1 /* 2 * Procedures for interfacing to Open Firmware. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 */ 15 16 #undef DEBUG_PROM 17 18 #include <stdarg.h> 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/init.h> 22 #include <linux/threads.h> 23 #include <linux/spinlock.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/proc_fs.h> 27 #include <linux/stringify.h> 28 #include <linux/delay.h> 29 #include <linux/initrd.h> 30 #include <linux/bitops.h> 31 #include <asm/prom.h> 32 #include <asm/rtas.h> 33 #include <asm/page.h> 34 #include <asm/processor.h> 35 #include <asm/irq.h> 36 #include <asm/io.h> 37 #include <asm/smp.h> 38 #include <asm/mmu.h> 39 #include <asm/pgtable.h> 40 #include <asm/pci.h> 41 #include <asm/iommu.h> 42 #include <asm/btext.h> 43 #include <asm/sections.h> 44 #include <asm/machdep.h> 45 #include <asm/opal.h> 46 47 #include <linux/linux_logo.h> 48 49 /* 50 * Eventually bump that one up 51 */ 52 #define DEVTREE_CHUNK_SIZE 0x100000 53 54 /* 55 * This is the size of the local memory reserve map that gets copied 56 * into the boot params passed to the kernel. That size is totally 57 * flexible as the kernel just reads the list until it encounters an 58 * entry with size 0, so it can be changed without breaking binary 59 * compatibility 60 */ 61 #define MEM_RESERVE_MAP_SIZE 8 62 63 /* 64 * prom_init() is called very early on, before the kernel text 65 * and data have been mapped to KERNELBASE. At this point the code 66 * is running at whatever address it has been loaded at. 67 * On ppc32 we compile with -mrelocatable, which means that references 68 * to extern and static variables get relocated automatically. 69 * On ppc64 we have to relocate the references explicitly with 70 * RELOC. (Note that strings count as static variables.) 71 * 72 * Because OF may have mapped I/O devices into the area starting at 73 * KERNELBASE, particularly on CHRP machines, we can't safely call 74 * OF once the kernel has been mapped to KERNELBASE. Therefore all 75 * OF calls must be done within prom_init(). 76 * 77 * ADDR is used in calls to call_prom. The 4th and following 78 * arguments to call_prom should be 32-bit values. 79 * On ppc64, 64 bit values are truncated to 32 bits (and 80 * fortunately don't get interpreted as two arguments). 81 */ 82 #ifdef CONFIG_PPC64 83 #define RELOC(x) (*PTRRELOC(&(x))) 84 #define ADDR(x) (u32) add_reloc_offset((unsigned long)(x)) 85 #define OF_WORKAROUNDS 0 86 #else 87 #define RELOC(x) (x) 88 #define ADDR(x) (u32) (x) 89 #define OF_WORKAROUNDS of_workarounds 90 int of_workarounds; 91 #endif 92 93 #define OF_WA_CLAIM 1 /* do phys/virt claim separately, then map */ 94 #define OF_WA_LONGTRAIL 2 /* work around longtrail bugs */ 95 96 #define PROM_BUG() do { \ 97 prom_printf("kernel BUG at %s line 0x%x!\n", \ 98 RELOC(__FILE__), __LINE__); \ 99 __asm__ __volatile__(".long " BUG_ILLEGAL_INSTR); \ 100 } while (0) 101 102 #ifdef DEBUG_PROM 103 #define prom_debug(x...) prom_printf(x) 104 #else 105 #define prom_debug(x...) 106 #endif 107 108 109 typedef u32 prom_arg_t; 110 111 struct prom_args { 112 u32 service; 113 u32 nargs; 114 u32 nret; 115 prom_arg_t args[10]; 116 }; 117 118 struct prom_t { 119 ihandle root; 120 phandle chosen; 121 int cpu; 122 ihandle stdout; 123 ihandle mmumap; 124 ihandle memory; 125 }; 126 127 struct mem_map_entry { 128 u64 base; 129 u64 size; 130 }; 131 132 typedef u32 cell_t; 133 134 extern void __start(unsigned long r3, unsigned long r4, unsigned long r5, 135 unsigned long r6, unsigned long r7, unsigned long r8, 136 unsigned long r9); 137 138 #ifdef CONFIG_PPC64 139 extern int enter_prom(struct prom_args *args, unsigned long entry); 140 #else 141 static inline int enter_prom(struct prom_args *args, unsigned long entry) 142 { 143 return ((int (*)(struct prom_args *))entry)(args); 144 } 145 #endif 146 147 extern void copy_and_flush(unsigned long dest, unsigned long src, 148 unsigned long size, unsigned long offset); 149 150 /* prom structure */ 151 static struct prom_t __initdata prom; 152 153 static unsigned long prom_entry __initdata; 154 155 #define PROM_SCRATCH_SIZE 256 156 157 static char __initdata of_stdout_device[256]; 158 static char __initdata prom_scratch[PROM_SCRATCH_SIZE]; 159 160 static unsigned long __initdata dt_header_start; 161 static unsigned long __initdata dt_struct_start, dt_struct_end; 162 static unsigned long __initdata dt_string_start, dt_string_end; 163 164 static unsigned long __initdata prom_initrd_start, prom_initrd_end; 165 166 #ifdef CONFIG_PPC64 167 static int __initdata prom_iommu_force_on; 168 static int __initdata prom_iommu_off; 169 static unsigned long __initdata prom_tce_alloc_start; 170 static unsigned long __initdata prom_tce_alloc_end; 171 #endif 172 173 /* Platforms codes are now obsolete in the kernel. Now only used within this 174 * file and ultimately gone too. Feel free to change them if you need, they 175 * are not shared with anything outside of this file anymore 176 */ 177 #define PLATFORM_PSERIES 0x0100 178 #define PLATFORM_PSERIES_LPAR 0x0101 179 #define PLATFORM_LPAR 0x0001 180 #define PLATFORM_POWERMAC 0x0400 181 #define PLATFORM_GENERIC 0x0500 182 #define PLATFORM_OPAL 0x0600 183 184 static int __initdata of_platform; 185 186 static char __initdata prom_cmd_line[COMMAND_LINE_SIZE]; 187 188 static unsigned long __initdata prom_memory_limit; 189 190 static unsigned long __initdata alloc_top; 191 static unsigned long __initdata alloc_top_high; 192 static unsigned long __initdata alloc_bottom; 193 static unsigned long __initdata rmo_top; 194 static unsigned long __initdata ram_top; 195 196 static struct mem_map_entry __initdata mem_reserve_map[MEM_RESERVE_MAP_SIZE]; 197 static int __initdata mem_reserve_cnt; 198 199 static cell_t __initdata regbuf[1024]; 200 201 202 /* 203 * Error results ... some OF calls will return "-1" on error, some 204 * will return 0, some will return either. To simplify, here are 205 * macros to use with any ihandle or phandle return value to check if 206 * it is valid 207 */ 208 209 #define PROM_ERROR (-1u) 210 #define PHANDLE_VALID(p) ((p) != 0 && (p) != PROM_ERROR) 211 #define IHANDLE_VALID(i) ((i) != 0 && (i) != PROM_ERROR) 212 213 214 /* This is the one and *ONLY* place where we actually call open 215 * firmware. 