xref: /openbmc/linux/arch/powerpc/kernel/rtas-proc.c (revision d58f75de)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *   Copyright (C) 2000 Tilmann Bitterberg
4  *   (tilmann@bitterberg.de)
5  *
6  *   RTAS (Runtime Abstraction Services) stuff
7  *   Intention is to provide a clean user interface
8  *   to use the RTAS.
9  *
10  *   TODO:
11  *   Split off a header file and maybe move it to a different
12  *   location. Write Documentation on what the /proc/rtas/ entries
13  *   actually do.
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/proc_fs.h>
19 #include <linux/stat.h>
20 #include <linux/ctype.h>
21 #include <linux/time.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/seq_file.h>
25 #include <linux/bitops.h>
26 #include <linux/rtc.h>
27 
28 #include <linux/uaccess.h>
29 #include <asm/processor.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/rtas.h>
33 #include <asm/machdep.h> /* for ppc_md */
34 #include <asm/time.h>
35 
36 /* Token for Sensors */
37 #define KEY_SWITCH		0x0001
38 #define ENCLOSURE_SWITCH	0x0002
39 #define THERMAL_SENSOR		0x0003
40 #define LID_STATUS		0x0004
41 #define POWER_SOURCE		0x0005
42 #define BATTERY_VOLTAGE		0x0006
43 #define BATTERY_REMAINING	0x0007
44 #define BATTERY_PERCENTAGE	0x0008
45 #define EPOW_SENSOR		0x0009
46 #define BATTERY_CYCLESTATE	0x000a
47 #define BATTERY_CHARGING	0x000b
48 
49 /* IBM specific sensors */
50 #define IBM_SURVEILLANCE	0x2328 /* 9000 */
51 #define IBM_FANRPM		0x2329 /* 9001 */
52 #define IBM_VOLTAGE		0x232a /* 9002 */
53 #define IBM_DRCONNECTOR		0x232b /* 9003 */
54 #define IBM_POWERSUPPLY		0x232c /* 9004 */
55 
56 /* Status return values */
57 #define SENSOR_CRITICAL_HIGH	13
58 #define SENSOR_WARNING_HIGH	12
59 #define SENSOR_NORMAL		11
60 #define SENSOR_WARNING_LOW	10
61 #define SENSOR_CRITICAL_LOW	 9
62 #define SENSOR_SUCCESS		 0
63 #define SENSOR_HW_ERROR		-1
64 #define SENSOR_BUSY		-2
65 #define SENSOR_NOT_EXIST	-3
66 #define SENSOR_DR_ENTITY	-9000
67 
68 /* Location Codes */
69 #define LOC_SCSI_DEV_ADDR	'A'
70 #define LOC_SCSI_DEV_LOC	'B'
71 #define LOC_CPU			'C'
72 #define LOC_DISKETTE		'D'
73 #define LOC_ETHERNET		'E'
74 #define LOC_FAN			'F'
75 #define LOC_GRAPHICS		'G'
76 /* reserved / not used		'H' */
77 #define LOC_IO_ADAPTER		'I'
78 /* reserved / not used		'J' */
79 #define LOC_KEYBOARD		'K'
80 #define LOC_LCD			'L'
81 #define LOC_MEMORY		'M'
82 #define LOC_NV_MEMORY		'N'
83 #define LOC_MOUSE		'O'
84 #define LOC_PLANAR		'P'
85 #define LOC_OTHER_IO		'Q'
86 #define LOC_PARALLEL		'R'
87 #define LOC_SERIAL		'S'
88 #define LOC_DEAD_RING		'T'
89 #define LOC_RACKMOUNTED		'U' /* for _u_nit is rack mounted */
90 #define LOC_VOLTAGE		'V'
91 #define LOC_SWITCH_ADAPTER	'W'
92 #define LOC_OTHER		'X'
93 #define LOC_FIRMWARE		'Y'
94 #define LOC_SCSI		'Z'
95 
96 /* Tokens for indicators */
97 #define TONE_FREQUENCY		0x0001 /* 0 - 1000 (HZ)*/
98 #define TONE_VOLUME		0x0002 /* 0 - 100 (%) */
99 #define SYSTEM_POWER_STATE	0x0003
100 #define WARNING_LIGHT		0x0004
101 #define DISK_ACTIVITY_LIGHT	0x0005
102 #define HEX_DISPLAY_UNIT	0x0006
103 #define BATTERY_WARNING_TIME	0x0007
104 #define CONDITION_CYCLE_REQUEST	0x0008
105 #define SURVEILLANCE_INDICATOR	0x2328 /* 9000 */
106 #define DR_ACTION		0x2329 /* 9001 */
107 #define DR_INDICATOR		0x232a /* 9002 */
108 /* 9003 - 9004: Vendor specific */
109 /* 9006 - 9999: Vendor specific */
110 
111 /* other */
112 #define MAX_SENSORS		 17  /* I only know of 17 sensors */
113 #define MAX_LINELENGTH          256
114 #define SENSOR_PREFIX		"ibm,sensor-"
115 #define cel_to_fahr(x)		((x*9/5)+32)
