1 /* 2 * Copyright (C) 2000 Tilmann Bitterberg 3 * (tilmann@bitterberg.de) 4 * 5 * RTAS (Runtime Abstraction Services) stuff 6 * Intention is to provide a clean user interface 7 * to use the RTAS. 8 * 9 * TODO: 10 * Split off a header file and maybe move it to a different 11 * location. Write Documentation on what the /proc/rtas/ entries 12 * actually do. 13 */ 14 15 #include <linux/errno.h> 16 #include <linux/sched.h> 17 #include <linux/proc_fs.h> 18 #include <linux/stat.h> 19 #include <linux/ctype.h> 20 #include <linux/time.h> 21 #include <linux/string.h> 22 #include <linux/init.h> 23 #include <linux/seq_file.h> 24 #include <linux/bitops.h> 25 #include <linux/rtc.h> 26 27 #include <asm/uaccess.h> 28 #include <asm/processor.h> 29 #include <asm/io.h> 30 #include <asm/prom.h> 31 #include <asm/rtas.h> 32 #include <asm/machdep.h> /* for ppc_md */ 33 #include <asm/time.h> 34 35 /* Token for Sensors */ 36 #define KEY_SWITCH 0x0001 37 #define ENCLOSURE_SWITCH 0x0002 38 #define THERMAL_SENSOR 0x0003 39 #define LID_STATUS 0x0004 40 #define POWER_SOURCE 0x0005 41 #define BATTERY_VOLTAGE 0x0006 42 #define BATTERY_REMAINING 0x0007 43 #define BATTERY_PERCENTAGE 0x0008 44 #define EPOW_SENSOR 0x0009 45 #define BATTERY_CYCLESTATE 0x000a 46 #define BATTERY_CHARGING 0x000b 47 48 /* IBM specific sensors */ 49 #define IBM_SURVEILLANCE 0x2328 /* 9000 */ 50 #define IBM_FANRPM 0x2329 /* 9001 */ 51 #define IBM_VOLTAGE 0x232a /* 9002 */ 52 #define IBM_DRCONNECTOR 0x232b /* 9003 */ 53 #define IBM_POWERSUPPLY 0x232c /* 9004 */ 54 55 /* Status return values */ 56 #define SENSOR_CRITICAL_HIGH 13 57 #define SENSOR_WARNING_HIGH 12 58 #define SENSOR_NORMAL 11 59 #define SENSOR_WARNING_LOW 10 60 #define SENSOR_CRITICAL_LOW 9 61 #define SENSOR_SUCCESS 0 62 #define SENSOR_HW_ERROR -1 63 #define SENSOR_BUSY -2 64 #define SENSOR_NOT_EXIST -3 65 #define SENSOR_DR_ENTITY -9000 66 67 /* Location Codes */ 68 #define LOC_SCSI_DEV_ADDR 'A' 69 #define LOC_SCSI_DEV_LOC 'B' 70 #define LOC_CPU 'C' 71 #define LOC_DISKETTE 'D' 72 #define LOC_ETHERNET 'E' 73 #define LOC_FAN 'F' 74 #define LOC_GRAPHICS 'G' 75 /* reserved / not used 'H' */ 76 #define LOC_IO_ADAPTER 'I' 77 /* reserved / not used 'J' */ 78 #define LOC_KEYBOARD 'K' 79 #define LOC_LCD 'L' 80 #define LOC_MEMORY 'M' 81 #define LOC_NV_MEMORY 'N' 82 #define LOC_MOUSE 'O' 83 #define LOC_PLANAR 'P' 84 #define LOC_OTHER_IO 'Q' 85 #define LOC_PARALLEL 'R' 86 #define LOC_SERIAL 'S' 87 #define LOC_DEAD_RING 'T' 88 #define LOC_RACKMOUNTED 'U' /* for _u_nit is rack mounted */ 89 #define LOC_VOLTAGE 'V' 90 #define LOC_SWITCH_ADAPTER 'W' 91 #define LOC_OTHER 'X' 92 #define LOC_FIRMWARE 'Y' 93 #define LOC_SCSI 'Z' 94 95 /* Tokens for indicators */ 96 #define TONE_FREQUENCY 0x0001 /* 0 - 1000 (HZ)*/ 97 #define TONE_VOLUME 0x0002 /* 0 - 100 (%) */ 98 #define SYSTEM_POWER_STATE 0x0003 99 #define WARNING_LIGHT 0x0004 100 #define DISK_ACTIVITY_LIGHT 0x0005 101 #define HEX_DISPLAY_UNIT 0x0006 102 #define BATTERY_WARNING_TIME 0x0007 103 #define CONDITION_CYCLE_REQUEST 0x0008 104 #define SURVEILLANCE_INDICATOR 0x2328 /* 9000 */ 105 #define DR_ACTION 0x2329 /* 9001 */ 106 #define DR_INDICATOR 0x232a /* 9002 */ 107 /* 9003 - 9004: Vendor specific */ 108 /* 9006 - 9999: Vendor specific */ 109 110 /* other */ 111 #define MAX_SENSORS 17 /* I only know of 17 sensors */ 112 #define MAX_LINELENGTH 256 113 #define SENSOR_PREFIX "ibm,sensor-" 114 #define cel_to_fahr(x) ((x*9/5)+32) 115 116 117 /* Globals */ 118 