xref: /openbmc/linux/arch/powerpc/kernel/rtas-proc.c (revision 64c70b1c)
1 /*
2  *   Copyright (C) 2000 Tilmann Bitterberg
3  *   (tilmann@bitterberg.de)
4  *
5  *   RTAS (Runtime Abstraction Services) stuff
6  *   Intention is to provide a clean user interface
7  *   to use the RTAS.
8  *
9  *   TODO:
10  *   Split off a header file and maybe move it to a different
11  *   location. Write Documentation on what the /proc/rtas/ entries
12  *   actually do.
13  */
14 
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/proc_fs.h>
18 #include <linux/stat.h>
19 #include <linux/ctype.h>
20 #include <linux/time.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/seq_file.h>
24 #include <linux/bitops.h>
25 #include <linux/rtc.h>
26 
27 #include <asm/uaccess.h>
28 #include <asm/processor.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/rtas.h>
32 #include <asm/machdep.h> /* for ppc_md */
33 #include <asm/time.h>
34 
35 /* Token for Sensors */
36 #define KEY_SWITCH		0x0001
37 #define ENCLOSURE_SWITCH	0x0002
38 #define THERMAL_SENSOR		0x0003
39 #define LID_STATUS		0x0004
40 #define POWER_SOURCE		0x0005
41 #define BATTERY_VOLTAGE		0x0006
42 #define BATTERY_REMAINING	0x0007
43 #define BATTERY_PERCENTAGE	0x0008
44 #define EPOW_SENSOR		0x0009
45 #define BATTERY_CYCLESTATE	0x000a
46 #define BATTERY_CHARGING	0x000b
47 
48 /* IBM specific sensors */
49 #define IBM_SURVEILLANCE	0x2328 /* 9000 */
50 #define IBM_FANRPM		0x2329 /* 9001 */
51 #define IBM_VOLTAGE		0x232a /* 9002 */
52 #define IBM_DRCONNECTOR		0x232b /* 9003 */
53 #define IBM_POWERSUPPLY		0x232c /* 9004 */
54 
55 /* Status return values */
56 #define SENSOR_CRITICAL_HIGH	13
57 #define SENSOR_WARNING_HIGH	12
58 #define SENSOR_NORMAL		11
59 #define SENSOR_WARNING_LOW	10
60 #define SENSOR_CRITICAL_LOW	 9
61 #define SENSOR_SUCCESS		 0
62 #define SENSOR_HW_ERROR		-1
63 #define SENSOR_BUSY		-2
64 #define SENSOR_NOT_EXIST	-3
65 #define SENSOR_DR_ENTITY	-9000
66 
67 /* Location Codes */
68 #define LOC_SCSI_DEV_ADDR	'A'
69 #define LOC_SCSI_DEV_LOC	'B'
70 #define LOC_CPU			'C'
71 #define LOC_DISKETTE		'D'
72 #define LOC_ETHERNET		'E'
73 #define LOC_FAN			'F'
74 #define LOC_GRAPHICS		'G'
75 /* reserved / not used		'H' */
76 #define LOC_IO_ADAPTER		'I'
77 /* reserved / not used		'J' */
78 #define LOC_KEYBOARD		'K'
79 #define LOC_LCD			'L'
80 #define LOC_MEMORY		'M'
81 #define LOC_NV_MEMORY		'N'
82 #define LOC_MOUSE		'O'
83 #define LOC_PLANAR		'P'
84 #define LOC_OTHER_IO		'Q'
85 #define LOC_PARALLEL		'R'
86 #define LOC_SERIAL		'S'
87 #define LOC_DEAD_RING		'T'
88 #define LOC_RACKMOUNTED		'U' /* for _u_nit is rack mounted */
89 #define LOC_VOLTAGE		'V'
90 #define LOC_SWITCH_ADAPTER	'W'
91 #define LOC_OTHER		'X'
92 #define LOC_FIRMWARE		'Y'
93 #define LOC_SCSI		'Z'
94 
95 /* Tokens for indicators */
96 #define TONE_FREQUENCY		0x0001 /* 0 - 1000 (HZ)*/
97 #define TONE_VOLUME		0x0002 /* 0 - 100 (%) */
98 #define SYSTEM_POWER_STATE	0x0003
99 #define WARNING_LIGHT		0x0004
100 #define DISK_ACTIVITY_LIGHT	0x0005
101 #define HEX_DISPLAY_UNIT	0x0006
102 #define BATTERY_WARNING_TIME	0x0007
103 #define CONDITION_CYCLE_REQUEST	0x0008
104 #define SURVEILLANCE_INDICATOR	0x2328 /* 9000 */
105 #define DR_ACTION		0x2329 /* 9001 */
106 #define DR_INDICATOR		0x232a /* 9002 */
107 /* 9003 - 9004: Vendor specific */
108 /* 9006 - 9999: Vendor specific */
109 
110 /* other */
111 #define MAX_SENSORS		 17  /* I only know of 17 sensors */
112 #define MAX_LINELENGTH          256
113 #define SENSOR_PREFIX		"ibm,sensor-"
114 #define cel_to_fahr(x)		((x*9/5)+32)
115 
116 
117 /* Globals */
118 static struct rtas_sensors sensors;
119 static struct device_node *rtas_node = NULL;
