xref: /openbmc/linux/arch/powerpc/kernel/rtas-proc.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *   Copyright (C) 2000 Tilmann Bitterberg
4  *   (tilmann@bitterberg.de)
5  *
6  *   RTAS (Runtime Abstraction Services) stuff
7  *   Intention is to provide a clean user interface
8  *   to use the RTAS.
9  *
10  *   TODO:
11  *   Split off a header file and maybe move it to a different
12  *   location. Write Documentation on what the /proc/rtas/ entries
13  *   actually do.
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/proc_fs.h>
19 #include <linux/stat.h>
20 #include <linux/ctype.h>
21 #include <linux/time.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/seq_file.h>
25 #include <linux/bitops.h>
26 #include <linux/rtc.h>
27 
28 #include <linux/uaccess.h>
29 #include <asm/processor.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/rtas.h>
33 #include <asm/machdep.h> /* for ppc_md */
34 #include <asm/time.h>
35 
36 /* Token for Sensors */
37 #define KEY_SWITCH		0x0001
38 #define ENCLOSURE_SWITCH	0x0002
39 #define THERMAL_SENSOR		0x0003
40 #define LID_STATUS		0x0004
41 #define POWER_SOURCE		0x0005
42 #define BATTERY_VOLTAGE		0x0006
43 #define BATTERY_REMAINING	0x0007
44 #define BATTERY_PERCENTAGE	0x0008
45 #define EPOW_SENSOR		0x0009
46 #define BATTERY_CYCLESTATE	0x000a
47 #define BATTERY_CHARGING	0x000b
48 
49 /* IBM specific sensors */
50 #define IBM_SURVEILLANCE	0x2328 /* 9000 */
51 #define IBM_FANRPM		0x2329 /* 9001 */
52 #define IBM_VOLTAGE		0x232a /* 9002 */
53 #define IBM_DRCONNECTOR		0x232b /* 9003 */
54 #define IBM_POWERSUPPLY		0x232c /* 9004 */
55 
56 /* Status return values */
57 #define SENSOR_CRITICAL_HIGH	13
58 #define SENSOR_WARNING_HIGH	12
59 #define SENSOR_NORMAL		11
60 #define SENSOR_WARNING_LOW	10
61 #define SENSOR_CRITICAL_LOW	 9
62 #define SENSOR_SUCCESS		 0
63 #define SENSOR_HW_ERROR		-1
64 #define SENSOR_BUSY		-2
65 #define SENSOR_NOT_EXIST	-3
66 #define SENSOR_DR_ENTITY	-9000
67 
68 /* Location Codes */
69 #define LOC_SCSI_DEV_ADDR	'A'
70 #define LOC_SCSI_DEV_LOC	'B'
71 #define LOC_CPU			'C'
72 #define LOC_DISKETTE		'D'
73 #define LOC_ETHERNET		'E'
74 #define LOC_FAN			'F'
75 #define LOC_GRAPHICS		'G'
76 /* reserved / not used		'H' */
77 #define LOC_IO_ADAPTER		'I'
78 /* reserved / not used		'J' */
79 #define LOC_KEYBOARD		'K'
80 #define LOC_LCD			'L'
81 #define LOC_MEMORY		'M'
82 #define LOC_NV_MEMORY		'N'
83 #define LOC_MOUSE		'O'
84 #define LOC_PLANAR		'P'
85 #define LOC_OTHER_IO		'Q'
86 #define LOC_PARALLEL		'R'
87 #define LOC_SERIAL		'S'
88 #define LOC_DEAD_RING		'T'
89 #define LOC_RACKMOUNTED		'U' /* for _u_nit is rack mounted */
90 #define LOC_VOLTAGE		'V'
91 #define LOC_SWITCH_ADAPTER	'W'
92 #define LOC_OTHER		'X'
93 #define LOC_FIRMWARE		'Y'
94 #define LOC_SCSI		'Z'
95 
96 /* Tokens for indicators */
97 #define TONE_FREQUENCY		0x0001 /* 0 - 1000 (HZ)*/
98 #define TONE_VOLUME		0x0002 /* 0 - 100 (%) */
99 #define SYSTEM_POWER_STATE	0x0003
100 #define WARNING_LIGHT		0x0004
101 #define DISK_ACTIVITY_LIGHT	0x0005
102 #define HEX_DISPLAY_UNIT	0x0006
103 #define BATTERY_WARNING_TIME	0x0007
104 #define CONDITION_CYCLE_REQUEST	0x0008
105 #define SURVEILLANCE_INDICATOR	0x2328 /* 9000 */
106 #define DR_ACTION		0x2329 /* 9001 */
107 #define DR_INDICATOR		0x232a /* 9002 */
108 /* 9003 - 9004: Vendor specific */
109 /* 9006 - 9999: Vendor specific */
110 
111 /* other */
112 #define MAX_SENSORS		 17  /* I only know of 17 sensors */
113 #define MAX_LINELENGTH          256
114 #define SENSOR_PREFIX		"ibm,sensor-"
115 #define cel_to_fahr(x)		((x*9/5)+32)
116 
117 struct individual_sensor {
