xref: /openbmc/linux/arch/powerpc/kernel/rtas-proc.c (revision b6dcefde)
1 /*
2  *   Copyright (C) 2000 Tilmann Bitterberg
3  *   (tilmann@bitterberg.de)
4  *
5  *   RTAS (Runtime Abstraction Services) stuff
6  *   Intention is to provide a clean user interface
7  *   to use the RTAS.
8  *
9  *   TODO:
10  *   Split off a header file and maybe move it to a different
11  *   location. Write Documentation on what the /proc/rtas/ entries
12  *   actually do.
13  */
14 
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/proc_fs.h>
18 #include <linux/stat.h>
19 #include <linux/ctype.h>
20 #include <linux/time.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/seq_file.h>
24 #include <linux/bitops.h>
25 #include <linux/rtc.h>
26 
27 #include <asm/uaccess.h>
28 #include <asm/processor.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/rtas.h>
32 #include <asm/machdep.h> /* for ppc_md */
33 #include <asm/time.h>
34 
35 /* Token for Sensors */
36 #define KEY_SWITCH		0x0001
37 #define ENCLOSURE_SWITCH	0x0002
38 #define THERMAL_SENSOR		0x0003
39 #define LID_STATUS		0x0004
40 #define POWER_SOURCE		0x0005
41 #define BATTERY_VOLTAGE		0x0006
42 #define BATTERY_REMAINING	0x0007
43 #define BATTERY_PERCENTAGE	0x0008
44 #define EPOW_SENSOR		0x0009
45 #define BATTERY_CYCLESTATE	0x000a
46 #define BATTERY_CHARGING	0x000b
47 
48 /* IBM specific sensors */
49 #define IBM_SURVEILLANCE	0x2328 /* 9000 */
50 #define IBM_FANRPM		0x2329 /* 9001 */
51 #define IBM_VOLTAGE		0x232a /* 9002 */
52 #define IBM_DRCONNECTOR		0x232b /* 9003 */
53 #define IBM_POWERSUPPLY		0x232c /* 9004 */
54 
55 /* Status return values */
56 #define SENSOR_CRITICAL_HIGH	13
57 #define SENSOR_WARNING_HIGH	12
58 #define SENSOR_NORMAL		11
59 #define SENSOR_WARNING_LOW	10
60 #define SENSOR_CRITICAL_LOW	 9
61 #define SENSOR_SUCCESS		 0
62 #define SENSOR_HW_ERROR		-1
63 #define SENSOR_BUSY		-2
64 #define SENSOR_NOT_EXIST	-3
65 #define SENSOR_DR_ENTITY	-9000
66 
67 /* Location Codes */
68 #define LOC_SCSI_DEV_ADDR	'A'
69 #define LOC_SCSI_DEV_LOC	'B'
70 #define LOC_CPU			'C'
71 #define LOC_DISKETTE		'D'
72 #define LOC_ETHERNET		'E'
73 #define LOC_FAN			'F'
74 #define LOC_GRAPHICS		'G'
75 /* reserved / not used		'H' */
76 #define LOC_IO_ADAPTER		'I'
77 /* reserved / not used		'J' */
78 #define LOC_KEYBOARD		'K'
79 #define LOC_LCD			'L'
80 #define LOC_MEMORY		'M'
81 #define LOC_NV_MEMORY		'N'
82 #define LOC_MOUSE		'O'
83 #define LOC_PLANAR		'P'
84 #define LOC_OTHER_IO		'Q'
85 #define LOC_PARALLEL		'R'
86 #define LOC_SERIAL		'S'
87 #define LOC_DEAD_RING		'T'
88 #define LOC_RACKMOUNTED		'U' /* for _u_nit is rack mounted */
89 #define LOC_VOLTAGE		'V'
90 #define LOC_SWITCH_ADAPTER	'W'
91 #define LOC_OTHER		'X'
92 #define LOC_FIRMWARE		'Y'
93 #define LOC_SCSI		'Z'
94 
95 /* Tokens for indicators */
96 #define TONE_FREQUENCY		0x0001 /* 0 - 1000 (HZ)*/
97 #define TONE_VOLUME		0x0002 /* 0 - 100 (%) */
98 #define SYSTEM_POWER_STATE	0x0003
99 #define WARNING_LIGHT		0x0004
100 #define DISK_ACTIVITY_LIGHT	0x0005
101 #define HEX_DISPLAY_UNIT	0x0006
102 #define BATTERY_WARNING_TIME	0x0007
103 #define CONDITION_CYCLE_REQUEST	0x0008
104 #define SURVEILLANCE_INDICATOR	0x2328 /* 9000 */
105 #define DR_ACTION		0x2329 /* 9001 */
106 #define DR_INDICATOR		0x232a /* 9002 */
107 /* 9003 - 9004: Vendor specific */
108 /* 9006 - 9999: Vendor specific */
109 
110 /* other */
111 #define MAX_SENSORS		 17  /* I only know of 17 sensors */
112 #define MAX_LINELENGTH          256
113 #define SENSOR_PREFIX		"ibm,sensor-"
114 #define cel_to_fahr(x)		((x*9/5)+32)
115 
116 
117 /* Globals */
118 static struct rtas_sensors sensors;