120 static unsigned long power_on_time = 0; /* Save the time the user set */
121 static char progress_led[MAX_LINELENGTH];
122 
123 static unsigned long rtas_tone_frequency = 1000;
124 static unsigned long rtas_tone_volume = 0;
125 
126 /* ****************STRUCTS******************************************* */
127 struct individual_sensor {
128 	unsigned int token;
129 	unsigned int quant;
130 };
131 
132 struct rtas_sensors {
133         struct individual_sensor sensor[MAX_SENSORS];
134 	unsigned int quant;
135 };
136 
137 /* ****************************************************************** */
138 /* Declarations */
139 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
140 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
141 static ssize_t ppc_rtas_clock_write(struct file *file,
142 		const char __user *buf, size_t count, loff_t *ppos);
143 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
144 static ssize_t ppc_rtas_progress_write(struct file *file,
145 		const char __user *buf, size_t count, loff_t *ppos);
146 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
147 static ssize_t ppc_rtas_poweron_write(struct file *file,
148 		const char __user *buf, size_t count, loff_t *ppos);
149 
150 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
151 		const char __user *buf, size_t count, loff_t *ppos);
152 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
153 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
154 		const char __user *buf, size_t count, loff_t *ppos);
155 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
156 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
157 
158 static int sensors_open(struct inode *inode, struct file *file)
159 {
160 	return single_open(file, ppc_rtas_sensors_show, NULL);
161 }
162 
163 const struct file_operations ppc_rtas_sensors_operations = {
164 	.open		= sensors_open,
165 	.read		= seq_read,
166 	.llseek		= seq_lseek,
167 	.release	= single_release,
168 };
169 
170 static int poweron_open(struct inode *inode, struct file *file)
171 {
172 	return single_open(file, ppc_rtas_poweron_show, NULL);
173 }
174 
175 const struct file_operations ppc_rtas_poweron_operations = {
176 	.open		= poweron_open,
177 	.read		= seq_read,
178 	.llseek		= seq_lseek,
179 	.write		= ppc_rtas_poweron_write,
180 	.release	= single_release,
181 };
182 
183 static int progress_open(struct inode *inode, struct file *file)
184 {
185 	return single_open(file, ppc_rtas_progress_show, NULL);
186 }
187 
188 const struct file_operations ppc_rtas_progress_operations = {
189 	.open		= progress_open,
190 	.read		= seq_read,
191 	.llseek		= seq_lseek,
192 	.write		= ppc_rtas_progress_write,
193 	.release	= single_release,
194 };
195 
196 static int clock_open(struct inode *inode, struct file *file)
197 {
198 	return single_open(file, ppc_rtas_clock_show, NULL);
199 }
200 
201 const struct file_operations ppc_rtas_clock_operations = {
202 	.open		= clock_open,
203 	.read		= seq_read,
204 	.llseek		= seq_lseek,
205 	.write		= ppc_rtas_clock_write,
206 	.release	= single_release,
207 };
208 
209 static int tone_freq_open(struct inode *inode, struct file *file)
210 {
211 	return single_open(file, ppc_rtas_tone_freq_show, NULL);
212 }
213 
214 const struct file_operations ppc_rtas_tone_freq_operations = {
215 	.open		= tone_freq_open,
216 	.read		= seq_read,
217 	.llseek		= seq_lseek,
218 	.write		= ppc_rtas_tone_freq_write,
219 	.release	= single_release,
220 };
221 
222 static int tone_volume_open(struct inode *inode, struct file *file)
223 {
224 	return single_open(file, ppc_rtas_tone_volume_show, NULL);
225 }
226 
227 const struct file_operations ppc_rtas_tone_volume_operations = {