118 	unsigned int token;
119 	unsigned int quant;
120 };
121 
122 struct rtas_sensors {
123         struct individual_sensor sensor[MAX_SENSORS];
124 	unsigned int quant;
125 };
126 
127 /* Globals */
128 static struct rtas_sensors sensors;
129 static struct device_node *rtas_node = NULL;
130 static unsigned long power_on_time = 0; /* Save the time the user set */
131 static char progress_led[MAX_LINELENGTH];
132 
133 static unsigned long rtas_tone_frequency = 1000;
134 static unsigned long rtas_tone_volume = 0;
135 
136 /* ****************************************************************** */
137 /* Declarations */
138 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
139 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
140 static ssize_t ppc_rtas_clock_write(struct file *file,
141 		const char __user *buf, size_t count, loff_t *ppos);
142 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
143 static ssize_t ppc_rtas_progress_write(struct file *file,
144 		const char __user *buf, size_t count, loff_t *ppos);
145 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
146 static ssize_t ppc_rtas_poweron_write(struct file *file,
147 		const char __user *buf, size_t count, loff_t *ppos);
148 
149 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
150 		const char __user *buf, size_t count, loff_t *ppos);
151 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
152 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
153 		const char __user *buf, size_t count, loff_t *ppos);
154 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
155 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
156 
157 static int sensors_open(struct inode *inode, struct file *file)
158 {
159 	return single_open(file, ppc_rtas_sensors_show, NULL);
160 }
161 
162 static const struct file_operations ppc_rtas_sensors_operations = {
163 	.open		= sensors_open,
164 	.read		= seq_read,
165 	.llseek		= seq_lseek,
166 	.release	= single_release,
167 };
168 
169 static int poweron_open(struct inode *inode, struct file *file)
170 {
171 	return single_open(file, ppc_rtas_poweron_show, NULL);
172 }
173 
174 static const struct file_operations ppc_rtas_poweron_operations = {
175 	.open		= poweron_open,
176 	.read		= seq_read,
177 	.llseek		= seq_lseek,
178 	.write		= ppc_rtas_poweron_write,
179 	.release	= single_release,
180 };
181 
182 static int progress_open(struct inode *inode, struct file *file)
183 {
184 	return single_open(file, ppc_rtas_progress_show, NULL);
185 }
186 
187 static const struct file_operations ppc_rtas_progress_operations = {
188 	.open		= progress_open,
189 	.read		= seq_read,
190 	.llseek		= seq_lseek,
191 	.write		= ppc_rtas_progress_write,
192 	.release	= single_release,
193 };
194 
195 static int clock_open(struct inode *inode, struct file *file)
196 {
197 	return single_open(file, ppc_rtas_clock_show, NULL);
198 }
199 
200 static const struct file_operations ppc_rtas_clock_operations = {
201 	.open		= clock_open,
202 	.read		= seq_read,
203 	.llseek		= seq_lseek,
204 	.write		= ppc_rtas_clock_write,
205 	.release	= single_release,
206 };
207 
208 static int tone_freq_open(struct inode *inode, struct file *file)
209 {
210 	return single_open(file, ppc_rtas_tone_freq_show, NULL);
211 }
212 
213 static const struct file_operations ppc_rtas_tone_freq_operations = {
214 	.open		= tone_freq_open,
215 	.read		= seq_read,
216 	.llseek		= seq_lseek,
217 	.write		= ppc_rtas_tone_freq_write,
218 	.release	= single_release,
219 };
220 
221 static int tone_volume_open(struct inode *inode, struct file *file)
222 {