216 */ 217 218 static int __init call_prom(const char *service, int nargs, int nret, ...) 219 { 220 int i; 221 struct prom_args args; 222 va_list list; 223 224 args.service = ADDR(service); 225 args.nargs = nargs; 226 args.nret = nret; 227 228 va_start(list, nret); 229 for (i = 0; i < nargs; i++) 230 args.args[i] = va_arg(list, prom_arg_t); 231 va_end(list); 232 233 for (i = 0; i < nret; i++) 234 args.args[nargs+i] = 0; 235 236 if (enter_prom(&args, RELOC(prom_entry)) < 0) 237 return PROM_ERROR; 238 239 return (nret > 0) ? args.args[nargs] : 0; 240 } 241 242 static int __init call_prom_ret(const char *service, int nargs, int nret, 243 prom_arg_t *rets, ...) 244 { 245 int i; 246 struct prom_args args; 247 va_list list; 248 249 args.service = ADDR(service); 250 args.nargs = nargs; 251 args.nret = nret; 252 253 va_start(list, rets); 254 for (i = 0; i < nargs; i++) 255 args.args[i] = va_arg(list, prom_arg_t); 256 va_end(list); 257 258 for (i = 0; i < nret; i++) 259 args.args[nargs+i] = 0; 260 261 if (enter_prom(&args, RELOC(prom_entry)) < 0) 262 return PROM_ERROR; 263 264 if (rets != NULL) 265 for (i = 1; i < nret; ++i) 266 rets[i-1] = args.args[nargs+i]; 267 268 return (nret > 0) ? args.args[nargs] : 0; 269 } 270 271 272 static void __init prom_print(const char *msg) 273 { 274 const char *p, *q; 275 struct prom_t *_prom = &RELOC(prom); 276 277 if (_prom->stdout == 0) 278 return; 279 280 for (p = msg; *p != 0; p = q) { 281 for (q = p; *q != 0 && *q != '\n'; ++q) 282 ; 283 if (q > p) 284 call_prom("write", 3, 1, _prom->stdout, p, q - p); 285 if (*q == 0) 286 break; 287 ++q; 288 call_prom("write", 3, 1, _prom->stdout, ADDR("\r\n"), 2); 289 } 290 } 291 292 293 static void __init prom_print_hex(unsigned long val) 294 { 295 int i, nibbles = sizeof(val)*2; 296 char buf[sizeof(val)*2+1]; 297 struct prom_t *_prom = &RELOC(prom); 298 299 for (i = nibbles-1; i >= 0; i--) { 300 buf[i] = (val & 0xf) + '0'; 301 if (buf[i] > '9') 302 buf[i] += ('a'-'0'-10); 303 val >>= 4; 304 } 305 buf[nibbles] = '\0'; 306 call_prom("write", 3, 1, _prom->stdout, buf, nibbles); 307 } 308 309 /* max number of decimal digits in an unsigned long */ 310 #define UL_DIGITS 21 311 static void __init prom_print_dec(unsigned long val) 312 { 313 int i, size; 314 char buf[UL_DIGITS+1]; 315 struct prom_t *_prom = &RELOC(prom); 316 317 for (i = UL_DIGITS-1; i >= 0; i--) { 318 buf[i] = (val % 10) + '0'; 319 val = val/10; 320 if (val == 0) 321 break; 322 } 323 /* shift stuff down */ 324 size = UL_DIGITS - i; 325 call_prom("write", 3, 1, _prom->stdout, buf+i, size); 326 } 327 328 static void __init prom_printf(const char *format, ...) 329 { 330 const char *p, *q, *s; 331 va_list args; 332 unsigned long v; 333 long vs; 334 struct prom_t *_prom = &RELOC(prom); 335 336 va_start(args, format); 337 #ifdef CONFIG_PPC64 338 format = PTRRELOC(format); 339 #endif 340 for (p = format; *p != 0; p = q) { 341 for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q) 342 ; 343 if (q > p) 344 call_prom("write", 3, 1, _prom->stdout, p, q - p); 345 if (*q == 0) 346 break; 347 if (*q == '\n') { 348 ++q; 349 call_prom("write", 3, 1, _prom->stdout, 350 ADDR("\r\n"), 2); 351 continue; 352 } 353 ++q; 354 if (*q == 0) 355 break; 356 switch (*q) { 357 case 's': 358 ++q; 359 s = va_arg(args, const char *); 360 prom_print(s); 361 break; 362 case 'x': 363 ++q; 364 v = va_arg(args, unsigned long); 365 prom_print_hex(v); 366 break; 367 case 'd': 368 ++q; 369 vs = va_arg(args, int); 370 if (vs < 0) { 371 prom_print(RELOC("-")); 372 vs = -vs; 373 } 374 prom_print_dec(vs); 375 break; 376 case 'l': 377 ++q; 378 if (*q == 0) 379 break; 380 else if (*q == 'x') { 381 ++q; 382 v = va_arg(args, unsigned long); 383 prom_print_hex(v); 384 } else if (*q == 'u') { /* '%lu' */ 385 ++q; 386 v = va_arg(args, unsigned long); 387 prom_print_dec(v); 388 } else if (*q == 'd') { /* %ld */ 389 ++q; 390 vs = va_arg(args, long); 391 if (vs < 0) { 392 prom_print(RELOC("-")); 393 vs = -vs; 394 } 395 prom_print_dec(vs); 396 } 397 break; 398 } 399 } 400 } 401 402 403 static unsigned int __init prom_claim(unsigned long virt, unsigned long size, 404 unsigned long align) 405 { 406 struct prom_t *_prom = &RELOC(prom); 407 408 if (align == 0 && (OF_WORKAROUNDS & OF_WA_CLAIM)) { 409 /* 410 * Old OF requires we claim physical and virtual separately 411 * and then map explicitly (assuming virtual mode) 412 */ 413 int ret; 414 prom_arg_t result; 415 416 ret = call_prom_ret("call-method", 5, 2, &result, 417 ADDR("claim"), _prom->memory, 418 align, size, virt); 419 if (ret != 0 || result == -1) 420 return -1; 421 ret = call_prom_ret("call-method", 5, 2, &result, 422 ADDR("claim"), _prom->mmumap, 423 align, size, virt); 424 if (ret != 0) { 425 call_prom("call-method", 4, 1, ADDR("release"), 426 _prom->memory, size, virt); 427 return -1; 428 } 429 /* the 0x12 is M (coherence) + PP == read/write */ 430 call_prom("call-method", 6, 1, 431 ADDR("map"), _prom->mmumap, 0x12, size, virt, virt); 432 return virt; 433 } 434 return call_prom("claim", 3, 1, (prom_arg_t)virt, (prom_arg_t)size, 435 (prom_arg_t)align); 436 } 437 438 static void __init __attribute__((noreturn)) prom_panic(const char *reason) 439 { 440 #ifdef CONFIG_PPC64 441 reason = PTRRELOC(reason); 442 #endif 443 prom_print(reason); 444 /* Do not call exit because it clears the screen on pmac 445 * it also causes some sort of double-fault on early pmacs */ 446 if (RELOC(of_platform) == PLATFORM_POWERMAC) 447 asm("trap\n"); 448 449 /* ToDo: should put up an SRC here on pSeries */ 450 call_prom("exit", 0, 0); 451 452 for (;;) /* should never get here */ 453 ; 454 } 455 456 457 static int __init prom_next_node(phandle *nodep) 458 { 459 phandle node; 460 461 if ((node = *nodep) != 0 462 && (*nodep = call_prom("child", 1, 1, node)) != 0) 463 return 1; 464 if ((*nodep = call_prom("peer", 1, 1, node)) != 0) 465 return 1; 466 for (;;) { 467 if ((node = call_prom("parent", 1, 1, node)) == 0) 468 return 0; 469 if ((*nodep = call_prom("peer", 1, 1, node)) != 0) 470 return 1; 471 } 472 } 473 474 static int inline prom_getprop(phandle node, const char *pname, 475 void *value, size_t valuelen) 476 { 477 return call_prom("getprop", 4, 1, node, ADDR(pname), 478 (u32)(unsigned long) value, (u32) valuelen); 479 } 480 481 static int inline prom_getproplen(phandle node, const char *pname) 482 { 483 return call_prom("getproplen", 2, 1, node, ADDR(pname)); 484 } 485 486 static void add_string(char **str, const char *q) 487 { 488 char *p = *str; 489 490 while (*q) 491 *p++ = *q++; 492 *p++ = ' '; 493 *str = p; 494 } 495 496 static char *tohex(unsigned int x) 497 { 498 static char digits[] = "0123456789abcdef"; 499 static char result[9]; 500 int i; 501 502 result[8] = 0; 503 i = 8; 504 do { 505 --i; 506 result[i] = digits[x & 0xf]; 507 x >>= 4; 508 } while (x != 0 && i > 0); 509 return &result[i]; 510 } 511 512 static int __init prom_setprop(phandle node, const char *nodename, 513 const char *pname, void *value, size_t valuelen) 514 { 515 char cmd[256], *p; 516 517 if (!(OF_WORKAROUNDS & OF_WA_LONGTRAIL)) 518 return call_prom("setprop", 4, 1, node, ADDR(pname), 519 (u32)(unsigned long) value, (u32) valuelen); 520 521 /* gah... setprop doesn't work on longtrail, have to use interpret */ 522 p = cmd; 523 add_string(&p, "dev"); 524 add_string(&p, nodename); 525 add_string(&p, tohex((u32)(unsigned long) value)); 526 add_string(&p, tohex(valuelen)); 527 add_string(&p, tohex(ADDR(pname))); 528 add_string(&p, tohex(strlen(RELOC(pname)))); 529 add_string(&p, "property"); 530 *p = 0; 531 return call_prom("interpret", 1, 1, (u32)(unsigned long) cmd); 532 } 533 534 /* We can't use the standard versions because of RELOC headaches. */ 535 #define isxdigit(c) (('0' <= (c) && (c) <= '9') \ 536 || ('a' <= (c) && (c) <= 'f') \ 537 || ('A' <= (c) && (c) <= 'F')) 538 539 #define isdigit(c) ('0' <= (c) && (c) <= '9') 540 #define islower(c) ('a' <= (c) && (c) <= 'z') 541 #define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c)) 542 543 unsigned long prom_strtoul(const char *cp, const char **endp) 544 { 545 unsigned long result = 0, base = 10, value; 546 547 if (*cp == '0') { 548 base = 8; 549 cp++; 550 if (toupper(*cp) == 'X') { 551 cp++; 552 base = 16; 553 } 554 } 555 556 while (isxdigit(*cp) && 557 (value = isdigit(*cp) ? *cp - '0' : toupper(*cp) - 'A' + 10) < base) { 558 result = result * base + value; 559 cp++; 560 } 561 562 if (endp) 563 *endp = cp; 564 565 return result; 566 } 567 568 unsigned long prom_memparse(const char *ptr, const char **retptr) 569 { 570 unsigned long ret = prom_strtoul(ptr, retptr); 571 int shift = 0; 572 573 /* 574 * We can't use a switch here because GCC *may* generate a 575 * jump table which won't work, because we're not running at 576 * the address we're linked at. 577 */ 578 if ('G' == **retptr || 'g' == **retptr) 579 shift = 30; 580 581 if ('M' == **retptr || 'm' == **retptr) 582 shift = 20; 583 584 if ('K' == **retptr || 'k' == **retptr) 585 shift = 10; 586 587 if (shift) { 588 ret <<= shift; 589 (*retptr)++; 590 } 591 592 return ret; 593 } 594 595 /* 596 * Early parsing of the command line passed to the kernel, used for 597 * "mem=x" and the options that affect the iommu 598 */ 599 static void __init early_cmdline_parse(void) 600 { 601 struct prom_t *_prom = &RELOC(prom); 602 const char *opt; 603 604 char *p; 605 int l = 0; 606 607 RELOC(prom_cmd_line[0]) = 0; 608 p = RELOC(prom_cmd_line); 609 if ((long)_prom->chosen > 0) 610 l = prom_getprop(_prom->chosen, "bootargs", p, COMMAND_LINE_SIZE-1); 611 #ifdef CONFIG_CMDLINE 612 if (l <= 0 || p[0] == '\0') /* dbl check */ 613 strlcpy(RELOC(prom_cmd_line), 614 RELOC(CONFIG_CMDLINE), sizeof(prom_cmd_line)); 615 #endif /* CONFIG_CMDLINE */ 616 prom_printf("command line: %s\n", RELOC(prom_cmd_line)); 617 618 #ifdef CONFIG_PPC64 619 opt = strstr(RELOC(prom_cmd_line), RELOC("iommu=")); 620 if (opt) { 621 prom_printf("iommu opt is: %s\n", opt); 622 opt += 6; 623 while (*opt && *opt == ' ') 624 opt++; 625 if (!strncmp(opt, RELOC("off"), 3)) 626 RELOC(prom_iommu_off) = 1; 627 else if (!strncmp(opt, RELOC("force"), 5)) 628 RELOC(prom_iommu_force_on) = 1; 629 } 630 #endif 631 opt = strstr(RELOC(prom_cmd_line), RELOC("mem=")); 632 if (opt) { 633 opt += 4; 634 RELOC(prom_memory_limit) = prom_memparse(opt, (const char **)&opt); 635 #ifdef CONFIG_PPC64 636 /* Align to 16 MB == size of ppc64 large page */ 637 RELOC(prom_memory_limit) = ALIGN(RELOC(prom_memory_limit), 0x1000000); 638 #endif 639 } 640 } 641 642 #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV) 643 /* 644 * There are two methods for telling firmware what our capabilities are. 645 * Newer machines have an "ibm,client-architecture-support" method on the 646 * root node. For older machines, we have to call the "process-elf-header" 647 * method in the /packages/elf-loader node, passing it a fake 32-bit 648 * ELF header containing a couple of PT_NOTE sections that contain 649 * structures that contain various information. 650 */ 651 652 /* 653 * New method - extensible architecture description vector. 654 * 655 * Because the description vector contains a mix of byte and word 656 * values, we declare it as an unsigned char array, and use this 657 * macro to put word values in. 658 */ 659 #define W(x) ((x) >> 24) & 0xff, ((x) >> 16) & 0xff, \ 660 ((x) >> 8) & 0xff, (x) & 0xff 661 662 /* Option vector bits - generic bits in byte 1 */ 663 #define OV_IGNORE 0x80 /* ignore this vector */ 664 #define OV_CESSATION_POLICY 0x40 /* halt if unsupported option present*/ 665 666 /* Option vector 1: processor architectures supported */ 667 #define OV1_PPC_2_00 0x80 /* set if we support PowerPC 2.00 */ 668 #define OV1_PPC_2_01 0x40 /* set if we support PowerPC 2.01 */ 669 #define OV1_PPC_2_02 0x20 /* set if we support PowerPC 2.02 */ 670 #define OV1_PPC_2_03 0x10 /* set if we support PowerPC 2.03 */ 671 #define OV1_PPC_2_04 0x08 /* set if we support PowerPC 2.04 */ 672 #define OV1_PPC_2_05 0x04 /* set if we support