228 	.open		= tone_volume_open,
229 	.read		= seq_read,
230 	.llseek		= seq_lseek,
231 	.write		= ppc_rtas_tone_volume_write,
232 	.release	= single_release,
233 };
234 
235 static int rmo_buf_open(struct inode *inode, struct file *file)
236 {
237 	return single_open(file, ppc_rtas_rmo_buf_show, NULL);
238 }
239 
240 const struct file_operations ppc_rtas_rmo_buf_ops = {
241 	.open		= rmo_buf_open,
242 	.read		= seq_read,
243 	.llseek		= seq_lseek,
244 	.release	= single_release,
245 };
246 
247 static int ppc_rtas_find_all_sensors(void);
248 static void ppc_rtas_process_sensor(struct seq_file *m,
249 	struct individual_sensor *s, int state, int error, const char *loc);
250 static char *ppc_rtas_process_error(int error);
251 static void get_location_code(struct seq_file *m,
252 	struct individual_sensor *s, const char *loc);
253 static void check_location_string(struct seq_file *m, const char *c);
254 static void check_location(struct seq_file *m, const char *c);
255 
256 static int __init proc_rtas_init(void)
257 {
258 	struct proc_dir_entry *entry;
259 
260 	if (!machine_is(pseries))
261 		return -ENODEV;
262 
263 	rtas_node = of_find_node_by_name(NULL, "rtas");
264 	if (rtas_node == NULL)
265 		return -ENODEV;
266 
267 	entry = create_proc_entry("ppc64/rtas/progress", S_IRUGO|S_IWUSR, NULL);
268 	if (entry)
269 		entry->proc_fops = &ppc_rtas_progress_operations;
270 
271 	entry = create_proc_entry("ppc64/rtas/clock", S_IRUGO|S_IWUSR, NULL);
272 	if (entry)
273 		entry->proc_fops = &ppc_rtas_clock_operations;
274 
275 	entry = create_proc_entry("ppc64/rtas/poweron", S_IWUSR|S_IRUGO, NULL);
276 	if (entry)
277 		entry->proc_fops = &ppc_rtas_poweron_operations;
278 
279 	entry = create_proc_entry("ppc64/rtas/sensors", S_IRUGO, NULL);
280 	if (entry)
281 		entry->proc_fops = &ppc_rtas_sensors_operations;
282 
283 	entry = create_proc_entry("ppc64/rtas/frequency", S_IWUSR|S_IRUGO,
284 				  NULL);
285 	if (entry)
286 		entry->proc_fops = &ppc_rtas_tone_freq_operations;
287 
288 	entry = create_proc_entry("ppc64/rtas/volume", S_IWUSR|S_IRUGO, NULL);
289 	if (entry)
290 		entry->proc_fops = &ppc_rtas_tone_volume_operations;
291 
292 	entry = create_proc_entry("ppc64/rtas/rmo_buffer", S_IRUSR, NULL);
293 	if (entry)
294 		entry->proc_fops = &ppc_rtas_rmo_buf_ops;
295 
296 	return 0;
297 }
298 
299 __initcall(proc_rtas_init);
300 
301 static int parse_number(const char __user *p, size_t count, unsigned long *val)
302 {
303 	char buf[40];
304 	char *end;
305 
306 	if (count > 39)
307 		return -EINVAL;
308 
309 	if (copy_from_user(buf, p, count))
310 		return -EFAULT;
311 
312 	buf[count] = 0;
313 
314 	*val = simple_strtoul(buf, &end, 10);
315 	if (*end && *end != '\n')
316 		return -EINVAL;
317 
318 	return 0;
319 }
320 
321 /* ****************************************************************** */
322 /* POWER-ON-TIME                                                      */
323 /* ****************************************************************** */
324 static ssize_t ppc_rtas_poweron_write(struct file *file,
325 		const char __user *buf, size_t count, loff_t *ppos)
326 {
327 	struct rtc_time tm;
328 	unsigned long nowtime;
329 	int error = parse_number(buf, count, &nowtime);
330 	if (error)
331 		return error;
332 
333 	power_on_time = nowtime; /* save the time */
334 
335 	to_tm(nowtime, &tm);
336 
337 	error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
338 			tm.tm_year, tm.tm_mon, tm.tm_mday,
339 			tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
340 	if (error)
341 		printk(KERN_WARNING "error: setting poweron time returned: %s\n",