119 static struct device_node *rtas_node = NULL;
120 static unsigned long power_on_time = 0; /* Save the time the user set */
121 static char progress_led[MAX_LINELENGTH];
122 
123 static unsigned long rtas_tone_frequency = 1000;
124 static unsigned long rtas_tone_volume = 0;
125 
126 /* ****************STRUCTS******************************************* */
127 struct individual_sensor {
128 	unsigned int token;
129 	unsigned int quant;
130 };
131 
132 struct rtas_sensors {
133         struct individual_sensor sensor[MAX_SENSORS];
134 	unsigned int quant;
135 };
136 
137 /* ****************************************************************** */
138 /* Declarations */
139 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
140 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
141 static ssize_t ppc_rtas_clock_write(struct file *file,
142 		const char __user *buf, size_t count, loff_t *ppos);
143 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
144 static ssize_t ppc_rtas_progress_write(struct file *file,
145 		const char __user *buf, size_t count, loff_t *ppos);
146 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
147 static ssize_t ppc_rtas_poweron_write(struct file *file,
148 		const char __user *buf, size_t count, loff_t *ppos);
149 
150 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
151 		const char __user *buf, size_t count, loff_t *ppos);
152 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
153 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
154 		const char __user *buf, size_t count, loff_t *ppos);
155 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
156 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
157 
158 static int sensors_open(struct inode *inode, struct file *file)
159 {
160 	return single_open(file, ppc_rtas_sensors_show, NULL);
161 }
162 
163 static const struct file_operations ppc_rtas_sensors_operations = {
164 	.open		= sensors_open,
165 	.read		= seq_read,
166 	.llseek		= seq_lseek,
167 	.release	= single_release,
168 };
169 
170 static int poweron_open(struct inode *inode, struct file *file)
171 {
172 	return single_open(file, ppc_rtas_poweron_show, NULL);
173 }
174 
175 static const struct file_operations ppc_rtas_poweron_operations = {
176 	.open		= poweron_open,
177 	.read		= seq_read,
178 	.llseek		= seq_lseek,
179 	.write		= ppc_rtas_poweron_write,
180 	.release	= single_release,
181 };
182 
183 static int progress_open(struct inode *inode, struct file *file)
184 {
185 	return single_open(file, ppc_rtas_progress_show, NULL);
186 }
187 
188 static const struct file_operations ppc_rtas_progress_operations = {
189 	.open		= progress_open,
190 	.read		= seq_read,
191 	.llseek		= seq_lseek,
192 	.write		= ppc_rtas_progress_write,
193 	.release	= single_release,
194 };
195 
196 static int clock_open(struct inode *inode, struct file *file)
197 {
198 	return single_open(file, ppc_rtas_clock_show, NULL);
199 }
200 
201 static const struct file_operations ppc_rtas_clock_operations = {
202 	.open		= clock_open,
203 	.read		= seq_read,
204 	.llseek		= seq_lseek,
205 	.write		= ppc_rtas_clock_write,
206 	.release	= single_release,
207 };
208 
209 static int tone_freq_open(struct inode *inode, struct file *file)
210 {
211 	return single_open(file, ppc_rtas_tone_freq_show, NULL);
212 }
213 
214 static const struct file_operations ppc_rtas_tone_freq_operations = {
215 	.open		= tone_freq_open,
216 	.read		= seq_read,
217 	.llseek		= seq_lseek,
218 	.write		= ppc_rtas_tone_freq_write,
219 	.release	= single_release,
220 };
221 
222 static int tone_volume_open(struct inode *inode, struct file *file)