PowerPC 2.05 */ 673 #define OV1_PPC_2_06 0x02 /* set if we support PowerPC 2.06 */ 674 675 /* Option vector 2: Open Firmware options supported */ 676 #define OV2_REAL_MODE 0x20 /* set if we want OF in real mode */ 677 678 /* Option vector 3: processor options supported */ 679 #define OV3_FP 0x80 /* floating point */ 680 #define OV3_VMX 0x40 /* VMX/Altivec */ 681 #define OV3_DFP 0x20 /* decimal FP */ 682 683 /* Option vector 4: IBM PAPR implementation */ 684 #define OV4_MIN_ENT_CAP 0x01 /* minimum VP entitled capacity */ 685 686 /* Option vector 5: PAPR/OF options supported */ 687 #define OV5_LPAR 0x80 /* logical partitioning supported */ 688 #define OV5_SPLPAR 0x40 /* shared-processor LPAR supported */ 689 /* ibm,dynamic-reconfiguration-memory property supported */ 690 #define OV5_DRCONF_MEMORY 0x20 691 #define OV5_LARGE_PAGES 0x10 /* large pages supported */ 692 #define OV5_DONATE_DEDICATE_CPU 0x02 /* donate dedicated CPU support */ 693 /* PCIe/MSI support. Without MSI full PCIe is not supported */ 694 #ifdef CONFIG_PCI_MSI 695 #define OV5_MSI 0x01 /* PCIe/MSI support */ 696 #else 697 #define OV5_MSI 0x00 698 #endif /* CONFIG_PCI_MSI */ 699 #ifdef CONFIG_PPC_SMLPAR 700 #define OV5_CMO 0x80 /* Cooperative Memory Overcommitment */ 701 #define OV5_XCMO 0x40 /* Page Coalescing */ 702 #else 703 #define OV5_CMO 0x00 704 #define OV5_XCMO 0x00 705 #endif 706 #define OV5_TYPE1_AFFINITY 0x80 /* Type 1 NUMA affinity */ 707 #define OV5_PFO_HW_RNG 0x80 /* PFO Random Number Generator */ 708 #define OV5_PFO_HW_ENCR 0x20 /* PFO Encryption Accelerator */ 709 710 /* Option Vector 6: IBM PAPR hints */ 711 #define OV6_LINUX 0x02 /* Linux is our OS */ 712 713 /* 714 * The architecture vector has an array of PVR mask/value pairs, 715 * followed by # option vectors - 1, followed by the option vectors. 716 */ 717 static unsigned char ibm_architecture_vec[] = { 718 W(0xfffe0000), W(0x003a0000), /* POWER5/POWER5+ */ 719 W(0xffff0000), W(0x003e0000), /* POWER6 */ 720 W(0xffff0000), W(0x003f0000), /* POWER7 */ 721 W(0xffffffff), W(0x0f000003), /* all 2.06-compliant */ 722 W(0xffffffff), W(0x0f000002), /* all 2.05-compliant */ 723 W(0xfffffffe), W(0x0f000001), /* all 2.04-compliant and earlier */ 724 6 - 1, /* 6 option vectors */ 725 726 /* option vector 1: processor architectures supported */ 727 3 - 2, /* length */ 728 0, /* don't ignore, don't halt */ 729 OV1_PPC_2_00 | OV1_PPC_2_01 | OV1_PPC_2_02 | OV1_PPC_2_03 | 730 OV1_PPC_2_04 | OV1_PPC_2_05 | OV1_PPC_2_06, 731 732 /* option vector 2: Open Firmware options supported */ 733 34 - 2, /* length */ 734 OV2_REAL_MODE, 735 0, 0, 736 W(0xffffffff), /* real_base */ 737 W(0xffffffff), /* real_size */ 738 W(0xffffffff), /* virt_base */ 739 W(0xffffffff), /* virt_size */ 740 W(0xffffffff), /* load_base */ 741 W(256), /* 256MB min RMA */ 742 W(0xffffffff), /* full client load */ 743 0, /* min RMA percentage of total RAM */ 744 48, /* max log_2(hash table size) */ 745 746 /* option vector 3: processor options supported */ 747 3 - 2, /* length */ 748 0, /* don't ignore, don't halt */ 749 OV3_FP | OV3_VMX | OV3_DFP, 750 751 /* option vector 4: IBM PAPR implementation */ 752 3 - 2, /* length */ 753 0, /* don't halt */ 754 OV4_MIN_ENT_CAP, /* minimum VP entitled capacity */ 755 756 /* option vector 5: PAPR/OF options */ 757 18 - 2, /* length */ 758 0, /* don't ignore, don't halt */ 759 OV5_LPAR | OV5_SPLPAR | OV5_LARGE_PAGES | OV5_DRCONF_MEMORY | 760 OV5_DONATE_DEDICATE_CPU | OV5_MSI, 761 0, 762 OV5_CMO | OV5_XCMO, 763 OV5_TYPE1_AFFINITY, 764 0, 765 0, 766 0, 767 /* WARNING: The offset of the "number of cores" field below 768 * must match by the macro below. Update the definition if 769 * the structure layout changes. 770 */ 771 #define IBM_ARCH_VEC_NRCORES_OFFSET 101 772 W(NR_CPUS), /* number of cores supported */ 773 0, 774 0, 775 0, 776 0, 777 OV5_PFO_HW_RNG | OV5_PFO_HW_ENCR, 778 779 /* option vector 6: IBM PAPR hints */ 780 4 - 2, /* length */ 781 0, 782 0, 783 OV6_LINUX, 784 785 }; 786 787 /* Old method - ELF header with PT_NOTE sections */ 788 static struct fake_elf { 789 Elf32_Ehdr elfhdr; 790 Elf32_Phdr phdr[2]; 791 struct chrpnote { 792 u32 namesz; 793 u32 descsz; 794 u32 type; 795 char name[8]; /* "PowerPC" */ 796 struct chrpdesc { 797 u32 real_mode; 798 u32 real_base; 799 u32 real_size; 800 u32 virt_base; 801 u32 virt_size; 802 u32 load_base; 803 } chrpdesc; 804 } chrpnote; 805 struct rpanote { 806 u32 namesz; 807 u32 descsz; 808 u32 type; 809 char name[24]; /* "IBM,RPA-Client-Config" */ 810 struct rpadesc { 811 u32 lpar_affinity; 812 u32 min_rmo_size; 813 u32 min_rmo_percent; 814 u32 max_pft_size; 815 u32 splpar; 816 u32 min_load; 817 u32 new_mem_def; 818 u32 ignore_me; 819 } rpadesc; 820 } rpanote; 821 } fake_elf = { 822 .elfhdr = { 823 .e_ident = { 0x7f, 'E', 'L', 'F', 824 ELFCLASS32, ELFDATA2MSB, EV_CURRENT }, 825 .e_type = ET_EXEC, /* yeah right */ 826 .e_machine = EM_PPC, 827 .e_version = EV_CURRENT, 828 .e_phoff = offsetof(struct fake_elf, phdr), 829 .e_phentsize = sizeof(Elf32_Phdr), 830 .e_phnum = 2 831 }, 832 .phdr = { 833 [0] = { 834 .p_type = PT_NOTE, 835 .p_offset = offsetof(struct fake_elf, chrpnote), 836 .p_filesz = sizeof(struct chrpnote) 837 }, [1] = { 838 .p_type = PT_NOTE, 839 .p_offset = offsetof(struct fake_elf, rpanote), 840 .p_filesz = sizeof(struct rpanote) 841 } 842 }, 843 .chrpnote = { 844 .namesz = sizeof("PowerPC"), 845 .descsz = sizeof(struct chrpdesc), 846 .type = 0x1275, 847 .name = "PowerPC", 848 .chrpdesc = { 849 .real_mode = ~0U, /* ~0 means "don't care" */ 850 .real_base = ~0U, 851 .real_size = ~0U, 852 .virt_base = ~0U, 853 .virt_size = ~0U, 854 .load_base = ~0U 855 }, 856 }, 857 .rpanote = { 858 .namesz = sizeof("IBM,RPA-Client-Config"), 859 .descsz = sizeof(struct rpadesc), 860 .type = 0x12759999, 861 .name = "IBM,RPA-Client-Config", 862 .rpadesc = { 863 .lpar_affinity = 0, 864 .min_rmo_size = 64, /* in megabytes */ 865 .min_rmo_percent = 0, 866 .max_pft_size = 48, /* 2^48 bytes max PFT size */ 867 .splpar = 1, 868 .min_load = ~0U, 869 .new_mem_def = 0 870 } 871 } 872 }; 873 874 static int __init prom_count_smt_threads(void) 875 { 876 phandle node; 877 char type[64]; 878 unsigned int plen; 879 880 /* Pick up th first CPU node we can find */ 881 for (node = 0; prom_next_node(&node); ) { 882 type[0] = 0; 883 prom_getprop(node, "device_type", type, sizeof(type)); 884 885 if (strcmp(type, RELOC("cpu"))) 886 continue; 887 /* 888 * There is an entry for each smt thread, each entry being 889 * 4 bytes long. All cpus should have the same number of 890 * smt threads, so return after finding the first. 