223 	return single_open(file, ppc_rtas_tone_volume_show, NULL);
224 }
225 
226 static const struct file_operations ppc_rtas_tone_volume_operations = {
227 	.open		= tone_volume_open,
228 	.read		= seq_read,
229 	.llseek		= seq_lseek,
230 	.write		= ppc_rtas_tone_volume_write,
231 	.release	= single_release,
232 };
233 
234 static int rmo_buf_open(struct inode *inode, struct file *file)
235 {
236 	return single_open(file, ppc_rtas_rmo_buf_show, NULL);
237 }
238 
239 static const struct file_operations ppc_rtas_rmo_buf_ops = {
240 	.open		= rmo_buf_open,
241 	.read		= seq_read,
242 	.llseek		= seq_lseek,
243 	.release	= single_release,
244 };
245 
246 static int ppc_rtas_find_all_sensors(void);
247 static void ppc_rtas_process_sensor(struct seq_file *m,
248 	struct individual_sensor *s, int state, int error, const char *loc);
249 static char *ppc_rtas_process_error(int error);
250 static void get_location_code(struct seq_file *m,
251 	struct individual_sensor *s, const char *loc);
252 static void check_location_string(struct seq_file *m, const char *c);
253 static void check_location(struct seq_file *m, const char *c);
254 
255 static int __init proc_rtas_init(void)
256 {
257 	if (!machine_is(pseries))
258 		return -ENODEV;
259 
260 	rtas_node = of_find_node_by_name(NULL, "rtas");
261 	if (rtas_node == NULL)
262 		return -ENODEV;
263 
264 	proc_create("powerpc/rtas/progress", 0644, NULL,
265 		    &ppc_rtas_progress_operations);
266 	proc_create("powerpc/rtas/clock", 0644, NULL,
267 		    &ppc_rtas_clock_operations);
268 	proc_create("powerpc/rtas/poweron", 0644, NULL,
269 		    &ppc_rtas_poweron_operations);
270 	proc_create("powerpc/rtas/sensors", 0444, NULL,
271 		    &ppc_rtas_sensors_operations);
272 	proc_create("powerpc/rtas/frequency", 0644, NULL,
273 		    &ppc_rtas_tone_freq_operations);
274 	proc_create("powerpc/rtas/volume", 0644, NULL,
275 		    &ppc_rtas_tone_volume_operations);
276 	proc_create("powerpc/rtas/rmo_buffer", 0400, NULL,
277 		    &ppc_rtas_rmo_buf_ops);
278 	return 0;
279 }
280 
281 __initcall(proc_rtas_init);
282 
283 static int parse_number(const char __user *p, size_t count, unsigned long *val)
284 {
285 	char buf[40];
286 	char *end;
287 
288 	if (count > 39)
289 		return -EINVAL;
290 
291 	if (copy_from_user(buf, p, count))
292 		return -EFAULT;
293 
294 	buf[count] = 0;
295 
296 	*val = simple_strtoul(buf, &end, 10);
297 	if (*end && *end != '\n')
298 		return -EINVAL;
299 
300 	return 0;
301 }
302 
303 /* ****************************************************************** */
304 /* POWER-ON-TIME                                                      */
305 /* ****************************************************************** */
306 static ssize_t ppc_rtas_poweron_write(struct file *file,
307 		const char __user *buf, size_t count, loff_t *ppos)
308 {
309 	struct rtc_time tm;
310 	unsigned long nowtime;
311 	int error = parse_number(buf, count, &nowtime);
312 	if (error)
313 		return error;
314 
315 	power_on_time = nowtime; /* save the time */
316 
317 	to_tm(nowtime, &tm);
318 
319 	error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
320 			tm.tm_year, tm.tm_mon, tm.tm_mday,
321 			tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
322 	if (error)
323 		printk(KERN_WARNING "error: setting poweron time returned: %s\n",
324 				ppc_rtas_process_error(error));
325 	return count;
326 }
327 /* ****************************************************************** */
328 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
329 {
330 	if (power_on_time == 0)
331 		seq_printf(m, "Power on time not set\n");