223 {
224 	return single_open(file, ppc_rtas_tone_volume_show, NULL);
225 }
226 
227 static const struct file_operations ppc_rtas_tone_volume_operations = {
228 	.open		= tone_volume_open,
229 	.read		= seq_read,
230 	.llseek		= seq_lseek,
231 	.write		= ppc_rtas_tone_volume_write,
232 	.release	= single_release,
233 };
234 
235 static int rmo_buf_open(struct inode *inode, struct file *file)
236 {
237 	return single_open(file, ppc_rtas_rmo_buf_show, NULL);
238 }
239 
240 static const struct file_operations ppc_rtas_rmo_buf_ops = {
241 	.open		= rmo_buf_open,
242 	.read		= seq_read,
243 	.llseek		= seq_lseek,
244 	.release	= single_release,
245 };
246 
247 static int ppc_rtas_find_all_sensors(void);
248 static void ppc_rtas_process_sensor(struct seq_file *m,
249 	struct individual_sensor *s, int state, int error, const char *loc);
250 static char *ppc_rtas_process_error(int error);
251 static void get_location_code(struct seq_file *m,
252 	struct individual_sensor *s, const char *loc);
253 static void check_location_string(struct seq_file *m, const char *c);
254 static void check_location(struct seq_file *m, const char *c);
255 
256 static int __init proc_rtas_init(void)
257 {
258 	if (!machine_is(pseries))
259 		return -ENODEV;
260 
261 	rtas_node = of_find_node_by_name(NULL, "rtas");
262 	if (rtas_node == NULL)
263 		return -ENODEV;
264 
265 	proc_create("powerpc/rtas/progress", S_IRUGO|S_IWUSR, NULL,
266 		    &ppc_rtas_progress_operations);
267 	proc_create("powerpc/rtas/clock", S_IRUGO|S_IWUSR, NULL,
268 		    &ppc_rtas_clock_operations);
269 	proc_create("powerpc/rtas/poweron", S_IWUSR|S_IRUGO, NULL,
270 		    &ppc_rtas_poweron_operations);
271 	proc_create("powerpc/rtas/sensors", S_IRUGO, NULL,
272 		    &ppc_rtas_sensors_operations);
273 	proc_create("powerpc/rtas/frequency", S_IWUSR|S_IRUGO, NULL,
274 		    &ppc_rtas_tone_freq_operations);
275 	proc_create("powerpc/rtas/volume", S_IWUSR|S_IRUGO, NULL,
276 		    &ppc_rtas_tone_volume_operations);
277 	proc_create("powerpc/rtas/rmo_buffer", S_IRUSR, NULL,
278 		    &ppc_rtas_rmo_buf_ops);
279 	return 0;
280 }
281 
282 __initcall(proc_rtas_init);
283 
284 static int parse_number(const char __user *p, size_t count, unsigned long *val)
285 {
286 	char buf[40];
287 	char *end;
288 
289 	if (count > 39)
290 		return -EINVAL;
291 
292 	if (copy_from_user(buf, p, count))
293 		return -EFAULT;
294 
295 	buf[count] = 0;
296 
297 	*val = simple_strtoul(buf, &end, 10);
298 	if (*end && *end != '\n')
299 		return -EINVAL;
300 
301 	return 0;
302 }
303 
304 /* ****************************************************************** */
305 /* POWER-ON-TIME                                                      */
306 /* ****************************************************************** */
307 static ssize_t ppc_rtas_poweron_write(struct file *file,
308 		const char __user *buf, size_t count, loff_t *ppos)
309 {
310 	struct rtc_time tm;
311 	unsigned long nowtime;
312 	int error = parse_number(buf, count, &nowtime);
313 	if (error)
314 		return error;
315 
316 	power_on_time = nowtime; /* save the time */
317 
318 	to_tm(nowtime, &tm);
319 
320 	error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
321 			tm.tm_year, tm.tm_mon, tm.tm_mday,
322 			tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
323 	if (error)
324 		printk(KERN_WARNING "error: setting poweron time returned: %s\n",
325 				ppc_rtas_process_error(error));
326 	return count;
327 }
328 /* ****************************************************************** */
329 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
330 {