891 */ 892 plen = prom_getproplen(node, "ibm,ppc-interrupt-server#s"); 893 if (plen == PROM_ERROR) 894 break; 895 plen >>= 2; 896 prom_debug("Found %lu smt threads per core\n", (unsigned long)plen); 897 898 /* Sanity check */ 899 if (plen < 1 || plen > 64) { 900 prom_printf("Threads per core %lu out of bounds, assuming 1\n", 901 (unsigned long)plen); 902 return 1; 903 } 904 return plen; 905 } 906 prom_debug("No threads found, assuming 1 per core\n"); 907 908 return 1; 909 910 } 911 912 913 static void __init prom_send_capabilities(void) 914 { 915 ihandle elfloader, root; 916 prom_arg_t ret; 917 u32 *cores; 918 919 root = call_prom("open", 1, 1, ADDR("/")); 920 if (root != 0) { 921 /* We need to tell the FW about the number of cores we support. 922 * 923 * To do that, we count the number of threads on the first core 924 * (we assume this is the same for all cores) and use it to 925 * divide NR_CPUS. 926 */ 927 cores = (u32 *)PTRRELOC(&ibm_architecture_vec[IBM_ARCH_VEC_NRCORES_OFFSET]); 928 if (*cores != NR_CPUS) { 929 prom_printf("WARNING ! " 930 "ibm_architecture_vec structure inconsistent: %lu!\n", 931 *cores); 932 } else { 933 *cores = DIV_ROUND_UP(NR_CPUS, prom_count_smt_threads()); 934 prom_printf("Max number of cores passed to firmware: %lu (NR_CPUS = %lu)\n", 935 *cores, NR_CPUS); 936 } 937 938 /* try calling the ibm,client-architecture-support method */ 939 prom_printf("Calling ibm,client-architecture-support..."); 940 if (call_prom_ret("call-method", 3, 2, &ret, 941 ADDR("ibm,client-architecture-support"), 942 root, 943 ADDR(ibm_architecture_vec)) == 0) { 944 /* the call exists... */ 945 if (ret) 946 prom_printf("\nWARNING: ibm,client-architecture" 947 "-support call FAILED!\n"); 948 call_prom("close", 1, 0, root); 949 prom_printf(" done\n"); 950 return; 951 } 952 call_prom("close", 1, 0, root); 953 prom_printf(" not implemented\n"); 954 } 955 956 /* no ibm,client-architecture-support call, try the old way */ 957 elfloader = call_prom("open", 1, 1, ADDR("/packages/elf-loader")); 958 if (elfloader == 0) { 959 prom_printf("couldn't open /packages/elf-loader\n"); 960 return; 961 } 962 call_prom("call-method", 3, 1, ADDR("process-elf-header"), 963 elfloader, ADDR(&fake_elf)); 964 call_prom("close", 1, 0, elfloader); 965 } 966 #endif 967 968 /* 969 * Memory allocation strategy... our layout is normally: 970 * 971 * at 14Mb or more we have vmlinux, then a gap and initrd. In some 972 * rare cases, initrd might end up being before the kernel though. 973 * We assume this won't override the final kernel at 0, we have no 974 * provision to handle that in this version, but it should hopefully 975 * never happen. 976 * 977 * alloc_top is set to the top of RMO, eventually shrink down if the 978 * TCEs overlap 979 * 980 * alloc_bottom is set to the top of kernel/initrd 981 * 982 * from there, allocations are done this way : rtas is allocated 983 * topmost, and the device-tree is allocated from the bottom. We try 984 * to grow the device-tree allocation as we progress. If we can't, 985 * then we fail, we don't currently have a facility to restart 986 * elsewhere, but that shouldn't be necessary. 987 * 988 * Note that calls to reserve_mem have to be done explicitly, memory 989 * allocated with either alloc_up or alloc_down isn't automatically 990 * reserved. 991 */ 992 993 994 /* 995 * Allocates memory in the RMO upward from the kernel/initrd 996 * 997 * When align is 0, this is a special case, it means to allocate in place 998 * at the current location of alloc_bottom or fail (that is basically 999 * extending the previous allocation). Used for the device-tree flattening 1000 */ 1001 static unsigned long __init alloc_up(unsigned long size, unsigned long align) 1002 { 1003 unsigned long base = RELOC(alloc_bottom); 1004 unsigned long addr = 0; 1005 1006 if (align) 1007 base = _ALIGN_UP(base, align); 1008 prom_debug("alloc_up(%x, %x)\n", size, align); 1009 if (RELOC(ram_top) == 0) 1010 prom_panic("alloc_up() called with mem not initialized\n"); 1011 1012 if (align) 1013 base = _ALIGN_UP(RELOC(alloc_bottom), align); 1014 else 1015 base = RELOC(alloc_bottom); 1016 1017 for(; (base + size) <= RELOC(alloc_top); 1018 base = _ALIGN_UP(base + 0x100000, align)) { 1019 prom_debug(" trying: 0x%x\n\r", base); 1020 addr = (unsigned long)prom_claim(base, size, 0); 1021 if (addr != PROM_ERROR && addr != 0) 1022 break; 1023 addr = 0; 1024 if (align == 0) 1025 break; 1026 } 1027 if (addr == 0) 1028 return 0; 1029 RELOC(alloc_bottom) = addr + size; 1030 1031 prom_debug(" -> %x\n", addr); 1032 prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom)); 1033 prom_debug(" alloc_top : %x\n", RELOC(alloc_top)); 1034 prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high)); 1035 prom_debug(" rmo_top : %x\n", RELOC(rmo_top)); 1036 prom_debug(" ram_top : %x\n", RELOC(ram_top)); 1037 1038 return addr; 1039 } 1040 1041 /* 1042 * Allocates memory downward, either from top of RMO, or if highmem 1043 * is set, from the top of RAM. Note that this one doesn't handle 1044 * failures. It does claim memory if highmem is not set. 1045 */ 1046 static unsigned long __init alloc_down(unsigned long size, unsigned long align, 1047 int highmem) 1048 { 1049 unsigned long base, addr = 0; 1050 1051 prom_debug("alloc_down(%x, %x, %s)\n", size, align, 1052 highmem ? RELOC("(high)") : RELOC("(low)")); 1053 if (RELOC(ram_top) == 0) 1054 prom_panic("alloc_down() called with mem not initialized\n"); 1055 1056 if (highmem) { 1057 /* Carve out storage for the TCE table. */ 1058 addr = _ALIGN_DOWN(RELOC(alloc_top_high) - size, align); 1059 if (addr <= RELOC(alloc_bottom)) 1060 return 0; 1061 /* Will we bump into the RMO ? If yes, check out that we 1062 * didn't overlap existing allocations there, if we did, 1063 * we are dead, we must be the first in town ! 