static struct rtas_sensors sensors; 119 static struct device_node *rtas_node = NULL; 120 static unsigned long power_on_time = 0; /* Save the time the user set */ 121 static char progress_led[MAX_LINELENGTH]; 122 123 static unsigned long rtas_tone_frequency = 1000; 124 static unsigned long rtas_tone_volume = 0; 125 126 /* ****************STRUCTS******************************************* */ 127 struct individual_sensor { 128 unsigned int token; 129 unsigned int quant; 130 }; 131 132 struct rtas_sensors { 133 struct individual_sensor sensor[MAX_SENSORS]; 134 unsigned int quant; 135 }; 136 137 /* ****************************************************************** */ 138 /* Declarations */ 139 static int ppc_rtas_sensors_show(struct seq_file *m, void *v); 140 static int ppc_rtas_clock_show(struct seq_file *m, void *v); 141 static ssize_t ppc_rtas_clock_write(struct file *file, 142 const char __user *buf, size_t count, loff_t *ppos); 143 static int ppc_rtas_progress_show(struct seq_file *m, void *v); 144 static ssize_t ppc_rtas_progress_write(struct file *file, 145 const char __user *buf, size_t count, loff_t *ppos); 146 static int ppc_rtas_poweron_show(struct seq_file *m, void *v); 147 static ssize_t ppc_rtas_poweron_write(struct file *file, 148 const char __user *buf, size_t count, loff_t *ppos); 149 150 static ssize_t ppc_rtas_tone_freq_write(struct file *file, 151 const char __user *buf, size_t count, loff_t *ppos); 152 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v); 153 static ssize_t ppc_rtas_tone_volume_write(struct file *file, 154 const char __user *buf, size_t count, loff_t *ppos); 155 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v); 156 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v); 157 158 static int sensors_open(struct inode *inode, struct file *file) 159 { 160 return single_open(file, ppc_rtas_sensors_show, NULL); 161 } 162 163 const struct file_operations ppc_rtas_sensors_operations = { 164 .open = sensors_open, 165 .read = seq_read, 166 .llseek = seq_lseek, 167 .release = single_release, 168 }; 169 170 static int poweron_open(struct inode *inode, struct file *file) 171 { 172 return single_open(file, ppc_rtas_poweron_show, NULL); 173 } 174 175 const struct file_operations ppc_rtas_poweron_operations = { 176 .open = poweron_open, 177 .read = seq_read, 178 .llseek = seq_lseek, 179 .write = ppc_rtas_poweron_write, 180 .release = single_release, 181 }; 182 183 static int progress_open(struct inode *inode, struct file *file) 184 { 185 return single_open(file, ppc_rtas_progress_show, NULL); 186 } 187 188 const struct file_operations ppc_rtas_progress_operations = { 189 .open = progress_open, 190 .read = seq_read, 191 .llseek = seq_lseek, 192 .write = ppc_rtas_progress_write, 193 .release = single_release, 194 }; 195 196 static int clock_open(struct inode *inode, struct file *file) 197 { 198 return single_open(file, ppc_rtas_clock_show, NULL); 199 } 200 201 const struct file_operations ppc_rtas_clock_operations = { 202 .open = clock_open, 203 .read = seq_read, 204 .llseek = seq_lseek, 205 .write = ppc_rtas_clock_write, 206 .release = single_release, 207 }; 208 209 static int tone_freq_open(struct inode *inode, struct file *file) 210 { 211 return single_open(file, ppc_rtas_tone_freq_show, NULL); 212 } 213 214 const struct file_operations ppc_rtas_tone_freq_operations = { 215 .open = tone_freq_open, 216 .read = seq_read, 217 .llseek = seq_lseek, 218 .write = ppc_rtas_tone_freq_write, 219 .release = single_release, 220 }; 221 222 static int tone_volume_open(struct inode *inode, struct file *file) 223 { 224 return single_open(file, ppc_rtas_tone_volume_show, NULL); 225 } 226 227 const struct file_operations ppc_rtas_tone_volume_operations = { 228 .open = tone_volume_open, 229 .read = seq_read, 230 .llseek = seq_lseek, 231 .write = ppc_rtas_tone_volume_write, 232 .release = single_release, 233 }; 234 235 static int rmo_buf_open(struct inode *inode, struct file *file) 236 { 237 return single_open(file, ppc_rtas_rmo_buf_show, NULL); 238 } 239 240 const struct file_operations ppc_rtas_rmo_buf_ops = { 241 .open = rmo_buf_open, 242 .read = seq_read, 243 .llseek = seq_lseek, 244 .release = single_release, 245 }; 246 247 static int ppc_rtas_find_all_sensors(void); 248 static void ppc_rtas_process_sensor(struct seq_file *m, 249 struct individual_sensor *s, int state, int error, const char *loc); 250 static char *ppc_rtas_process_error(int error); 251 static void get_location_code(struct seq_file *m, 252 struct individual_sensor *s, const char *loc); 253 static void check_location_string(struct seq_file *m, const char *c); 254 static void check_location(struct seq_file *m, const char *c); 255 256 static int __init proc_rtas_init(void) 257 { 258 struct proc_dir_entry *entry; 259 260 if (!machine_is(pseries)) 261 return -ENODEV; 262 263 rtas_node = of_find_node_by_name(NULL, "rtas"); 264 if (rtas_node == NULL) 265 return -ENODEV; 266 267 entry = create_proc_entry("ppc64/rtas/progress", S_IRUGO|S_IWUSR, NULL); 268 if (entry) 269 entry->proc_fops = &ppc_rtas_progress_operations; 270 271 entry = create_proc_entry("ppc64/rtas/clock", S_IRUGO|S_IWUSR, NULL); 272 if (entry) 273 entry->proc_fops = &ppc_rtas_clock_operations; 274 275 entry = create_proc_entry("ppc64/rtas/poweron", S_IWUSR|S_IRUGO, NULL); 276 if (entry) 277 entry->proc_fops = &ppc_rtas_poweron_operations; 278 279 entry = create_proc_entry("ppc64/rtas/sensors", S_IRUGO, NULL); 280 if (entry) 281 entry->proc_fops = &ppc_rtas_sensors_operations; 282 283 entry = create_proc_entry("ppc64/rtas/frequency", S_IWUSR|S_IRUGO, 284 NULL); 285 if (entry) 286 entry->proc_fops = &ppc_rtas_tone_freq_operations; 287 288 entry = create_proc_entry("ppc64/rtas/volume", S_IWUSR|S_IRUGO, NULL); 289 if (entry) 290 entry->proc_fops = &ppc_rtas_tone_volume_operations; 291 292 entry = create_proc_entry("ppc64/rtas/rmo_buffer", S_IRUSR, NULL); 293 if (entry) 294 entry->proc_fops = &ppc_rtas_rmo_buf_ops; 295 296 return 0; 297 } 298 299 __initcall(proc_rtas_init); 300 301 static int parse_number(const char __user *p, size_t count, unsigned long *val) 302 { 303 char buf[40]; 304 char *end; 305 306 if (count > 39) 307 return -EINVAL; 308 309 if (copy_from_user(buf, p, count)) 310 return -EFAULT; 311 312 buf[count] = 0; 313 314 *val = simple_strtoul(buf, &end, 10); 315 if (*end && *end != '\n') 316 return -EINVAL; 317 318 return 0; 319 } 320 321 /* ****************************************************************** */ 322 /* POWER-ON-TIME */ 323 /* ****************************************************************** */ 324 static ssize_t ppc_rtas_poweron_write(struct file *file, 325 const char __user *buf, size_t count, loff_t *ppos) 326 { 327 struct rtc_time tm; 328 unsigned long nowtime; 329 int error = parse_number(buf, count, &nowtime); 330 if (error) 331 return error; 332 333 power_on_time = nowtime; /* save the time */ 334 335 to_tm(nowtime, &tm); 