332 	else
333 		seq_printf(m, "%lu\n",power_on_time);
334 	return 0;
335 }
336 
337 /* ****************************************************************** */
338 /* PROGRESS                                                           */
339 /* ****************************************************************** */
340 static ssize_t ppc_rtas_progress_write(struct file *file,
341 		const char __user *buf, size_t count, loff_t *ppos)
342 {
343 	unsigned long hex;
344 
345 	if (count >= MAX_LINELENGTH)
346 		count = MAX_LINELENGTH -1;
347 	if (copy_from_user(progress_led, buf, count)) { /* save the string */
348 		return -EFAULT;
349 	}
350 	progress_led[count] = 0;
351 
352 	/* Lets see if the user passed hexdigits */
353 	hex = simple_strtoul(progress_led, NULL, 10);
354 
355 	rtas_progress ((char *)progress_led, hex);
356 	return count;
357 
358 	/* clear the line */
359 	/* rtas_progress("                   ", 0xffff);*/
360 }
361 /* ****************************************************************** */
362 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
363 {
364 	if (progress_led[0])
365 		seq_printf(m, "%s\n", progress_led);
366 	return 0;
367 }
368 
369 /* ****************************************************************** */
370 /* CLOCK                                                              */
371 /* ****************************************************************** */
372 static ssize_t ppc_rtas_clock_write(struct file *file,
373 		const char __user *buf, size_t count, loff_t *ppos)
374 {
375 	struct rtc_time tm;
376 	unsigned long nowtime;
377 	int error = parse_number(buf, count, &nowtime);
378 	if (error)
379 		return error;
380 
381 	to_tm(nowtime, &tm);
382 	error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
383 			tm.tm_year, tm.tm_mon, tm.tm_mday,
384 			tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
385 	if (error)
386 		printk(KERN_WARNING "error: setting the clock returned: %s\n",
387 				ppc_rtas_process_error(error));
388 	return count;
389 }
390 /* ****************************************************************** */
391 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
392 {
393 	int ret[8];
394 	int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
395 
396 	if (error) {
397 		printk(KERN_WARNING "error: reading the clock returned: %s\n",
398 				ppc_rtas_process_error(error));
399 		seq_printf(m, "0");
400 	} else {
401 		unsigned int year, mon, day, hour, min, sec;
402 		year = ret[0]; mon  = ret[1]; day  = ret[2];
403 		hour = ret[3]; min  = ret[4]; sec  = ret[5];
404 		seq_printf(m, "%lu\n",
405 				mktime(year, mon, day, hour, min, sec));
406 	}
407 	return 0;
408 }
409 
410 /* ****************************************************************** */
411 /* SENSOR STUFF                                                       */
412 /* ****************************************************************** */
413 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
414 {
415 	int i,j;
416 	int state, error;
417 	int get_sensor_state = rtas_token("get-sensor-state");
418 
419 	seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
420 	seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
421 	seq_printf(m, "********************************************************\n");
422 
423 	if (ppc_rtas_find_all_sensors() != 0) {
424 		seq_printf(m, "\nNo sensors are available\n");
425 		return 0;
426 	}
427 
428 	for (i=0; i<sensors.quant; i++) {
429 		struct individual_sensor *p = &sensors.sensor[i];
430 		char rstr[64];
431 		const char *loc;
432 		int llen, offs;
433 