1064 */ 1065 if (addr < RELOC(rmo_top)) { 1066 /* Good, we are first */ 1067 if (RELOC(alloc_top) == RELOC(rmo_top)) 1068 RELOC(alloc_top) = RELOC(rmo_top) = addr; 1069 else 1070 return 0; 1071 } 1072 RELOC(alloc_top_high) = addr; 1073 goto bail; 1074 } 1075 1076 base = _ALIGN_DOWN(RELOC(alloc_top) - size, align); 1077 for (; base > RELOC(alloc_bottom); 1078 base = _ALIGN_DOWN(base - 0x100000, align)) { 1079 prom_debug(" trying: 0x%x\n\r", base); 1080 addr = (unsigned long)prom_claim(base, size, 0); 1081 if (addr != PROM_ERROR && addr != 0) 1082 break; 1083 addr = 0; 1084 } 1085 if (addr == 0) 1086 return 0; 1087 RELOC(alloc_top) = addr; 1088 1089 bail: 1090 prom_debug(" -> %x\n", addr); 1091 prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom)); 1092 prom_debug(" alloc_top : %x\n", RELOC(alloc_top)); 1093 prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high)); 1094 prom_debug(" rmo_top : %x\n", RELOC(rmo_top)); 1095 prom_debug(" ram_top : %x\n", RELOC(ram_top)); 1096 1097 return addr; 1098 } 1099 1100 /* 1101 * Parse a "reg" cell 1102 */ 1103 static unsigned long __init prom_next_cell(int s, cell_t **cellp) 1104 { 1105 cell_t *p = *cellp; 1106 unsigned long r = 0; 1107 1108 /* Ignore more than 2 cells */ 1109 while (s > sizeof(unsigned long) / 4) { 1110 p++; 1111 s--; 1112 } 1113 r = *p++; 1114 #ifdef CONFIG_PPC64 1115 if (s > 1) { 1116 r <<= 32; 1117 r |= *(p++); 1118 } 1119 #endif 1120 *cellp = p; 1121 return r; 1122 } 1123 1124 /* 1125 * Very dumb function for adding to the memory reserve list, but 1126 * we don't need anything smarter at this point 1127 * 1128 * XXX Eventually check for collisions. They should NEVER happen. 1129 * If problems seem to show up, it would be a good start to track 1130 * them down. 1131 */ 1132 static void __init reserve_mem(u64 base, u64 size) 1133 { 1134 u64 top = base + size; 1135 unsigned long cnt = RELOC(mem_reserve_cnt); 1136 1137 if (size == 0) 1138 return; 1139 1140 /* We need to always keep one empty entry so that we 1141 * have our terminator with "size" set to 0 since we are 1142 * dumb and just copy this entire array to the boot params 1143 */ 1144 base = _ALIGN_DOWN(base, PAGE_SIZE); 1145 top = _ALIGN_UP(top, PAGE_SIZE); 1146 size = top - base; 1147 1148 if (cnt >= (MEM_RESERVE_MAP_SIZE - 1)) 1149 prom_panic("Memory reserve map exhausted !\n"); 1150 RELOC(mem_reserve_map)[cnt].base = base; 1151 RELOC(mem_reserve_map)[cnt].size = size; 1152 RELOC(mem_reserve_cnt) = cnt + 1; 1153 } 1154 1155 /* 1156 * Initialize memory allocation mechanism, parse "memory" nodes and 1157 * obtain that way the top of memory and RMO to setup out local allocator 1158 */ 1159 static void __init prom_init_mem(void) 1160 { 1161 phandle node; 1162 char *path, type[64]; 1163 unsigned int plen; 1164 cell_t *p, *endp; 1165 struct prom_t *_prom = &RELOC(prom); 1166 u32 rac, rsc; 1167 1168 /* 1169 * We iterate the memory nodes to find 1170 * 1) top of RMO (first node) 1171 * 2) top of memory 1172 */ 1173 rac = 2; 1174 prom_getprop(_prom->root, "#address-cells", &rac, sizeof(rac)); 1175 rsc = 1; 1176 prom_getprop(_prom->root, "#size-cells", &rsc, sizeof(rsc)); 1177 prom_debug("root_addr_cells: %x\n", (unsigned long) rac); 1178 prom_debug("root_size_cells: %x\n", (unsigned long) rsc); 1179 1180 prom_debug("scanning memory:\n"); 1181 path = RELOC(prom_scratch); 1182 1183 for (node = 0; prom_next_node(&node); ) { 1184 type[0] = 0; 1185 prom_getprop(node, "device_type", type, sizeof(type)); 1186 1187 if (type[0] == 0) { 1188 /* 1189 * CHRP Longtrail machines have no device_type 1190 * on the memory node, so check the name instead... 1191 */ 1192 prom_getprop(node, "name", type, sizeof(type)); 1193 } 1194 if (strcmp(type, RELOC("memory"))) 1195 continue; 1196 1197 plen = prom_getprop(node, "reg", RELOC(regbuf), sizeof(regbuf)); 1198 if (plen > sizeof(regbuf)) { 1199 prom_printf("memory node too large for buffer !\n"); 1200 plen = sizeof(regbuf); 1201 } 1202 p = RELOC(regbuf); 1203 endp = p + (plen / sizeof(cell_t)); 1204 1205 #ifdef DEBUG_PROM 1206 memset(path, 0, PROM_SCRATCH_SIZE); 1207 call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1); 1208 prom_debug(" node %s :\n", path); 1209 #endif /* DEBUG_PROM */ 1210 1211 while ((endp - p) >= (rac + rsc)) { 1212 unsigned long base, size; 1213 1214 base = prom_next_cell(rac, &p); 1215 size = prom_next_cell(rsc, &p); 1216 1217 if (size == 0) 1218 continue; 1219 prom_debug(" %x %x\n", base, size); 1220 if (base == 0 && (RELOC(of_platform) & PLATFORM_LPAR)) 1221 RELOC(rmo_top) = size; 1222 if ((base + size) > RELOC(ram_top)) 1223 RELOC(ram_top) = base + size; 1224 } 1225 } 1226 1227 RELOC(alloc_bottom) = PAGE_ALIGN((unsigned long)&RELOC(_end) + 0x4000); 1228 1229 /* 1230 * If prom_memory_limit is set we reduce the upper limits *except* for 1231 * alloc_top_high. This must be the real top of RAM so we can put 1232 * TCE's up there. 1233 */ 1234 1235 RELOC(alloc_top_high) = RELOC(ram_top); 1236 1237 if (RELOC(prom_memory_limit)) { 1238 if (RELOC(prom_memory_limit) <= RELOC(alloc_bottom)) { 1239 prom_printf("Ignoring mem=%x <= alloc_bottom.\n", 1240 RELOC(prom_memory_limit)); 1241 RELOC(prom_memory_limit) = 0; 1242 } else if (RELOC(prom_memory_limit) >= RELOC(ram_top)) { 1243 prom_printf("Ignoring mem=%x >= ram_top.\n", 1244 RELOC(prom_memory_limit)); 1245 RELOC(prom_memory_limit) = 0; 1246 } else { 1247 RELOC(ram_top) = RELOC(prom_memory_limit); 1248 RELOC(rmo_top) = min(RELOC(rmo_top), RELOC(prom_memory_limit)); 1249 } 1250 } 1251 1252 /* 1253 * Setup our top alloc point, that is top of RMO or top of 1254 * segment 0 when running non-LPAR. 1255 * Some RS64 machines have buggy firmware where claims up at 1256 * 1GB fail. Cap at 768MB as a workaround. 1257 * Since 768MB is plenty of room, and we need to cap to something 1258 * reasonable on 32-bit, cap at 768MB on all machines. 