342 				ppc_rtas_process_error(error));
343 	return count;
344 }
345 /* ****************************************************************** */
346 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
347 {
348 	if (power_on_time == 0)
349 		seq_printf(m, "Power on time not set\n");
350 	else
351 		seq_printf(m, "%lu\n",power_on_time);
352 	return 0;
353 }
354 
355 /* ****************************************************************** */
356 /* PROGRESS                                                           */
357 /* ****************************************************************** */
358 static ssize_t ppc_rtas_progress_write(struct file *file,
359 		const char __user *buf, size_t count, loff_t *ppos)
360 {
361 	unsigned long hex;
362 
363 	if (count >= MAX_LINELENGTH)
364 		count = MAX_LINELENGTH -1;
365 	if (copy_from_user(progress_led, buf, count)) { /* save the string */
366 		return -EFAULT;
367 	}
368 	progress_led[count] = 0;
369 
370 	/* Lets see if the user passed hexdigits */
371 	hex = simple_strtoul(progress_led, NULL, 10);
372 
373 	rtas_progress ((char *)progress_led, hex);
374 	return count;
375 
376 	/* clear the line */
377 	/* rtas_progress("                   ", 0xffff);*/
378 }
379 /* ****************************************************************** */
380 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
381 {
382 	if (progress_led[0])
383 		seq_printf(m, "%s\n", progress_led);
384 	return 0;
385 }
386 
387 /* ****************************************************************** */
388 /* CLOCK                                                              */
389 /* ****************************************************************** */
390 static ssize_t ppc_rtas_clock_write(struct file *file,
391 		const char __user *buf, size_t count, loff_t *ppos)
392 {
393 	struct rtc_time tm;
394 	unsigned long nowtime;
395 	int error = parse_number(buf, count, &nowtime);
396 	if (error)
397 		return error;
398 
399 	to_tm(nowtime, &tm);
400 	error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
401 			tm.tm_year, tm.tm_mon, tm.tm_mday,
402 			tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
403 	if (error)
404 		printk(KERN_WARNING "error: setting the clock returned: %s\n",
405 				ppc_rtas_process_error(error));
406 	return count;
407 }
408 /* ****************************************************************** */
409 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
410 {
411 	int ret[8];
412 	int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
413 
414 	if (error) {
415 		printk(KERN_WARNING "error: reading the clock returned: %s\n",
416 				ppc_rtas_process_error(error));
417 		seq_printf(m, "0");
418 	} else {
419 		unsigned int year, mon, day, hour, min, sec;
420 		year = ret[0]; mon  = ret[1]; day  = ret[2];
421 		hour = ret[3]; min  = ret[4]; sec  = ret[5];
422 		seq_printf(m, "%lu\n",
423 				mktime(year, mon, day, hour, min, sec));
424 	}
425 	return 0;
426 }
427 
428 /* ****************************************************************** */
429 /* SENSOR STUFF                                                       */
430 /* ****************************************************************** */
431 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
432 {
433 	int i,j;
434 	int state, error;
435 	int get_sensor_state = rtas_token("get-sensor-state");
436 
437 	seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
438 	seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
439 	seq_printf(m, "********************************************************\n");
440 
441 	if (ppc_rtas_find_all_sensors() != 0) {
442 		seq_printf(m, "\nNo sensors are available\n");
443 		return 0;