331 	if (power_on_time == 0)
332 		seq_printf(m, "Power on time not set\n");
333 	else
334 		seq_printf(m, "%lu\n",power_on_time);
335 	return 0;
336 }
337 
338 /* ****************************************************************** */
339 /* PROGRESS                                                           */
340 /* ****************************************************************** */
341 static ssize_t ppc_rtas_progress_write(struct file *file,
342 		const char __user *buf, size_t count, loff_t *ppos)
343 {
344 	unsigned long hex;
345 
346 	if (count >= MAX_LINELENGTH)
347 		count = MAX_LINELENGTH -1;
348 	if (copy_from_user(progress_led, buf, count)) { /* save the string */
349 		return -EFAULT;
350 	}
351 	progress_led[count] = 0;
352 
353 	/* Lets see if the user passed hexdigits */
354 	hex = simple_strtoul(progress_led, NULL, 10);
355 
356 	rtas_progress ((char *)progress_led, hex);
357 	return count;
358 
359 	/* clear the line */
360 	/* rtas_progress("                   ", 0xffff);*/
361 }
362 /* ****************************************************************** */
363 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
364 {
365 	if (progress_led[0])
366 		seq_printf(m, "%s\n", progress_led);
367 	return 0;
368 }
369 
370 /* ****************************************************************** */
371 /* CLOCK                                                              */
372 /* ****************************************************************** */
373 static ssize_t ppc_rtas_clock_write(struct file *file,
374 		const char __user *buf, size_t count, loff_t *ppos)
375 {
376 	struct rtc_time tm;
377 	unsigned long nowtime;
378 	int error = parse_number(buf, count, &nowtime);
379 	if (error)
380 		return error;
381 
382 	to_tm(nowtime, &tm);
383 	error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
384 			tm.tm_year, tm.tm_mon, tm.tm_mday,
385 			tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
386 	if (error)
387 		printk(KERN_WARNING "error: setting the clock returned: %s\n",
388 				ppc_rtas_process_error(error));
389 	return count;
390 }
391 /* ****************************************************************** */
392 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
393 {
394 	int ret[8];
395 	int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
396 
397 	if (error) {
398 		printk(KERN_WARNING "error: reading the clock returned: %s\n",
399 				ppc_rtas_process_error(error));
400 		seq_printf(m, "0");
401 	} else {
402 		unsigned int year, mon, day, hour, min, sec;
403 		year = ret[0]; mon  = ret[1]; day  = ret[2];
404 		hour = ret[3]; min  = ret[4]; sec  = ret[5];
405 		seq_printf(m, "%lu\n",
406 				mktime(year, mon, day, hour, min, sec));
407 	}
408 	return 0;
409 }
410 
411 /* ****************************************************************** */
412 /* SENSOR STUFF                                                       */
413 /* ****************************************************************** */
414 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
415 {
416 	int i,j;
417 	int state, error;
418 	int get_sensor_state = rtas_token("get-sensor-state");
419 
420 	seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
421 	seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
422 	seq_printf(m, "********************************************************\n");
423 
424 	if (ppc_rtas_find_all_sensors() != 0) {
425 		seq_printf(m, "\nNo sensors are available\n");
426 		return 0;
427 	}
428 
429 	for (i=0; i<sensors.quant; i++) {
430 		struct individual_sensor *p = &sensors.sensor[i];
431 		char rstr[64];
432 		const char *loc;