116 
117 struct individual_sensor {
118 	unsigned int token;
119 	unsigned int quant;
120 };
121 
122 struct rtas_sensors {
123         struct individual_sensor sensor[MAX_SENSORS];
124 	unsigned int quant;
125 };
126 
127 /* Globals */
128 static struct rtas_sensors sensors;
129 static struct device_node *rtas_node = NULL;
130 static unsigned long power_on_time = 0; /* Save the time the user set */
131 static char progress_led[MAX_LINELENGTH];
132 
133 static unsigned long rtas_tone_frequency = 1000;
134 static unsigned long rtas_tone_volume = 0;
135 
136 /* ****************************************************************** */
137 /* Declarations */
138 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
139 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
140 static ssize_t ppc_rtas_clock_write(struct file *file,
141 		const char __user *buf, size_t count, loff_t *ppos);
142 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
143 static ssize_t ppc_rtas_progress_write(struct file *file,
144 		const char __user *buf, size_t count, loff_t *ppos);
145 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
146 static ssize_t ppc_rtas_poweron_write(struct file *file,
147 		const char __user *buf, size_t count, loff_t *ppos);
148 
149 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
150 		const char __user *buf, size_t count, loff_t *ppos);
151 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
152 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
153 		const char __user *buf, size_t count, loff_t *ppos);
154 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
155 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
156 
157 static int poweron_open(struct inode *inode, struct file *file)
158 {
159 	return single_open(file, ppc_rtas_poweron_show, NULL);
160 }
161 
162 static const struct proc_ops ppc_rtas_poweron_proc_ops = {
163 	.proc_open	= poweron_open,
164 	.proc_read	= seq_read,
165 	.proc_lseek	= seq_lseek,
166 	.proc_write	= ppc_rtas_poweron_write,
167 	.proc_release	= single_release,
168 };
169 
170 static int progress_open(struct inode *inode, struct file *file)
171 {
172 	return single_open(file, ppc_rtas_progress_show, NULL);
173 }
174 
175 static const struct proc_ops ppc_rtas_progress_proc_ops = {
176 	.proc_open	= progress_open,
177 	.proc_read	= seq_read,
178 	.proc_lseek	= seq_lseek,
179 	.proc_write	= ppc_rtas_progress_write,
180 	.proc_release	= single_release,
181 };
182 
183 static int clock_open(struct inode *inode, struct file *file)
184 {
185 	return single_open(file, ppc_rtas_clock_show, NULL);
186 }
187 
188 static const struct proc_ops ppc_rtas_clock_proc_ops = {
189 	.proc_open	= clock_open,
190 	.proc_read	= seq_read,
191 	.proc_lseek	= seq_lseek,
192 	.proc_write	= ppc_rtas_clock_write,
193 	.proc_release	= single_release,
194 };
195 
196 static int tone_freq_open(struct inode *inode, struct file *file)
197 {
198 	return single_open(file, ppc_rtas_tone_freq_show, NULL);
199 }
200 
201 static const struct proc_ops ppc_rtas_tone_freq_proc_ops = {
202 	.proc_open	= tone_freq_open,
203 	.proc_read	= seq_read,
204 	.proc_lseek	= seq_lseek,
205 	.proc_write	= ppc_rtas_tone_freq_write,
206 	.proc_release	= single_release,
207 };
208 
209 static int tone_volume_open(struct inode *inode, struct file *file)
210 {
211 	return single_open(file, ppc_rtas_tone_volume_show, NULL);
212 }
213 
214 static const struct proc_ops ppc_rtas_tone_volume_proc_ops = {
215 	.proc_open	= tone_volume_open,
216 	.proc_read	= seq_read,
217 	.proc_lseek	= seq_lseek,