444 	}
445 
446 	for (i=0; i<sensors.quant; i++) {
447 		struct individual_sensor *p = &sensors.sensor[i];
448 		char rstr[64];
449 		const char *loc;
450 		int llen, offs;
451 
452 		sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
453 		loc = of_get_property(rtas_node, rstr, &llen);
454 
455 		/* A sensor may have multiple instances */
456 		for (j = 0, offs = 0; j <= p->quant; j++) {
457 			error =	rtas_call(get_sensor_state, 2, 2, &state,
458 				  	  p->token, j);
459 
460 			ppc_rtas_process_sensor(m, p, state, error, loc);
461 			seq_putc(m, '\n');
462 			if (loc) {
463 				offs += strlen(loc) + 1;
464 				loc += strlen(loc) + 1;
465 				if (offs >= llen)
466 					loc = NULL;
467 			}
468 		}
469 	}
470 	return 0;
471 }
472 
473 /* ****************************************************************** */
474 
475 static int ppc_rtas_find_all_sensors(void)
476 {
477 	const unsigned int *utmp;
478 	int len, i;
479 
480 	utmp = of_get_property(rtas_node, "rtas-sensors", &len);
481 	if (utmp == NULL) {
482 		printk (KERN_ERR "error: could not get rtas-sensors\n");
483 		return 1;
484 	}
485 
486 	sensors.quant = len / 8;      /* int + int */
487 
488 	for (i=0; i<sensors.quant; i++) {
489 		sensors.sensor[i].token = *utmp++;
490 		sensors.sensor[i].quant = *utmp++;
491 	}
492 	return 0;
493 }
494 
495 /* ****************************************************************** */
496 /*
497  * Builds a string of what rtas returned
498  */
499 static char *ppc_rtas_process_error(int error)
500 {
501 	switch (error) {
502 		case SENSOR_CRITICAL_HIGH:
503 			return "(critical high)";
504 		case SENSOR_WARNING_HIGH:
505 			return "(warning high)";
506 		case SENSOR_NORMAL:
507 			return "(normal)";
508 		case SENSOR_WARNING_LOW:
509 			return "(warning low)";
510 		case SENSOR_CRITICAL_LOW:
511 			return "(critical low)";
512 		case SENSOR_SUCCESS:
513 			return "(read ok)";
514 		case SENSOR_HW_ERROR:
515 			return "(hardware error)";
516 		case SENSOR_BUSY:
517 			return "(busy)";
518 		case SENSOR_NOT_EXIST:
519 			return "(non existent)";
520 		case SENSOR_DR_ENTITY:
521 			return "(dr entity removed)";
522 		default:
523 			return "(UNKNOWN)";
524 	}
525 }
526 
527 /* ****************************************************************** */
528 /*
529  * Builds a string out of what the sensor said
530  */
531 
532 static void ppc_rtas_process_sensor(struct seq_file *m,
533 	struct individual_sensor *s, int state, int error, const char *loc)
534 {
535 	/* Defined return vales */
536 	const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t",
537 						"Maintenance" };
538 	const char * enclosure_switch[]  = { "Closed", "Open" };
539 	const char * lid_status[]        = { " ", "Open", "Closed" };
540 	const char * power_source[]      = { "AC\t", "Battery",
541 		  				"AC & Battery" };
542 	const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
543 	const char * epow_sensor[]       = {
544 		"EPOW Reset", "Cooling warning", "Power warning",
545 		"System shutdown", "System halt", "EPOW main enclosure",
546 		"EPOW power off" };
547 	const char * battery_cyclestate[]  = { "None", "In progress",
548 						"Requested" };
549 	const char * battery_charging[]    = { "Charging", "Discharching",
550 						"No current flow" };
551 	const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable",
552 						"Exchange" };
553 
554 	int have_strings = 0;
555 	int num_states = 0;
556 	int temperature = 0;
557 	int unknown = 0;
558 
559 	/* What kind of sensor do we have here? */
560 
561 	switch (s->token) {
562 		case KEY_SWITCH:
563 			seq_printf(m, "Key switch:\t");