434 		sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
435 		loc = of_get_property(rtas_node, rstr, &llen);
436 
437 		/* A sensor may have multiple instances */
438 		for (j = 0, offs = 0; j <= p->quant; j++) {
439 			error =	rtas_call(get_sensor_state, 2, 2, &state,
440 				  	  p->token, j);
441 
442 			ppc_rtas_process_sensor(m, p, state, error, loc);
443 			seq_putc(m, '\n');
444 			if (loc) {
445 				offs += strlen(loc) + 1;
446 				loc += strlen(loc) + 1;
447 				if (offs >= llen)
448 					loc = NULL;
449 			}
450 		}
451 	}
452 	return 0;
453 }
454 
455 /* ****************************************************************** */
456 
457 static int ppc_rtas_find_all_sensors(void)
458 {
459 	const unsigned int *utmp;
460 	int len, i;
461 
462 	utmp = of_get_property(rtas_node, "rtas-sensors", &len);
463 	if (utmp == NULL) {
464 		printk (KERN_ERR "error: could not get rtas-sensors\n");
465 		return 1;
466 	}
467 
468 	sensors.quant = len / 8;      /* int + int */
469 
470 	for (i=0; i<sensors.quant; i++) {
471 		sensors.sensor[i].token = *utmp++;
472 		sensors.sensor[i].quant = *utmp++;
473 	}
474 	return 0;
475 }
476 
477 /* ****************************************************************** */
478 /*
479  * Builds a string of what rtas returned
480  */
481 static char *ppc_rtas_process_error(int error)
482 {
483 	switch (error) {
484 		case SENSOR_CRITICAL_HIGH:
485 			return "(critical high)";
486 		case SENSOR_WARNING_HIGH:
487 			return "(warning high)";
488 		case SENSOR_NORMAL:
489 			return "(normal)";
490 		case SENSOR_WARNING_LOW:
491 			return "(warning low)";
492 		case SENSOR_CRITICAL_LOW:
493 			return "(critical low)";
494 		case SENSOR_SUCCESS:
495 			return "(read ok)";
496 		case SENSOR_HW_ERROR:
497 			return "(hardware error)";
498 		case SENSOR_BUSY:
499 			return "(busy)";
500 		case SENSOR_NOT_EXIST:
501 			return "(non existent)";
502 		case SENSOR_DR_ENTITY:
503 			return "(dr entity removed)";
504 		default:
505 			return "(UNKNOWN)";
506 	}
507 }
508 
509 /* ****************************************************************** */
510 /*
511  * Builds a string out of what the sensor said
512  */
513 
514 static void ppc_rtas_process_sensor(struct seq_file *m,
515 	struct individual_sensor *s, int state, int error, const char *loc)
516 {
517 	/* Defined return vales */
518 	const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t",
519 						"Maintenance" };
520 	const char * enclosure_switch[]  = { "Closed", "Open" };
521 	const char * lid_status[]        = { " ", "Open", "Closed" };
522 	const char * power_source[]      = { "AC\t", "Battery",
523 		  				"AC & Battery" };
524 	const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
525 	const char * epow_sensor[]       = {
526 		"EPOW Reset", "Cooling warning", "Power warning",
527 		"System shutdown", "System halt", "EPOW main enclosure",
528 		"EPOW power off" };
529 	const char * battery_cyclestate[]  = { "None", "In progress",
530 						"Requested" };
531 	const char * battery_charging[]    = { "Charging", "Discharching",
532 						"No current flow" };
533 	const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable",
534 						"Exchange" };
535 
536 	int have_strings = 0;
537 	int num_states = 0;
538 	int temperature = 0;
539 	int unknown = 0;
540 
541 	/* What kind of sensor do we have here? */
542 
543 	switch (s->token) {
544 		case KEY_SWITCH:
545 			seq_printf(m, "Key switch:\t");
546 			num_states = sizeof(key_switch) / sizeof(char *);
547 			if (state < num_states) {
548 				seq_printf(m, "%s\t", key_switch[state]);
549 				have_strings = 1;