433 		int llen, offs;
434 
435 		sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
436 		loc = of_get_property(rtas_node, rstr, &llen);
437 
438 		/* A sensor may have multiple instances */
439 		for (j = 0, offs = 0; j <= p->quant; j++) {
440 			error =	rtas_call(get_sensor_state, 2, 2, &state,
441 				  	  p->token, j);
442 
443 			ppc_rtas_process_sensor(m, p, state, error, loc);
444 			seq_putc(m, '\n');
445 			if (loc) {
446 				offs += strlen(loc) + 1;
447 				loc += strlen(loc) + 1;
448 				if (offs >= llen)
449 					loc = NULL;
450 			}
451 		}
452 	}
453 	return 0;
454 }
455 
456 /* ****************************************************************** */
457 
458 static int ppc_rtas_find_all_sensors(void)
459 {
460 	const unsigned int *utmp;
461 	int len, i;
462 
463 	utmp = of_get_property(rtas_node, "rtas-sensors", &len);
464 	if (utmp == NULL) {
465 		printk (KERN_ERR "error: could not get rtas-sensors\n");
466 		return 1;
467 	}
468 
469 	sensors.quant = len / 8;      /* int + int */
470 
471 	for (i=0; i<sensors.quant; i++) {
472 		sensors.sensor[i].token = *utmp++;
473 		sensors.sensor[i].quant = *utmp++;
474 	}
475 	return 0;
476 }
477 
478 /* ****************************************************************** */
479 /*
480  * Builds a string of what rtas returned
481  */
482 static char *ppc_rtas_process_error(int error)
483 {
484 	switch (error) {
485 		case SENSOR_CRITICAL_HIGH:
486 			return "(critical high)";
487 		case SENSOR_WARNING_HIGH:
488 			return "(warning high)";
489 		case SENSOR_NORMAL:
490 			return "(normal)";
491 		case SENSOR_WARNING_LOW:
492 			return "(warning low)";
493 		case SENSOR_CRITICAL_LOW:
494 			return "(critical low)";
495 		case SENSOR_SUCCESS:
496 			return "(read ok)";
497 		case SENSOR_HW_ERROR:
498 			return "(hardware error)";
499 		case SENSOR_BUSY:
500 			return "(busy)";
501 		case SENSOR_NOT_EXIST:
502 			return "(non existent)";
503 		case SENSOR_DR_ENTITY:
504 			return "(dr entity removed)";
505 		default:
506 			return "(UNKNOWN)";
507 	}
508 }
509 
510 /* ****************************************************************** */
511 /*
512  * Builds a string out of what the sensor said
513  */
514 
515 static void ppc_rtas_process_sensor(struct seq_file *m,
516 	struct individual_sensor *s, int state, int error, const char *loc)
517 {
518 	/* Defined return vales */
519 	const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t",
520 						"Maintenance" };
521 	const char * enclosure_switch[]  = { "Closed", "Open" };
522 	const char * lid_status[]        = { " ", "Open", "Closed" };
523 	const char * power_source[]      = { "AC\t", "Battery",
524 		  				"AC & Battery" };
525 	const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
526 	const char * epow_sensor[]       = {
527 		"EPOW Reset", "Cooling warning", "Power warning",
528 		"System shutdown", "System halt", "EPOW main enclosure",
529 		"EPOW power off" };
530 	const char * battery_cyclestate[]  = { "None", "In progress",
531 						"Requested" };
532 	const char * battery_charging[]    = { "Charging", "Discharching",
533 						"No current flow" };
534 	const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable",
535 						"Exchange" };
536 
537 	int have_strings = 0;
538 	int num_states = 0;
539 	int temperature = 0;
540 	int unknown = 0;
541 
542 	/* What kind of sensor do we have here? */
543 
544 	switch (s->token) {
545 		case KEY_SWITCH:
546 			seq_printf(m, "Key switch:\t");
547 			num_states = sizeof(key_switch) / sizeof(char *);
548 			if (state < num_states) {
549 				seq_printf(m, "%s\t", key_switch[state]);