218 	.proc_write	= ppc_rtas_tone_volume_write,
219 	.proc_release	= single_release,
220 };
221 
222 static int ppc_rtas_find_all_sensors(void);
223 static void ppc_rtas_process_sensor(struct seq_file *m,
224 	struct individual_sensor *s, int state, int error, const char *loc);
225 static char *ppc_rtas_process_error(int error);
226 static void get_location_code(struct seq_file *m,
227 	struct individual_sensor *s, const char *loc);
228 static void check_location_string(struct seq_file *m, const char *c);
229 static void check_location(struct seq_file *m, const char *c);
230 
231 static int __init proc_rtas_init(void)
232 {
233 	if (!machine_is(pseries))
234 		return -ENODEV;
235 
236 	rtas_node = of_find_node_by_name(NULL, "rtas");
237 	if (rtas_node == NULL)
238 		return -ENODEV;
239 
240 	proc_create("powerpc/rtas/progress", 0644, NULL,
241 		    &ppc_rtas_progress_proc_ops);
242 	proc_create("powerpc/rtas/clock", 0644, NULL,
243 		    &ppc_rtas_clock_proc_ops);
244 	proc_create("powerpc/rtas/poweron", 0644, NULL,
245 		    &ppc_rtas_poweron_proc_ops);
246 	proc_create_single("powerpc/rtas/sensors", 0444, NULL,
247 			ppc_rtas_sensors_show);
248 	proc_create("powerpc/rtas/frequency", 0644, NULL,
249 		    &ppc_rtas_tone_freq_proc_ops);
250 	proc_create("powerpc/rtas/volume", 0644, NULL,
251 		    &ppc_rtas_tone_volume_proc_ops);
252 	proc_create_single("powerpc/rtas/rmo_buffer", 0400, NULL,
253 			ppc_rtas_rmo_buf_show);
254 	return 0;
255 }
256 
257 __initcall(proc_rtas_init);
258 
259 static int parse_number(const char __user *p, size_t count, u64 *val)
260 {
261 	char buf[40];
262 	char *end;
263 
264 	if (count > 39)
265 		return -EINVAL;
266 
267 	if (copy_from_user(buf, p, count))
268 		return -EFAULT;
269 
270 	buf[count] = 0;
271 
272 	*val = simple_strtoull(buf, &end, 10);
273 	if (*end && *end != '\n')
274 		return -EINVAL;
275 
276 	return 0;
277 }
278 
279 /* ****************************************************************** */
280 /* POWER-ON-TIME                                                      */
281 /* ****************************************************************** */
282 static ssize_t ppc_rtas_poweron_write(struct file *file,
283 		const char __user *buf, size_t count, loff_t *ppos)
284 {
285 	struct rtc_time tm;
286 	time64_t nowtime;
287 	int error = parse_number(buf, count, &nowtime);
288 	if (error)
289 		return error;
290 
291 	power_on_time = nowtime; /* save the time */
292 
293 	rtc_time64_to_tm(nowtime, &tm);
294 
295 	error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
296 			tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
297 			tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
298 	if (error)
299 		printk(KERN_WARNING "error: setting poweron time returned: %s\n",
300 				ppc_rtas_process_error(error));
301 	return count;
302 }
303 /* ****************************************************************** */
304 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
305 {
306 	if (power_on_time == 0)
307 		seq_printf(m, "Power on time not set\n");
308 	else
309 		seq_printf(m, "%lu\n",power_on_time);
310 	return 0;
311 }
312 
313 /* ****************************************************************** */
314 /* PROGRESS                                                           */
315 /* ****************************************************************** */
316 static ssize_t ppc_rtas_progress_write(struct file *file,
317 		const char __user *buf, size_t count, loff_t *ppos)
318 {
319 	unsigned long hex;
320 
321 	if (count >= MAX_LINELENGTH)
322 		count = MAX_LINELENGTH -1;
