states) { 545 seq_printf(m, "%s\t", lid_status[state]); 546 have_strings = 1; 547 } 548 break; 549 case POWER_SOURCE: 550 seq_printf(m, "Power source:\t"); 551 num_states = sizeof(power_source) / sizeof(char *); 552 if (state < num_states) { 553 seq_printf(m, "%s\t", 554 power_source[state]); 555 have_strings = 1; 556 } 557 break; 558 case BATTERY_VOLTAGE: 559 seq_printf(m, "Battery voltage:\t"); 560 break; 561 case BATTERY_REMAINING: 562 seq_printf(m, "Battery remaining:\t"); 563 num_states = sizeof(battery_remaining) / sizeof(char *); 564 if (state < num_states) 565 { 566 seq_printf(m, "%s\t", 567 battery_remaining[state]); 568 have_strings = 1; 569 } 570 break; 571 case BATTERY_PERCENTAGE: 572 seq_printf(m, "Battery percentage:\t"); 573 break; 574 case EPOW_SENSOR: 575 seq_printf(m, "EPOW Sensor:\t"); 576 num_states = sizeof(epow_sensor) / sizeof(char *); 577 if (state < num_states) { 578 seq_printf(m, "%s\t", epow_sensor[state]); 579 have_strings = 1; 580 } 581 break; 582 case BATTERY_CYCLESTATE: 583 seq_printf(m, "Battery cyclestate:\t"); 584 num_states = sizeof(battery_cyclestate) / 585 sizeof(char *); 586 if (state < num_states) { 587 seq_printf(m, "%s\t", 588 battery_cyclestate[state]); 589 have_strings = 1; 590 } 591 break; 592 case BATTERY_CHARGING: 593 seq_printf(m, "Battery Charging:\t"); 594 num_states = sizeof(battery_charging) / sizeof(char *); 595 if (state < num_states) { 596 seq_printf(m, "%s\t", 597 battery_charging[state]); 598 have_strings = 1; 599 } 600 break; 601 case IBM_SURVEILLANCE: 602 seq_printf(m, "Surveillance:\t"); 603 break; 604 case IBM_FANRPM: 605 seq_printf(m, "Fan (rpm):\t"); 606 break; 607 case IBM_VOLTAGE: 608 seq_printf(m, "Voltage (mv):\t"); 609 break; 610 case IBM_DRCONNECTOR: 611 seq_printf(m, "DR connector:\t"); 612 num_states = sizeof(ibm_drconnector) / sizeof(char *); 613 if (state < num_states) { 614 seq_printf(m, "%s\t", 615 ibm_drconnector[state]); 616 have_strings = 1; 617 } 618 break; 619 case IBM_POWERSUPPLY: 620 seq_printf(m, "Powersupply:\t"); 621 break; 622 default: 623 seq_printf(m, "Unknown sensor (type %d), ignoring it\n", 624 s->token); 625 unknown = 1; 626 have_strings = 1; 627 break; 628 } 629 if (have_strings == 0) { 630 if (temperature) { 631 seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state)); 632 } else 633 seq_printf(m, "%10d\t", state); 634 } 635 if (unknown == 0) { 636 seq_printf(m, "%s\t", ppc_rtas_process_error(error)); 637 get_location_code(m, s, loc); 638 } 639 } 640 641 /* ****************************************************************** */ 642 643 static void check_location(struct seq_file *m, const char *c) 644 { 645 switch (c[0]) { 646 case LOC_PLANAR: 647 seq_printf(m, "Planar #%c", c[1]); 648 break; 649 case LOC_CPU: 650 seq_printf(m, "CPU #%c", c[1]); 651 break; 652 case LOC_FAN: 653 seq_printf(m, "Fan #%c", c[1]); 654 break; 655 case LOC_RACKMOUNTED: 656 seq_printf(m, "Rack #%c", c[1]); 657 break; 658 case LOC_VOLTAGE: 659 seq_printf(m, "Voltage #%c", c[1]); 660 break; 661 case LOC_LCD: 662 seq_printf(m, "LCD #%c", c[1]); 663 break; 664 case '.': 665 seq_printf(m, "- %c", c[1]); 666 break; 667 default: 668 seq_printf(m, "Unknown location"); 669 break; 670 } 671 } 672 673 674 /* ****************************************************************** */ 675 /* 676 * Format: 677 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ] 678 * the '.' may be an abbreviation 679 */ 680 static void check_location_string(struct seq_file *m, const char *c) 681 { 682 while (*c) { 683 if (isalpha(*c) || *c == '.') 684 check_location(m, c); 685 else if (*c == '/' || *c == '-') 686 seq_printf(m, " at "); 687 c++; 688 } 689 } 690 691 692 /* ****************************************************************** */ 693 694 static void get_location_code(struct seq_file *m, struct individual_sensor *s, 695 const char *loc) 696 { 697 if (!loc || !*loc) { 698 seq_printf(m, "---");/* does not have a location */ 699 } else { 700 check_location_string(m, loc); 701 } 702 seq_putc(m, ' '); 703 } 704 /* ****************************************************************** */ 705 /* INDICATORS - Tone Frequency */ 706 /* ****************************************************************** */ 707 static ssize_t ppc_rtas_tone_freq_write(struct file *file, 708 const char __user *buf, size_t count, loff_t *ppos) 709 { 710 u64 freq; 711 int error = parse_number(buf, count, &freq); 712 if (error) 713 return error; 714 715 rtas_tone_frequency = freq; /* save it for later */ 716 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL, 717 TONE_FREQUENCY, 0, freq); 718 if (error) 719 printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 720 ppc_rtas_process_error(error)); 721 return count; 722 } 723 /* ****************************************************************** */ 724 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v) 725 { 726 seq_printf(m, "%lu\n", rtas_tone_frequency); 727 return 0; 728 } 729 /* ****************************************************************** */ 730 /* INDICATORS - Tone Volume */ 731 /* ****************************************************************** */ 732 static ssize_t ppc_rtas_tone_volume_write(struct file *file, 733 const char __user *buf, size_t count, loff_t *ppos) 734 { 735 u64 volume; 736 int error = parse_number(buf, count, &volume); 737 if (error) 738 return error; 739 740 if (volume > 100) 741 volume = 100; 742 743 rtas_tone_volume = volume; /* save it for later */ 744 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL, 745 TONE_VOLUME, 0, volume); 746 if (error) 747 printk(KERN_WARNING "error: setting tone volume returned: %s\n", 748 ppc_rtas_process_error(error)); 749 return count; 750 } 751 /* ****************************************************************** */ 752 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v) 753 { 754 seq_printf(m, "%lu\n", rtas_tone_volume); 755 return 0; 756 } 757 758 /** 759 * ppc_rtas_rmo_buf_show() - Describe RTAS-addressable region for user space. 760 * 761 * Base + size description of a range of RTAS-addressable memory set 762 * aside for user space to use as work area(s) for certain RTAS 763 * functions. User space accesses this region via /dev/mem. Apart from 764 * security policies, the kernel does not arbitrate or serialize 765 * access to this region, and user space must ensure that concurrent 766 * users do not interfere with each other. 767 */ 768 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v) 769 { 770 seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_USER_REGION_SIZE); 771 return 0; 772 } 773