550 			}
551 			break;
552 		case ENCLOSURE_SWITCH:
553 			seq_printf(m, "Enclosure switch:\t");
554 			num_states = sizeof(enclosure_switch) / sizeof(char *);
555 			if (state < num_states) {
556 				seq_printf(m, "%s\t",
557 						enclosure_switch[state]);
558 				have_strings = 1;
559 			}
560 			break;
561 		case THERMAL_SENSOR:
562 			seq_printf(m, "Temp. (C/F):\t");
563 			temperature = 1;
564 			break;
565 		case LID_STATUS:
566 			seq_printf(m, "Lid status:\t");
567 			num_states = sizeof(lid_status) / sizeof(char *);
568 			if (state < num_states) {
569 				seq_printf(m, "%s\t", lid_status[state]);
570 				have_strings = 1;
571 			}
572 			break;
573 		case POWER_SOURCE:
574 			seq_printf(m, "Power source:\t");
575 			num_states = sizeof(power_source) / sizeof(char *);
576 			if (state < num_states) {
577 				seq_printf(m, "%s\t",
578 						power_source[state]);
579 				have_strings = 1;
580 			}
581 			break;
582 		case BATTERY_VOLTAGE:
583 			seq_printf(m, "Battery voltage:\t");
584 			break;
585 		case BATTERY_REMAINING:
586 			seq_printf(m, "Battery remaining:\t");
587 			num_states = sizeof(battery_remaining) / sizeof(char *);
588 			if (state < num_states)
589 			{
590 				seq_printf(m, "%s\t",
591 						battery_remaining[state]);
592 				have_strings = 1;
593 			}
594 			break;
595 		case BATTERY_PERCENTAGE:
596 			seq_printf(m, "Battery percentage:\t");
597 			break;
598 		case EPOW_SENSOR:
599 			seq_printf(m, "EPOW Sensor:\t");
600 			num_states = sizeof(epow_sensor) / sizeof(char *);
601 			if (state < num_states) {
602 				seq_printf(m, "%s\t", epow_sensor[state]);
603 				have_strings = 1;
604 			}
605 			break;
606 		case BATTERY_CYCLESTATE:
607 			seq_printf(m, "Battery cyclestate:\t");
608 			num_states = sizeof(battery_cyclestate) /
609 				     	sizeof(char *);
610 			if (state < num_states) {
611 				seq_printf(m, "%s\t",
612 						battery_cyclestate[state]);
613 				have_strings = 1;
614 			}
615 			break;
616 		case BATTERY_CHARGING:
617 			seq_printf(m, "Battery Charging:\t");
618 			num_states = sizeof(battery_charging) / sizeof(char *);
619 			if (state < num_states) {
620 				seq_printf(m, "%s\t",
621 						battery_charging[state]);
622 				have_strings = 1;
623 			}
624 			break;
625 		case IBM_SURVEILLANCE:
626 			seq_printf(m, "Surveillance:\t");
627 			break;
628 		case IBM_FANRPM:
629 			seq_printf(m, "Fan (rpm):\t");
630 			break;
631 		case IBM_VOLTAGE:
632 			seq_printf(m, "Voltage (mv):\t");
633 			break;
634 		case IBM_DRCONNECTOR:
635 			seq_printf(m, "DR connector:\t");
636 			num_states = sizeof(ibm_drconnector) / sizeof(char *);
637 			if (state < num_states) {
638 				seq_printf(m, "%s\t",
639 						ibm_drconnector[state]);
640 				have_strings = 1;
641 			}
642 			break;
643 		case IBM_POWERSUPPLY:
644 			seq_printf(m, "Powersupply:\t");
645 			break;
646 		default:
647 			seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
648 					s->token);
649 			unknown = 1;
650 			have_strings = 1;
651 			break;
652 	}
653 	if (have_strings == 0) {
654 		if (temperature) {
655 			seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
656 		} else
657 			seq_printf(m, "%10d\t", state);
658 	}
659 	if (unknown == 0) {
660 		seq_printf(m, "%s\t", ppc_rtas_process_error(error));
661 		get_location_code(m, s, loc);
662 	}
663 }
664 
665 /* ****************************************************************** */
666 
667 static void check_location(struct seq_file *m, const char *c)
668 {
669 	switch (c[0]) {
670 		case LOC_PLANAR:
671 			seq_printf(m, "Planar #%c", c[1]);
672 			break;