323 	if (copy_from_user(progress_led, buf, count)) { /* save the string */
324 		return -EFAULT;
325 	}
326 	progress_led[count] = 0;
327 
328 	/* Lets see if the user passed hexdigits */
329 	hex = simple_strtoul(progress_led, NULL, 10);
330 
331 	rtas_progress ((char *)progress_led, hex);
332 	return count;
333 
334 	/* clear the line */
335 	/* rtas_progress("                   ", 0xffff);*/
336 }
337 /* ****************************************************************** */
338 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
339 {
340 	if (progress_led[0])
341 		seq_printf(m, "%s\n", progress_led);
342 	return 0;
343 }
344 
345 /* ****************************************************************** */
346 /* CLOCK                                                              */
347 /* ****************************************************************** */
348 static ssize_t ppc_rtas_clock_write(struct file *file,
349 		const char __user *buf, size_t count, loff_t *ppos)
350 {
351 	struct rtc_time tm;
352 	time64_t nowtime;
353 	int error = parse_number(buf, count, &nowtime);
354 	if (error)
355 		return error;
356 
357 	rtc_time64_to_tm(nowtime, &tm);
358 	error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
359 			tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
360 			tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
361 	if (error)
362 		printk(KERN_WARNING "error: setting the clock returned: %s\n",
363 				ppc_rtas_process_error(error));
364 	return count;
365 }
366 /* ****************************************************************** */
367 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
368 {
369 	int ret[8];
370 	int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
371 
372 	if (error) {
373 		printk(KERN_WARNING "error: reading the clock returned: %s\n",
374 				ppc_rtas_process_error(error));
375 		seq_printf(m, "0");
376 	} else {
377 		unsigned int year, mon, day, hour, min, sec;
378 		year = ret[0]; mon  = ret[1]; day  = ret[2];
379 		hour = ret[3]; min  = ret[4]; sec  = ret[5];
380 		seq_printf(m, "%lld\n",
381 				mktime64(year, mon, day, hour, min, sec));
382 	}
383 	return 0;
384 }
385 
386 /* ****************************************************************** */
387 /* SENSOR STUFF                                                       */
388 /* ****************************************************************** */
389 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
390 {
391 	int i,j;
392 	int state, error;
393 	int get_sensor_state = rtas_token("get-sensor-state");
394 
395 	seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
396 	seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
397 	seq_printf(m, "********************************************************\n");
398 
399 	if (ppc_rtas_find_all_sensors() != 0) {
400 		seq_printf(m, "\nNo sensors are available\n");
401 		return 0;
402 	}
403 
404 	for (i=0; i<sensors.quant; i++) {
405 		struct individual_sensor *p = &sensors.sensor[i];
406 		char rstr[64];
407 		const char *loc;
408 		int llen, offs;
409 
410 		sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
411 		loc = of_get_property(rtas_node, rstr, &llen);
412 
413 		/* A sensor may have multiple instances */
414 		for (j = 0, offs = 0; j <= p->quant; j++) {
415 			error =	rtas_call(get_sensor_state, 2, 2, &state,
416 				  	  p->token, j);
417 
418 			ppc_rtas_process_sensor(m, p, state, error, loc);
419 			seq_putc(m, '\n');
420 			if (loc) {
421 				offs += strlen(loc) + 1;
422 				loc += strlen(loc) + 1;
423 				if (offs >= llen)