336 337 error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 338 tm.tm_year, tm.tm_mon, tm.tm_mday, 339 tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */); 340 if (error) 341 printk(KERN_WARNING "error: setting poweron time returned: %s\n", 342 ppc_rtas_process_error(error)); 343 return count; 344 } 345 /* ****************************************************************** */ 346 static int ppc_rtas_poweron_show(struct seq_file *m, void *v) 347 { 348 if (power_on_time == 0) 349 seq_printf(m, "Power on time not set\n"); 350 else 351 seq_printf(m, "%lu\n",power_on_time); 352 return 0; 353 } 354 355 /* ****************************************************************** */ 356 /* PROGRESS */ 357 /* ****************************************************************** */ 358 static ssize_t ppc_rtas_progress_write(struct file *file, 359 const char __user *buf, size_t count, loff_t *ppos) 360 { 361 unsigned long hex; 362 363 if (count >= MAX_LINELENGTH) 364 count = MAX_LINELENGTH -1; 365 if (copy_from_user(progress_led, buf, count)) { /* save the string */ 366 return -EFAULT; 367 } 368 progress_led[count] = 0; 369 370 /* Lets see if the user passed hexdigits */ 371 hex = simple_strtoul(progress_led, NULL, 10); 372 373 rtas_progress ((char *)progress_led, hex); 374 return count; 375 376 /* clear the line */ 377 /* rtas_progress(" ", 0xffff);*/ 378 } 379 /* ****************************************************************** */ 380 static int ppc_rtas_progress_show(struct seq_file *m, void *v) 381 { 382 if (progress_led[0]) 383 seq_printf(m, "%s\n", progress_led); 384 return 0; 385 } 386 387 /* ****************************************************************** */ 388 /* CLOCK */ 389 /* ****************************************************************** */ 390 static ssize_t ppc_rtas_clock_write(struct file *file, 391 const char __user *buf, size_t count, loff_t *ppos) 392 { 393 struct rtc_time tm; 394 unsigned long nowtime; 395 int error = parse_number(buf, count, &nowtime); 396 if (error) 397 return error; 398 399 to_tm(nowtime, &tm); 400 error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 401 tm.tm_year, tm.tm_mon, tm.tm_mday, 402 tm.tm_hour, tm.tm_min, tm.tm_sec, 0); 403 if (error) 404 printk(KERN_WARNING "error: setting the clock returned: %s\n", 405 ppc_rtas_process_error(error)); 406 return count; 407 } 408 /* ****************************************************************** */ 409 static int ppc_rtas_clock_show(struct seq_file *m, void *v) 410 { 411 int ret[8]; 412 int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret); 413 414 if (error) { 415 printk(KERN_WARNING "error: reading the clock returned: %s\n", 416 ppc_rtas_process_error(error)); 417 seq_printf(m, "0"); 418 } else { 419 unsigned int year, mon, day, hour, min, sec; 420 year = ret[0]; mon = ret[1]; day = ret[2]; 421 hour = ret[3]; min = ret[4]; sec = ret[5]; 422 seq_printf(m, "%lu\n", 423 mktime(year, mon, day, hour, min, sec)); 424 } 425 return 0; 426 } 427 428 /* ****************************************************************** */ 429 /* SENSOR STUFF */ 430 /* ****************************************************************** */ 431 static int ppc_rtas_sensors_show(struct seq_file *m, void *v) 432 { 433 int i,j; 434 int state, error; 435 int get_sensor_state = rtas_token("get-sensor-state"); 436 437 seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n"); 438 seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n"); 