564 			num_states = sizeof(key_switch) / sizeof(char *);
565 			if (state < num_states) {
566 				seq_printf(m, "%s\t", key_switch[state]);
567 				have_strings = 1;
568 			}
569 			break;
570 		case ENCLOSURE_SWITCH:
571 			seq_printf(m, "Enclosure switch:\t");
572 			num_states = sizeof(enclosure_switch) / sizeof(char *);
573 			if (state < num_states) {
574 				seq_printf(m, "%s\t",
575 						enclosure_switch[state]);
576 				have_strings = 1;
577 			}
578 			break;
579 		case THERMAL_SENSOR:
580 			seq_printf(m, "Temp. (C/F):\t");
581 			temperature = 1;
582 			break;
583 		case LID_STATUS:
584 			seq_printf(m, "Lid status:\t");
585 			num_states = sizeof(lid_status) / sizeof(char *);
586 			if (state < num_states) {
587 				seq_printf(m, "%s\t", lid_status[state]);
588 				have_strings = 1;
589 			}
590 			break;
591 		case POWER_SOURCE:
592 			seq_printf(m, "Power source:\t");
593 			num_states = sizeof(power_source) / sizeof(char *);
594 			if (state < num_states) {
595 				seq_printf(m, "%s\t",
596 						power_source[state]);
597 				have_strings = 1;
598 			}
599 			break;
600 		case BATTERY_VOLTAGE:
601 			seq_printf(m, "Battery voltage:\t");
602 			break;
603 		case BATTERY_REMAINING:
604 			seq_printf(m, "Battery remaining:\t");
605 			num_states = sizeof(battery_remaining) / sizeof(char *);
606 			if (state < num_states)
607 			{
608 				seq_printf(m, "%s\t",
609 						battery_remaining[state]);
610 				have_strings = 1;
611 			}
612 			break;
613 		case BATTERY_PERCENTAGE:
614 			seq_printf(m, "Battery percentage:\t");
615 			break;
616 		case EPOW_SENSOR:
617 			seq_printf(m, "EPOW Sensor:\t");
618 			num_states = sizeof(epow_sensor) / sizeof(char *);
619 			if (state < num_states) {
620 				seq_printf(m, "%s\t", epow_sensor[state]);
621 				have_strings = 1;
622 			}
623 			break;
624 		case BATTERY_CYCLESTATE:
625 			seq_printf(m, "Battery cyclestate:\t");
626 			num_states = sizeof(battery_cyclestate) /
627 				     	sizeof(char *);
628 			if (state < num_states) {
629 				seq_printf(m, "%s\t",
630 						battery_cyclestate[state]);
631 				have_strings = 1;
632 			}
633 			break;
634 		case BATTERY_CHARGING:
635 			seq_printf(m, "Battery Charging:\t");
636 			num_states = sizeof(battery_charging) / sizeof(char *);
637 			if (state < num_states) {
638 				seq_printf(m, "%s\t",
639 						battery_charging[state]);
640 				have_strings = 1;
641 			}
642 			break;
643 		case IBM_SURVEILLANCE:
644 			seq_printf(m, "Surveillance:\t");
645 			break;
646 		case IBM_FANRPM:
647 			seq_printf(m, "Fan (rpm):\t");
648 			break;
649 		case IBM_VOLTAGE:
650 			seq_printf(m, "Voltage (mv):\t");
651 			break;
652 		case IBM_DRCONNECTOR:
653 			seq_printf(m, "DR connector:\t");
654 			num_states = sizeof(ibm_drconnector) / sizeof(char *);
655 			if (state < num_states) {
656 				seq_printf(m, "%s\t",
657 						ibm_drconnector[state]);
658 				have_strings = 1;
659 			}
660 			break;
661 		case IBM_POWERSUPPLY:
662 			seq_printf(m, "Powersupply:\t");
663 			break;
664 		default:
665 			seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
666 					s->token);
667 			unknown = 1;
668 			have_strings = 1;
669 			break;
670 	}
671 	if (have_strings == 0) {
672 		if (temperature) {
673 			seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
674 		} else
675 			seq_printf(m, "%10d\t", state);
676 	}
677 	if (unknown == 0) {
678 		seq_printf(m, "%s\t", ppc_rtas_process_error(error));
679 		get_location_code(m, s, loc);
680 	}
681 }
682 
683 /* ****************************************************************** */
684 
685 static void check_location(struct seq_file *m, const char *c)
686 {
687 	switch (c[0]) {