424 					loc = NULL;
425 			}
426 		}
427 	}
428 	return 0;
429 }
430 
431 /* ****************************************************************** */
432 
433 static int ppc_rtas_find_all_sensors(void)
434 {
435 	const unsigned int *utmp;
436 	int len, i;
437 
438 	utmp = of_get_property(rtas_node, "rtas-sensors", &len);
439 	if (utmp == NULL) {
440 		printk (KERN_ERR "error: could not get rtas-sensors\n");
441 		return 1;
442 	}
443 
444 	sensors.quant = len / 8;      /* int + int */
445 
446 	for (i=0; i<sensors.quant; i++) {
447 		sensors.sensor[i].token = *utmp++;
448 		sensors.sensor[i].quant = *utmp++;
449 	}
450 	return 0;
451 }
452 
453 /* ****************************************************************** */
454 /*
455  * Builds a string of what rtas returned
456  */
457 static char *ppc_rtas_process_error(int error)
458 {
459 	switch (error) {
460 		case SENSOR_CRITICAL_HIGH:
461 			return "(critical high)";
462 		case SENSOR_WARNING_HIGH:
463 			return "(warning high)";
464 		case SENSOR_NORMAL:
465 			return "(normal)";
466 		case SENSOR_WARNING_LOW:
467 			return "(warning low)";
468 		case SENSOR_CRITICAL_LOW:
469 			return "(critical low)";
470 		case SENSOR_SUCCESS:
471 			return "(read ok)";
472 		case SENSOR_HW_ERROR:
473 			return "(hardware error)";
474 		case SENSOR_BUSY:
475 			return "(busy)";
476 		case SENSOR_NOT_EXIST:
477 			return "(non existent)";
478 		case SENSOR_DR_ENTITY:
479 			return "(dr entity removed)";
480 		default:
481 			return "(UNKNOWN)";
482 	}
483 }
484 
485 /* ****************************************************************** */
486 /*
487  * Builds a string out of what the sensor said
488  */
489 
490 static void ppc_rtas_process_sensor(struct seq_file *m,
491 	struct individual_sensor *s, int state, int error, const char *loc)
492 {
493 	/* Defined return vales */
494 	const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t",
495 						"Maintenance" };
496 	const char * enclosure_switch[]  = { "Closed", "Open" };
497 	const char * lid_status[]        = { " ", "Open", "Closed" };
498 	const char * power_source[]      = { "AC\t", "Battery",
499 		  				"AC & Battery" };
500 	const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
501 	const char * epow_sensor[]       = {
502 		"EPOW Reset", "Cooling warning", "Power warning",
503 		"System shutdown", "System halt", "EPOW main enclosure",
504 		"EPOW power off" };
505 	const char * battery_cyclestate[]  = { "None", "In progress",
506 						"Requested" };
507 	const char * battery_charging[]    = { "Charging", "Discharging",
508 						"No current flow" };
509 	const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable",
510 						"Exchange" };
511 
512 	int have_strings = 0;
513 	int num_states = 0;
514 	int temperature = 0;
515 	int unknown = 0;
516 
517 	/* What kind of sensor do we have here? */
518 
519 	switch (s->token) {
520 		case KEY_SWITCH:
521 			seq_printf(m, "Key switch:\t");
522 			num_states = sizeof(key_switch) / sizeof(char *);
523 			if (state < num_states) {
524 				seq_printf(m, "%s\t", key_switch[state]);
525 				have_strings = 1;
526 			}
527 			break;
528 		case ENCLOSURE_SWITCH:
529 			seq_printf(m, "Enclosure switch:\t");
530 			num_states = sizeof(enclosure_switch) / sizeof(char *);
531 			if (state < num_states) {
532 				seq_printf(m, "%s\t",
533 						enclosure_switch[state]);
534 				have_strings = 1;
535 			}
536 			break;
537 		case THERMAL_SENSOR:
538 			seq_printf(m, "Temp. (C/F):\t");
539 			temperature = 1;
540 			break;
541 		case LID_STATUS:
542 			seq_printf(m, "Lid status:\t");