1259 */ 1260 if (!RELOC(rmo_top)) 1261 RELOC(rmo_top) = RELOC(ram_top); 1262 RELOC(rmo_top) = min(0x30000000ul, RELOC(rmo_top)); 1263 RELOC(alloc_top) = RELOC(rmo_top); 1264 RELOC(alloc_top_high) = RELOC(ram_top); 1265 1266 /* 1267 * Check if we have an initrd after the kernel but still inside 1268 * the RMO. If we do move our bottom point to after it. 1269 */ 1270 if (RELOC(prom_initrd_start) && 1271 RELOC(prom_initrd_start) < RELOC(rmo_top) && 1272 RELOC(prom_initrd_end) > RELOC(alloc_bottom)) 1273 RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(prom_initrd_end)); 1274 1275 prom_printf("memory layout at init:\n"); 1276 prom_printf(" memory_limit : %x (16 MB aligned)\n", RELOC(prom_memory_limit)); 1277 prom_printf(" alloc_bottom : %x\n", RELOC(alloc_bottom)); 1278 prom_printf(" alloc_top : %x\n", RELOC(alloc_top)); 1279 prom_printf(" alloc_top_hi : %x\n", RELOC(alloc_top_high)); 1280 prom_printf(" rmo_top : %x\n", RELOC(rmo_top)); 1281 prom_printf(" ram_top : %x\n", RELOC(ram_top)); 1282 } 1283 1284 static void __init prom_close_stdin(void) 1285 { 1286 struct prom_t *_prom = &RELOC(prom); 1287 ihandle val; 1288 1289 if (prom_getprop(_prom->chosen, "stdin", &val, sizeof(val)) > 0) 1290 call_prom("close", 1, 0, val); 1291 } 1292 1293 #ifdef CONFIG_PPC_POWERNV 1294 1295 static u64 __initdata prom_opal_size; 1296 static u64 __initdata prom_opal_align; 1297 static int __initdata prom_rtas_start_cpu; 1298 static u64 __initdata prom_rtas_data; 1299 static u64 __initdata prom_rtas_entry; 1300 1301 #ifdef CONFIG_PPC_EARLY_DEBUG_OPAL 1302 static u64 __initdata prom_opal_base; 1303 static u64 __initdata prom_opal_entry; 1304 #endif 1305 1306 /* XXX Don't change this structure without updating opal-takeover.S */ 1307 static struct opal_secondary_data { 1308 s64 ack; /* 0 */ 1309 u64 go; /* 8 */ 1310 struct opal_takeover_args args; /* 16 */ 1311 } opal_secondary_data; 1312 1313 extern char opal_secondary_entry; 1314 1315 static void __init prom_query_opal(void) 1316 { 1317 long rc; 1318 1319 /* We must not query for OPAL presence on a machine that 1320 * supports TNK takeover (970 blades), as this uses the same 1321 * h-call with different arguments and will crash 1322 */ 1323 if (PHANDLE_VALID(call_prom("finddevice", 1, 1, 1324 ADDR("/tnk-memory-map")))) { 1325 prom_printf("TNK takeover detected, skipping OPAL check\n"); 1326 return; 1327 } 1328 1329 prom_printf("Querying for OPAL presence... "); 1330 rc = opal_query_takeover(&RELOC(prom_opal_size), 1331 &RELOC(prom_opal_align)); 1332 prom_debug("(rc = %ld) ", rc); 1333 if (rc != 0) { 1334 prom_printf("not there.\n"); 1335 return; 1336 } 1337 RELOC(of_platform) = PLATFORM_OPAL; 1338 prom_printf(" there !\n"); 1339 prom_debug(" opal_size = 0x%lx\n", RELOC(prom_opal_size)); 1340 prom_debug(" opal_align = 0x%lx\n", RELOC(prom_opal_align)); 1341 if (RELOC(prom_opal_align) < 0x10000) 1342 RELOC(prom_opal_align) = 0x10000; 1343 } 1344 1345 static int prom_rtas_call(int token, int nargs, int nret, int *outputs, ...) 1346 { 1347 struct rtas_args rtas_args; 1348 va_list list; 1349 int i; 1350 1351 rtas_args.token = token; 1352 rtas_args.nargs = nargs; 1353 rtas_args.nret = nret; 1354 rtas_args.rets = (rtas_arg_t *)&(rtas_args.args[nargs]); 1355 va_start(list, outputs); 1356 for (i = 0; i < nargs; ++i) 1357 rtas_args.args[i] = va_arg(list, rtas_arg_t); 1358 va_end(list); 1359 1360 for (i = 0; i < nret; ++i) 1361 rtas_args.rets[i] = 0; 1362 1363 opal_enter_rtas(&rtas_args, RELOC(prom_rtas_data), 1364 RELOC(prom_rtas_entry)); 1365 1366 if (nret > 1 && outputs != NULL) 1367 for (i = 0; i < nret-1; ++i) 1368 outputs[i] = rtas_args.rets[i+1]; 1369 return (nret > 0)? rtas_args.rets[0]: 0; 1370 } 1371 1372 static void __init prom_opal_hold_cpus(void) 1373 { 1374 int i, cnt, cpu, rc; 1375 long j; 1376 phandle node; 1377 char type[64]; 1378 u32 servers[8]; 1379 struct prom_t *_prom = &RELOC(prom); 1380 void *entry = (unsigned long *)&RELOC(opal_secondary_entry); 1381 struct opal_secondary_data *data = &RELOC(opal_secondary_data); 1382 1383 prom_debug("prom_opal_hold_cpus: start...\n"); 1384 prom_debug(" - entry = 0x%x\n", entry); 1385 prom_debug(" - data = 0x%x\n", data); 1386 1387 data->ack = -1; 1388 data->go = 0; 1389 1390 /* look for cpus */ 1391 for (node = 0; prom_next_node(&node); ) { 1392 type[0] = 0; 1393 prom_getprop(node, "device_type", type, sizeof(type)); 1394 if (strcmp(type, RELOC("cpu")) != 0) 1395 continue; 1396 1397 /* Skip non-configured cpus. */ 1398 if (prom_getprop(node, "status", type, sizeof(type)) > 0) 1399 if (strcmp(type, RELOC("okay")) != 0) 1400 continue; 1401 1402 cnt = prom_getprop(node, "ibm,ppc-interrupt-server#s", servers, 1403 sizeof(servers)); 1404 if (cnt == PROM_ERROR) 1405 break; 1406 cnt >>= 2; 1407 for (i = 0; i < cnt; i++) { 1408 cpu = servers[i]; 1409 prom_debug("CPU %d ... ", cpu); 1410 if (cpu == _prom->cpu) { 1411 prom_debug("booted !\n"); 1412 continue; 1413 } 1414 prom_debug("starting ... "); 1415 1416 /* Init the acknowledge var which will be reset by 1417 * the secondary cpu when it awakens from its OF 1418 * spinloop. 1419 */ 1420 data->ack = -1; 1421 rc = prom_rtas_call(RELOC(prom_rtas_start_cpu), 3, 1, 1422 NULL, cpu, entry, data); 1423 prom_debug("rtas rc=%d ...", rc); 1424 1425 for (j = 0; j < 100000000 && data->ack == -1; j++) { 1426 HMT_low(); 1427 mb(); 1428 } 1429 HMT_medium(); 1430 if (data->ack != -1) 1431 prom_debug("done, PIR=0x%x\n", data->ack); 1432 else 1433 prom_debug("timeout !\n"); 1434 } 1435 } 1436 prom_debug("prom_opal_hold_cpus: end...