550 				have_strings = 1;
551 			}
552 			break;
553 		case ENCLOSURE_SWITCH:
554 			seq_printf(m, "Enclosure switch:\t");
555 			num_states = sizeof(enclosure_switch) / sizeof(char *);
556 			if (state < num_states) {
557 				seq_printf(m, "%s\t",
558 						enclosure_switch[state]);
559 				have_strings = 1;
560 			}
561 			break;
562 		case THERMAL_SENSOR:
563 			seq_printf(m, "Temp. (C/F):\t");
564 			temperature = 1;
565 			break;
566 		case LID_STATUS:
567 			seq_printf(m, "Lid status:\t");
568 			num_states = sizeof(lid_status) / sizeof(char *);
569 			if (state < num_states) {
570 				seq_printf(m, "%s\t", lid_status[state]);
571 				have_strings = 1;
572 			}
573 			break;
574 		case POWER_SOURCE:
575 			seq_printf(m, "Power source:\t");
576 			num_states = sizeof(power_source) / sizeof(char *);
577 			if (state < num_states) {
578 				seq_printf(m, "%s\t",
579 						power_source[state]);
580 				have_strings = 1;
581 			}
582 			break;
583 		case BATTERY_VOLTAGE:
584 			seq_printf(m, "Battery voltage:\t");
585 			break;
586 		case BATTERY_REMAINING:
587 			seq_printf(m, "Battery remaining:\t");
588 			num_states = sizeof(battery_remaining) / sizeof(char *);
589 			if (state < num_states)
590 			{
591 				seq_printf(m, "%s\t",
592 						battery_remaining[state]);
593 				have_strings = 1;
594 			}
595 			break;
596 		case BATTERY_PERCENTAGE:
597 			seq_printf(m, "Battery percentage:\t");
598 			break;
599 		case EPOW_SENSOR:
600 			seq_printf(m, "EPOW Sensor:\t");
601 			num_states = sizeof(epow_sensor) / sizeof(char *);
602 			if (state < num_states) {
603 				seq_printf(m, "%s\t", epow_sensor[state]);
604 				have_strings = 1;
605 			}
606 			break;
607 		case BATTERY_CYCLESTATE:
608 			seq_printf(m, "Battery cyclestate:\t");
609 			num_states = sizeof(battery_cyclestate) /
610 				     	sizeof(char *);
611 			if (state < num_states) {
612 				seq_printf(m, "%s\t",
613 						battery_cyclestate[state]);
614 				have_strings = 1;
615 			}
616 			break;
617 		case BATTERY_CHARGING:
618 			seq_printf(m, "Battery Charging:\t");
619 			num_states = sizeof(battery_charging) / sizeof(char *);
620 			if (state < num_states) {
621 				seq_printf(m, "%s\t",
622 						battery_charging[state]);
623 				have_strings = 1;
624 			}
625 			break;
626 		case IBM_SURVEILLANCE:
627 			seq_printf(m, "Surveillance:\t");
628 			break;
629 		case IBM_FANRPM:
630 			seq_printf(m, "Fan (rpm):\t");
631 			break;
632 		case IBM_VOLTAGE:
633 			seq_printf(m, "Voltage (mv):\t");
634 			break;
635 		case IBM_DRCONNECTOR:
636 			seq_printf(m, "DR connector:\t");
637 			num_states = sizeof(ibm_drconnector) / sizeof(char *);
638 			if (state < num_states) {
639 				seq_printf(m, "%s\t",
640 						ibm_drconnector[state]);
641 				have_strings = 1;
642 			}
643 			break;
644 		case IBM_POWERSUPPLY:
645 			seq_printf(m, "Powersupply:\t");
646 			break;
647 		default:
648 			seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
649 					s->token);
650 			unknown = 1;
651 			have_strings = 1;
652 			break;
653 	}
654 	if (have_strings == 0) {
655 		if (temperature) {
656 			seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
657 		} else
658 			seq_printf(m, "%10d\t", state);
659 	}
660 	if (unknown == 0) {
661 		seq_printf(m, "%s\t", ppc_rtas_process_error(error));
662 		get_location_code(m, s, loc);
663 	}
664 }
665 
666 /* ****************************************************************** */
667 
668 static void check_location(struct seq_file *m, const char *c)
669 {
670 	switch (c[0]) {
671 		case LOC_PLANAR:
672 			seq_printf(m, "Planar #%c", c[1]);