543 			num_states = sizeof(lid_status) / sizeof(char *);
544 			if (state < num_states) {
545 				seq_printf(m, "%s\t", lid_status[state]);
546 				have_strings = 1;
547 			}
548 			break;
549 		case POWER_SOURCE:
550 			seq_printf(m, "Power source:\t");
551 			num_states = sizeof(power_source) / sizeof(char *);
552 			if (state < num_states) {
553 				seq_printf(m, "%s\t",
554 						power_source[state]);
555 				have_strings = 1;
556 			}
557 			break;
558 		case BATTERY_VOLTAGE:
559 			seq_printf(m, "Battery voltage:\t");
560 			break;
561 		case BATTERY_REMAINING:
562 			seq_printf(m, "Battery remaining:\t");
563 			num_states = sizeof(battery_remaining) / sizeof(char *);
564 			if (state < num_states)
565 			{
566 				seq_printf(m, "%s\t",
567 						battery_remaining[state]);
568 				have_strings = 1;
569 			}
570 			break;
571 		case BATTERY_PERCENTAGE:
572 			seq_printf(m, "Battery percentage:\t");
573 			break;
574 		case EPOW_SENSOR:
575 			seq_printf(m, "EPOW Sensor:\t");
576 			num_states = sizeof(epow_sensor) / sizeof(char *);
577 			if (state < num_states) {
578 				seq_printf(m, "%s\t", epow_sensor[state]);
579 				have_strings = 1;
580 			}
581 			break;
582 		case BATTERY_CYCLESTATE:
583 			seq_printf(m, "Battery cyclestate:\t");
584 			num_states = sizeof(battery_cyclestate) /
585 				     	sizeof(char *);
586 			if (state < num_states) {
587 				seq_printf(m, "%s\t",
588 						battery_cyclestate[state]);
589 				have_strings = 1;
590 			}
591 			break;
592 		case BATTERY_CHARGING:
593 			seq_printf(m, "Battery Charging:\t");
594 			num_states = sizeof(battery_charging) / sizeof(char *);
595 			if (state < num_states) {
596 				seq_printf(m, "%s\t",
597 						battery_charging[state]);
598 				have_strings = 1;
599 			}
600 			break;
601 		case IBM_SURVEILLANCE:
602 			seq_printf(m, "Surveillance:\t");
603 			break;
604 		case IBM_FANRPM:
605 			seq_printf(m, "Fan (rpm):\t");
606 			break;
607 		case IBM_VOLTAGE:
608 			seq_printf(m, "Voltage (mv):\t");
609 			break;
610 		case IBM_DRCONNECTOR:
611 			seq_printf(m, "DR connector:\t");
612 			num_states = sizeof(ibm_drconnector) / sizeof(char *);
613 			if (state < num_states) {
614 				seq_printf(m, "%s\t",
615 						ibm_drconnector[state]);
616 				have_strings = 1;
617 			}
618 			break;
619 		case IBM_POWERSUPPLY:
620 			seq_printf(m, "Powersupply:\t");
621 			break;
622 		default:
623 			seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
624 					s->token);
625 			unknown = 1;
626 			have_strings = 1;
627 			break;
628 	}
629 	if (have_strings == 0) {
630 		if (temperature) {
631 			seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
632 		} else
633 			seq_printf(m, "%10d\t", state);
634 	}
635 	if (unknown == 0) {
636 		seq_printf(m, "%s\t", ppc_rtas_process_error(error));
637 		get_location_code(m, s, loc);
638 	}
639 }
640 
641 /* ****************************************************************** */
642 
643 static void check_location(struct seq_file *m, const char *c)
644 {
645 	switch (c[0]) {
646 		case LOC_PLANAR:
647 			seq_printf(m, "Planar #%c", c[1]);
648 			break;
649 		case LOC_CPU:
650 			seq_printf(m, "CPU #%c", c[1]);
651 			break;
652 		case LOC_FAN:
653 			seq_printf(m, "Fan #%c", c[1]);
654 			break;
655 		case LOC_RACKMOUNTED:
656 			seq_printf(m, "Rack #%c", c[1]);
657 			break;
658 		case LOC_VOLTAGE:
659 			seq_printf(m, "Voltage #%c", c[1]);
660 			break;
661 		case LOC_LCD:
662 			seq_printf(m, "LCD #%c", c[1]);
663 			break;
664 		case '.':
665 			seq_printf(m, "- %c", c[1]);
666 			break;