673 		case LOC_CPU:
674 			seq_printf(m, "CPU #%c", c[1]);
675 			break;
676 		case LOC_FAN:
677 			seq_printf(m, "Fan #%c", c[1]);
678 			break;
679 		case LOC_RACKMOUNTED:
680 			seq_printf(m, "Rack #%c", c[1]);
681 			break;
682 		case LOC_VOLTAGE:
683 			seq_printf(m, "Voltage #%c", c[1]);
684 			break;
685 		case LOC_LCD:
686 			seq_printf(m, "LCD #%c", c[1]);
687 			break;
688 		case '.':
689 			seq_printf(m, "- %c", c[1]);
690 			break;
691 		default:
692 			seq_printf(m, "Unknown location");
693 			break;
694 	}
695 }
696 
697 
698 /* ****************************************************************** */
699 /*
700  * Format:
701  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
702  * the '.' may be an abbreviation
703  */
704 static void check_location_string(struct seq_file *m, const char *c)
705 {
706 	while (*c) {
707 		if (isalpha(*c) || *c == '.')
708 			check_location(m, c);
709 		else if (*c == '/' || *c == '-')
710 			seq_printf(m, " at ");
711 		c++;
712 	}
713 }
714 
715 
716 /* ****************************************************************** */
717 
718 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
719 		const char *loc)
720 {
721 	if (!loc || !*loc) {
722 		seq_printf(m, "---");/* does not have a location */
723 	} else {
724 		check_location_string(m, loc);
725 	}
726 	seq_putc(m, ' ');
727 }
728 /* ****************************************************************** */
729 /* INDICATORS - Tone Frequency                                        */
730 /* ****************************************************************** */
731 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
732 		const char __user *buf, size_t count, loff_t *ppos)
733 {
734 	unsigned long freq;
735 	int error = parse_number(buf, count, &freq);
736 	if (error)
737 		return error;
738 
739 	rtas_tone_frequency = freq; /* save it for later */
740 	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
741 			TONE_FREQUENCY, 0, freq);
742 	if (error)
743 		printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
744 				ppc_rtas_process_error(error));
745 	return count;
746 }
747 /* ****************************************************************** */
748 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
749 {
750 	seq_printf(m, "%lu\n", rtas_tone_frequency);
751 	return 0;
752 }
753 /* ****************************************************************** */
754 /* INDICATORS - Tone Volume                                           */
755 /* ****************************************************************** */
756 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
757 		const char __user *buf, size_t count, loff_t *ppos)
758 {
759 	unsigned long volume;
760 	int error = parse_number(buf, count, &volume);
761 	if (error)
762 		return error;
763 
764 	if (volume > 100)
765 		volume = 100;
766 
767         rtas_tone_volume = volume; /* save it for later */
768 	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
769 			TONE_VOLUME, 0, volume);
770 	if (error)
771 		printk(KERN_WARNING "error: setting tone volume returned: %s\n",
772 				ppc_rtas_process_error(error));
773 	return count;
774 }
775 /* ****************************************************************** */
776 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
777 {
778 	seq_printf(m, "%lu\n", rtas_tone_volume);
779 	return 0;
780 }
781 
782 #define RMO_READ_BUF_MAX 30
783 
784 /* RTAS Userspace access */
785 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
786 {
787 	seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
788 	return 0;
789 }
790