439 seq_printf(m, "********************************************************\n"); 440 441 if (ppc_rtas_find_all_sensors() != 0) { 442 seq_printf(m, "\nNo sensors are available\n"); 443 return 0; 444 } 445 446 for (i=0; i<sensors.quant; i++) { 447 struct individual_sensor *p = &sensors.sensor[i]; 448 char rstr[64]; 449 const char *loc; 450 int llen, offs; 451 452 sprintf (rstr, SENSOR_PREFIX"%04d", p->token); 453 loc = of_get_property(rtas_node, rstr, &llen); 454 455 /* A sensor may have multiple instances */ 456 for (j = 0, offs = 0; j <= p->quant; j++) { 457 error = rtas_call(get_sensor_state, 2, 2, &state, 458 p->token, j); 459 460 ppc_rtas_process_sensor(m, p, state, error, loc); 461 seq_putc(m, '\n'); 462 if (loc) { 463 offs += strlen(loc) + 1; 464 loc += strlen(loc) + 1; 465 if (offs >= llen) 466 loc = NULL; 467 } 468 } 469 } 470 return 0; 471 } 472 473 /* ****************************************************************** */ 474 475 static int ppc_rtas_find_all_sensors(void) 476 { 477 const unsigned int *utmp; 478 int len, i; 479 480 utmp = of_get_property(rtas_node, "rtas-sensors", &len); 481 if (utmp == NULL) { 482 printk (KERN_ERR "error: could not get rtas-sensors\n"); 483 return 1; 484 } 485 486 sensors.quant = len / 8; /* int + int */ 487 488 for (i=0; i<sensors.quant; i++) { 489 sensors.sensor[i].token = *utmp++; 490 sensors.sensor[i].quant = *utmp++; 491 } 492 return 0; 493 } 494 495 /* ****************************************************************** */ 496 /* 497 * Builds a string of what rtas returned 498 */ 499 static char *ppc_rtas_process_error(int error) 500 { 501 switch (error) { 502 case SENSOR_CRITICAL_HIGH: 503 return "(critical high)"; 504 case SENSOR_WARNING_HIGH: 505 return "(warning high)"; 506 case SENSOR_NORMAL: 507 return "(normal)"; 508 case SENSOR_WARNING_LOW: 509 return "(warning low)"; 510 case SENSOR_CRITICAL_LOW: 511 return "(critical low)"; 512 case SENSOR_SUCCESS: 513 return "(read ok)"; 514 case SENSOR_HW_ERROR: 515 return "(hardware error)"; 516 case SENSOR_BUSY: 517 return "(busy)"; 518 case SENSOR_NOT_EXIST: 519 return "(non existent)"; 520 case SENSOR_DR_ENTITY: 521 return "(dr entity removed)"; 522 default: 523 return "(UNKNOWN)"; 524 } 525 } 526 527 /* ****************************************************************** */ 528 /* 529 * Builds a string out of what the sensor said 530 */ 531 532 static void ppc_rtas_process_sensor(struct seq_file *m, 533 struct individual_sensor *s, int state, int error, const char *loc) 534 { 535 /* Defined return vales */ 536 const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t", 537 "Maintenance" }; 538 const char * enclosure_switch[] = { "Closed", "Open" }; 539 const char * lid_status[] = { " ", "Open", "Closed" }; 540 const char * power_source[] = { "AC\t", "Battery", 541 "AC & Battery" }; 542 const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" }; 543 const char * epow_sensor[] = { 544 "EPOW Reset", "Cooling warning", "Power warning", 545 "System shutdown", "System halt", "EPOW main enclosure", 546 "EPOW power off" }; 547 const char * battery_cyclestate[] = { "None", "In progress", 548 "Requested" }; 549 const char * battery_charging[] = { "Charging", "Discharching", 550 "No current flow" }; 551 const char * ibm_drconnector[] = { "Empty", "Present", "Unusable", 552 "Exchange" }; 553 554 int have_strings = 0; 555 int num_states = 0; 556 int temperature = 0; 557 int unknown = 0; 558 559 /* What kind of sensor do we have here? */ 560 561 switch (s->token) { 562 case KEY_SWITCH: 563 seq_printf(m, "Key switch:\t"); 564 num_states = sizeof(key_switch) / sizeof(char *); 565 if (state < num_states) { 566 seq_printf(m, "%s\t", key_switch[state]); 567 have_strings = 1; 568 } 569 break; 570 case ENCLOSURE_SWITCH: 571 seq_printf(m, "Enclosure switch:\t"); 572 num_states = sizeof(enclosure_switch) / sizeof(char *); 573 if (state < num_states) { 574 seq_printf(m, "%s\t", 575 enclosure_switch[state]); 576 have_strings = 1; 577 } 578 break; 579 case THERMAL_SENSOR: 580 seq_printf(m, "Temp. (C/F):\t"); 581 temperature = 1; 582 break; 583 case LID_STATUS: 584 seq_printf(m, "Lid status:\t"); 585 num_states = sizeof(lid_status) / sizeof(char *); 586 if (state < num_states) { 587 seq_printf(m, "%s\t", lid_status[state]); 588 have_strings = 1; 589 } 590 break; 591 case POWER_SOURCE: 592 seq_printf(m, "Power source:\t"); 593 num_states = sizeof(power_source) / sizeof(char *); 594 if (state < num_states) { 595 seq_printf(m, "%s\t", 596 power_source[state]); 597 have_strings = 1; 598 } 599 break; 600 case BATTERY_VOLTAGE: 601 seq_printf(m, "Battery voltage:\t"); 602 break; 603 case BATTERY_REMAINING: 604 seq_printf(m, "Battery remaining:\t"); 605 num_states = sizeof(battery_remaining) / sizeof(char *); 606 if (state < num_states) 607 { 608 seq_printf(m, "%s\t", 609 battery_remaining[state]); 610 have_strings = 1; 611 } 612 break; 613 case BATTERY_PERCENTAGE: 614 seq_printf(m, "Battery percentage:\t"); 615 break; 616 case EPOW_SENSOR: 617 seq_printf(m, "EPOW Sensor:\t"); 618 num_states = sizeof(epow_sensor) / sizeof(char *); 619 if (state < num_states) { 620 seq_printf(m, "%s\t", epow_sensor[state]); 621 have_strings = 1; 622 } 623 break; 624 case BATTERY_CYCLESTATE: 625 seq_printf(m, "Battery cyclestate:\t"); 626 num_states = sizeof(battery_cyclestate) / 627 sizeof(char *); 628 if (state < num_states) { 629 seq_printf(m, "%s\t", 630 battery_cyclestate[state]); 631 have_strings = 1; 632 } 633 break; 634 case BATTERY_CHARGING: 635 seq_printf(m, "Battery Charging:\t"); 636 num_states = sizeof(battery_charging) / sizeof(char *); 637 if (state < num_states) { 638 seq_printf(m, "%s\t", 639 battery_charging[state]); 640 have_strings = 1; 641 } 642 break; 643 case IBM_SURVEILLANCE: 644 seq_printf(m, "Surveillance:\t"); 645 break; 646 case IBM_FANRPM: 647 seq_printf(m, "Fan (rpm):\t"); 648 break; 649 case IBM_VOLTAGE: 650 seq_printf(m, "Voltage (mv):\t"); 651 break; 652 case IBM_DRCONNECTOR: 653 seq_printf(m, "DR connector:\t"); 654 num_states = sizeof(ibm_drconnector) / sizeof(char *); 655 if (state < num_states) { 656 seq_printf(m, "%s\t", 657 ibm_drconnector[state]); 658 have_strings = 1; 659 } 660 break; 661 case IBM_POWERSUPPLY: 662 seq_printf(m, "Powersupply:\t"); 663 break; 664 default: 665 seq_printf(m, "Unknown sensor (type %d), ignoring it\n", 666 s->token); 667 unknown = 1; 668 have_strings = 1; 669 break; 670 } 671 if (have_strings == 0) { 672 if (temperature) { 673 seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state)); 674 } else 675 seq_printf(m, "%10d\t", state); 676 } 677 if (unknown == 0) { 678 seq_printf(m, "%s\t", ppc_rtas_process_error(error)); 679 get_location_code(m, s, loc); 680 } 681 } 682 683 /* ****************************************************************** */ 684 685 static void check_location(struct seq_file *m, const char *c) 686 { 687 switch (c[0]) { 688 case LOC_PLANAR: 