667 		default:
668 			seq_printf(m, "Unknown location");
669 			break;
670 	}
671 }
672 
673 
674 /* ****************************************************************** */
675 /*
676  * Format:
677  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
678  * the '.' may be an abbreviation
679  */
680 static void check_location_string(struct seq_file *m, const char *c)
681 {
682 	while (*c) {
683 		if (isalpha(*c) || *c == '.')
684 			check_location(m, c);
685 		else if (*c == '/' || *c == '-')
686 			seq_printf(m, " at ");
687 		c++;
688 	}
689 }
690 
691 
692 /* ****************************************************************** */
693 
694 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
695 		const char *loc)
696 {
697 	if (!loc || !*loc) {
698 		seq_printf(m, "---");/* does not have a location */
699 	} else {
700 		check_location_string(m, loc);
701 	}
702 	seq_putc(m, ' ');
703 }
704 /* ****************************************************************** */
705 /* INDICATORS - Tone Frequency                                        */
706 /* ****************************************************************** */
707 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
708 		const char __user *buf, size_t count, loff_t *ppos)
709 {
710 	u64 freq;
711 	int error = parse_number(buf, count, &freq);
712 	if (error)
713 		return error;
714 
715 	rtas_tone_frequency = freq; /* save it for later */
716 	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
717 			TONE_FREQUENCY, 0, freq);
718 	if (error)
719 		printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
720 				ppc_rtas_process_error(error));
721 	return count;
722 }
723 /* ****************************************************************** */
724 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
725 {
726 	seq_printf(m, "%lu\n", rtas_tone_frequency);
727 	return 0;
728 }
729 /* ****************************************************************** */
730 /* INDICATORS - Tone Volume                                           */
731 /* ****************************************************************** */
732 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
733 		const char __user *buf, size_t count, loff_t *ppos)
734 {
735 	u64 volume;
736 	int error = parse_number(buf, count, &volume);
737 	if (error)
738 		return error;
739 
740 	if (volume > 100)
741 		volume = 100;
742 
743         rtas_tone_volume = volume; /* save it for later */
744 	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
745 			TONE_VOLUME, 0, volume);
746 	if (error)
747 		printk(KERN_WARNING "error: setting tone volume returned: %s\n",
748 				ppc_rtas_process_error(error));
749 	return count;
750 }
751 /* ****************************************************************** */
752 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
753 {
754 	seq_printf(m, "%lu\n", rtas_tone_volume);
755 	return 0;
756 }
757 
758 /**
759  * ppc_rtas_rmo_buf_show() - Describe RTAS-addressable region for user space.
760  *
761  * Base + size description of a range of RTAS-addressable memory set
762  * aside for user space to use as work area(s) for certain RTAS
763  * functions. User space accesses this region via /dev/mem. Apart from
764  * security policies, the kernel does not arbitrate or serialize
765  * access to this region, and user space must ensure that concurrent
766  * users do not interfere with each other.
767  */
768 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
769 {
770 	seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_USER_REGION_SIZE);
771 	return 0;
772 }
773