688 		case LOC_PLANAR:
689 			seq_printf(m, "Planar #%c", c[1]);
690 			break;
691 		case LOC_CPU:
692 			seq_printf(m, "CPU #%c", c[1]);
693 			break;
694 		case LOC_FAN:
695 			seq_printf(m, "Fan #%c", c[1]);
696 			break;
697 		case LOC_RACKMOUNTED:
698 			seq_printf(m, "Rack #%c", c[1]);
699 			break;
700 		case LOC_VOLTAGE:
701 			seq_printf(m, "Voltage #%c", c[1]);
702 			break;
703 		case LOC_LCD:
704 			seq_printf(m, "LCD #%c", c[1]);
705 			break;
706 		case '.':
707 			seq_printf(m, "- %c", c[1]);
708 			break;
709 		default:
710 			seq_printf(m, "Unknown location");
711 			break;
712 	}
713 }
714 
715 
716 /* ****************************************************************** */
717 /*
718  * Format:
719  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
720  * the '.' may be an abbrevation
721  */
722 static void check_location_string(struct seq_file *m, const char *c)
723 {
724 	while (*c) {
725 		if (isalpha(*c) || *c == '.')
726 			check_location(m, c);
727 		else if (*c == '/' || *c == '-')
728 			seq_printf(m, " at ");
729 		c++;
730 	}
731 }
732 
733 
734 /* ****************************************************************** */
735 
736 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
737 		const char *loc)
738 {
739 	if (!loc || !*loc) {
740 		seq_printf(m, "---");/* does not have a location */
741 	} else {
742 		check_location_string(m, loc);
743 	}
744 	seq_putc(m, ' ');
745 }
746 /* ****************************************************************** */
747 /* INDICATORS - Tone Frequency                                        */
748 /* ****************************************************************** */
749 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
750 		const char __user *buf, size_t count, loff_t *ppos)
751 {
752 	unsigned long freq;
753 	int error = parse_number(buf, count, &freq);
754 	if (error)
755 		return error;
756 
757 	rtas_tone_frequency = freq; /* save it for later */
758 	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
759 			TONE_FREQUENCY, 0, freq);
760 	if (error)
761 		printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
762 				ppc_rtas_process_error(error));
763 	return count;
764 }
765 /* ****************************************************************** */
766 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
767 {
768 	seq_printf(m, "%lu\n", rtas_tone_frequency);
769 	return 0;
770 }
771 /* ****************************************************************** */
772 /* INDICATORS - Tone Volume                                           */
773 /* ****************************************************************** */
774 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
775 		const char __user *buf, size_t count, loff_t *ppos)
776 {
777 	unsigned long volume;
778 	int error = parse_number(buf, count, &volume);
779 	if (error)
780 		return error;
781 
782 	if (volume > 100)
783 		volume = 100;
784 
785         rtas_tone_volume = volume; /* save it for later */
786 	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
787 			TONE_VOLUME, 0, volume);
788 	if (error)
789 		printk(KERN_WARNING "error: setting tone volume returned: %s\n",
790 				ppc_rtas_process_error(error));
791 	return count;
792 }
793 /* ****************************************************************** */
794 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
795 {
796 	seq_printf(m, "%lu\n", rtas_tone_volume);
797 	return 0;
798 }
799 
800 #define RMO_READ_BUF_MAX 30
801 
802 /* RTAS Userspace access */
803 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
804 {
805 	seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
806 	return 0;
807 }
808