689 seq_printf(m, "Planar #%c", c[1]); 690 break; 691 case LOC_CPU: 692 seq_printf(m, "CPU #%c", c[1]); 693 break; 694 case LOC_FAN: 695 seq_printf(m, "Fan #%c", c[1]); 696 break; 697 case LOC_RACKMOUNTED: 698 seq_printf(m, "Rack #%c", c[1]); 699 break; 700 case LOC_VOLTAGE: 701 seq_printf(m, "Voltage #%c", c[1]); 702 break; 703 case LOC_LCD: 704 seq_printf(m, "LCD #%c", c[1]); 705 break; 706 case '.': 707 seq_printf(m, "- %c", c[1]); 708 break; 709 default: 710 seq_printf(m, "Unknown location"); 711 break; 712 } 713 } 714 715 716 /* ****************************************************************** */ 717 /* 718 * Format: 719 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ] 720 * the '.' may be an abbrevation 721 */ 722 static void check_location_string(struct seq_file *m, const char *c) 723 { 724 while (*c) { 725 if (isalpha(*c) || *c == '.') 726 check_location(m, c); 727 else if (*c == '/' || *c == '-') 728 seq_printf(m, " at "); 729 c++; 730 } 731 } 732 733 734 /* ****************************************************************** */ 735 736 static void get_location_code(struct seq_file *m, struct individual_sensor *s, 737 const char *loc) 738 { 739 if (!loc || !*loc) { 740 seq_printf(m, "---");/* does not have a location */ 741 } else { 742 check_location_string(m, loc); 743 } 744 seq_putc(m, ' '); 745 } 746 /* ****************************************************************** */ 747 /* INDICATORS - Tone Frequency */ 748 /* ****************************************************************** */ 749 static ssize_t ppc_rtas_tone_freq_write(struct file *file, 750 const char __user *buf, size_t count, loff_t *ppos) 751 { 752 unsigned long freq; 753 int error = parse_number(buf, count, &freq); 754 if (error) 755 return error; 756 757 rtas_tone_frequency = freq; /* save it for later */ 758 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL, 759 TONE_FREQUENCY, 0, freq); 760 if (error) 761 printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 762 ppc_rtas_process_error(error)); 763 return count; 764 } 765 /* ****************************************************************** */ 766 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v) 767 { 768 seq_printf(m, "%lu\n", rtas_tone_frequency); 769 return 0; 770 } 771 /* ****************************************************************** */ 772 /* INDICATORS - Tone Volume */ 773 /* ****************************************************************** */ 774 static ssize_t ppc_rtas_tone_volume_write(struct file *file, 775 const char __user *buf, size_t count, loff_t *ppos) 776 { 777 unsigned long volume; 778 int error = parse_number(buf, count, &volume); 779 if (error) 780 return error; 781 782 if (volume > 100) 783 volume = 100; 784 785 rtas_tone_volume = volume; /* save it for later */ 786 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL, 787 TONE_VOLUME, 0, volume); 788 if (error) 789 printk(KERN_WARNING "error: setting tone volume returned: %s\n", 790 ppc_rtas_process_error(error)); 791 return count; 792 } 793 /* ****************************************************************** */ 794 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v) 795 { 796 seq_printf(m, "%lu\n", rtas_tone_volume); 797 return 0; 798 } 799 800 #define RMO_READ_BUF_MAX 30 801 802 /* RTAS Userspace access */ 803 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v) 804 { 805 seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX); 806 return 0; 807 } 808