673 			break;
674 		case LOC_CPU:
675 			seq_printf(m, "CPU #%c", c[1]);
676 			break;
677 		case LOC_FAN:
678 			seq_printf(m, "Fan #%c", c[1]);
679 			break;
680 		case LOC_RACKMOUNTED:
681 			seq_printf(m, "Rack #%c", c[1]);
682 			break;
683 		case LOC_VOLTAGE:
684 			seq_printf(m, "Voltage #%c", c[1]);
685 			break;
686 		case LOC_LCD:
687 			seq_printf(m, "LCD #%c", c[1]);
688 			break;
689 		case '.':
690 			seq_printf(m, "- %c", c[1]);
691 			break;
692 		default:
693 			seq_printf(m, "Unknown location");
694 			break;
695 	}
696 }
697 
698 
699 /* ****************************************************************** */
700 /*
701  * Format:
702  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
703  * the '.' may be an abbrevation
704  */
705 static void check_location_string(struct seq_file *m, const char *c)
706 {
707 	while (*c) {
708 		if (isalpha(*c) || *c == '.')
709 			check_location(m, c);
710 		else if (*c == '/' || *c == '-')
711 			seq_printf(m, " at ");
712 		c++;
713 	}
714 }
715 
716 
717 /* ****************************************************************** */
718 
719 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
720 		const char *loc)
721 {
722 	if (!loc || !*loc) {
723 		seq_printf(m, "---");/* does not have a location */
724 	} else {
725 		check_location_string(m, loc);
726 	}
727 	seq_putc(m, ' ');
728 }
729 /* ****************************************************************** */
730 /* INDICATORS - Tone Frequency                                        */
731 /* ****************************************************************** */
732 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
733 		const char __user *buf, size_t count, loff_t *ppos)
734 {
735 	unsigned long freq;
736 	int error = parse_number(buf, count, &freq);
737 	if (error)
738 		return error;
739 
740 	rtas_tone_frequency = freq; /* save it for later */
741 	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
742 			TONE_FREQUENCY, 0, freq);
743 	if (error)
744 		printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
745 				ppc_rtas_process_error(error));
746 	return count;
747 }
748 /* ****************************************************************** */
749 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
750 {
751 	seq_printf(m, "%lu\n", rtas_tone_frequency);
752 	return 0;
753 }
754 /* ****************************************************************** */
755 /* INDICATORS - Tone Volume                                           */
756 /* ****************************************************************** */
757 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
758 		const char __user *buf, size_t count, loff_t *ppos)
759 {
760 	unsigned long volume;
761 	int error = parse_number(buf, count, &volume);
762 	if (error)
763 		return error;
764 
765 	if (volume > 100)
766 		volume = 100;
767 
768         rtas_tone_volume = volume; /* save it for later */
769 	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
770 			TONE_VOLUME, 0, volume);
771 	if (error)
772 		printk(KERN_WARNING "error: setting tone volume returned: %s\n",
773 				ppc_rtas_process_error(error));
774 	return count;
775 }
776 /* ****************************************************************** */
777 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
778 {
779 	seq_printf(m, "%lu\n", rtas_tone_volume);
780 	return 0;
781 }
782 
783 #define RMO_READ_BUF_MAX 30
784 
785 /* RTAS Userspace access */
786 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
787 {
788 	seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
789 	return 0;
790 }
791