\n"); 1437 } 1438 1439 static void __init prom_opal_takeover(void) 1440 { 1441 struct opal_secondary_data *data = &RELOC(opal_secondary_data); 1442 struct opal_takeover_args *args = &data->args; 1443 u64 align = RELOC(prom_opal_align); 1444 u64 top_addr, opal_addr; 1445 1446 args->k_image = (u64)RELOC(_stext); 1447 args->k_size = _end - _stext; 1448 args->k_entry = 0; 1449 args->k_entry2 = 0x60; 1450 1451 top_addr = _ALIGN_UP(args->k_size, align); 1452 1453 if (RELOC(prom_initrd_start) != 0) { 1454 args->rd_image = RELOC(prom_initrd_start); 1455 args->rd_size = RELOC(prom_initrd_end) - args->rd_image; 1456 args->rd_loc = top_addr; 1457 top_addr = _ALIGN_UP(args->rd_loc + args->rd_size, align); 1458 } 1459 1460 /* Pickup an address for the HAL. We want to go really high 1461 * up to avoid problem with future kexecs. On the other hand 1462 * we don't want to be all over the TCEs on P5IOC2 machines 1463 * which are going to be up there too. We assume the machine 1464 * has plenty of memory, and we ask for the HAL for now to 1465 * be just below the 1G point, or above the initrd 1466 */ 1467 opal_addr = _ALIGN_DOWN(0x40000000 - RELOC(prom_opal_size), align); 1468 if (opal_addr < top_addr) 1469 opal_addr = top_addr; 1470 args->hal_addr = opal_addr; 1471 1472 /* Copy the command line to the kernel image */ 1473 strlcpy(RELOC(boot_command_line), RELOC(prom_cmd_line), 1474 COMMAND_LINE_SIZE); 1475 1476 prom_debug(" k_image = 0x%lx\n", args->k_image); 1477 prom_debug(" k_size = 0x%lx\n", args->k_size); 1478 prom_debug(" k_entry = 0x%lx\n", args->k_entry); 1479 prom_debug(" k_entry2 = 0x%lx\n", args->k_entry2); 1480 prom_debug(" hal_addr = 0x%lx\n", args->hal_addr); 1481 prom_debug(" rd_image = 0x%lx\n", args->rd_image); 1482 prom_debug(" rd_size = 0x%lx\n", args->rd_size); 1483 prom_debug(" rd_loc = 0x%lx\n", args->rd_loc); 1484 prom_printf("Performing OPAL takeover,this can take a few minutes..\n"); 1485 prom_close_stdin(); 1486 mb(); 1487 data->go = 1; 1488 for (;;) 1489 opal_do_takeover(args); 1490 } 1491 1492 /* 1493 * Allocate room for and instantiate OPAL 1494 */ 1495 static void __init prom_instantiate_opal(void) 1496 { 1497 phandle opal_node; 1498 ihandle opal_inst; 1499 u64 base, entry; 1500 u64 size = 0, align = 0x10000; 1501 u32 rets[2]; 1502 1503 prom_debug("prom_instantiate_opal: start...\n"); 1504 1505 opal_node = call_prom("finddevice", 1, 1, ADDR("/ibm,opal")); 1506 prom_debug("opal_node: %x\n", opal_node); 1507 if (!PHANDLE_VALID(opal_node)) 1508 return; 1509 1510 prom_getprop(opal_node, "opal-runtime-size", &size, sizeof(size)); 1511 if (size == 0) 1512 return; 1513 prom_getprop(opal_node, "opal-runtime-alignment", &align, 1514 sizeof(align)); 1515 1516 base = alloc_down(size, align, 0); 1517 if (base == 0) { 1518 prom_printf("OPAL allocation failed !\n"); 1519 return; 1520 } 1521 1522 opal_inst = call_prom("open", 1, 1, ADDR("/ibm,opal")); 1523 if (!IHANDLE_VALID(opal_inst)) { 1524 prom_printf("opening opal package failed (%x)\n", opal_inst); 1525 return; 1526 } 1527 1528 prom_printf("instantiating opal at 0x%x...", base); 1529 1530 if (call_prom_ret("call-method", 4, 3, rets, 1531 ADDR("load-opal-runtime"), 1532 opal_inst, 1533 base >> 32, base & 0xffffffff) != 0 1534 || (rets[0] == 0 && rets[1] == 0)) { 1535 prom_printf(" failed\n"); 1536 return; 1537 } 1538 entry = (((u64)rets[0]) << 32) | rets[1]; 1539 1540 prom_printf(" done\n"); 1541 1542 reserve_mem(base, size); 1543 1544 prom_debug("opal base = 0x%x\n", base); 1545 prom_debug("opal align = 0x%x\n", align); 1546 prom_debug("opal entry = 0x%x\n", entry); 1547 prom_debug("opal size = 0x%x\n", (long)size); 1548 1549 prom_setprop(opal_node, "/ibm,opal", "opal-base-address", 1550 &base, sizeof(base)); 1551 prom_setprop(opal_node, "/ibm,opal", "opal-entry-address", 1552 &entry, sizeof(entry)); 1553 1554 #ifdef CONFIG_PPC_EARLY_DEBUG_OPAL 1555 RELOC(prom_opal_base) = base; 1556 RELOC(prom_opal_entry) = entry; 1557 #endif 1558 prom_debug("prom_instantiate_opal: end...\n"); 1559 } 1560 1561 #endif /* CONFIG_PPC_POWERNV */ 1562 1563 /* 1564 * Allocate room for and instantiate RTAS 1565 */ 1566 static void __init prom_instantiate_rtas(void) 1567 { 1568 phandle rtas_node; 1569 ihandle rtas_inst; 1570 u32 base, entry = 0; 1571 u32 size = 0; 1572 1573 prom_debug("prom_instantiate_rtas: start...\n"); 1574 1575 rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas")); 1576 prom_debug("rtas_node: %x\n", rtas_node); 1577 if (!PHANDLE_VALID(rtas_node)) 1578 return; 1579 1580 prom_getprop(rtas_node, "rtas-size", &size, sizeof(size)); 1581 if (size == 0) 1582 return; 1583 1584 base = alloc_down(size, PAGE_SIZE, 0); 1585 if (base == 0) 1586 prom_panic("Could not allocate memory for RTAS\n"); 1587 1588 rtas_inst = call_prom("open", 1, 1, ADDR("/rtas")); 1589 if (!IHANDLE_VALID(rtas_inst)) { 1590 prom_printf("opening rtas package failed (%x)\n", rtas_inst); 1591 return; 1592 } 1593 1594 prom_printf("instantiating rtas at 0x%x...", base); 1595 1596 if (call_prom_ret("call-method", 3, 2, &entry, 1597 ADDR("instantiate-rtas"), 1598 rtas_inst, base) != 0 1599 || entry == 0) { 1600 prom_printf(" failed\n"); 1601 return; 1602 } 1603 prom_printf(" done\n"); 1604 1605 reserve_mem(base, size); 1606 1607 prom_setprop(rtas_node, "/rtas", "linux,rtas-base", 1608 &base, sizeof(base)); 1609 prom_setprop(rtas_node, "/rtas", "linux,rtas-entry", 1610 &entry, sizeof(entry)); 1611 1612 #ifdef CONFIG_PPC_POWERNV 1613 /* PowerVN takeover hack */ 1614 RELOC(prom_rtas_data) = base; 1615 RELOC(prom_rtas_entry) = entry; 1616 prom_getprop(rtas_node, "start-cpu", &RELOC(prom_rtas_start_cpu), 4); 1617 #endif 1618 prom_debug("rtas base = 0x%x\n", base); 1619 prom_debug("rtas entry = 0x%x\n", entry); 1620 prom_debug("rtas size = 0x%x\n", (long)size); 1621 1622 prom_debug("prom_instantiate_rtas: end...\n"); 1623 } 1624 1625 #ifdef CONFIG_PPC64 1626 /* 1627 * Allocate room for and initialize TCE tables 1628 */ 1629 static void __init prom_initialize_tce_table(void) 1630 { 1631 phandle node; 1632 ihandle phb_node; 1633 char compatible[64], type[64], model[64]; 1634 char *path = RELOC(prom_scratch); 1635 u64 base, align; 1636 u32 minalign, minsize; 1637 u64 tce_entry, *tce_entryp; 1638 u64 local_alloc_top, local_alloc_bottom; 1639 u64 i; 1640 1641 if (RELOC(prom_iommu_off)) 1642 return; 1643 1644 prom_debug("starting prom_initialize_tce_table\n"); 1645 1646 /* Cache current top of allocs so we reserve a single block */ 1647 local_alloc_top = RELOC(alloc_top_high); 1648 local_alloc_bottom = local_alloc_top; 1649 1650 /* Search all nodes looking for PHBs. */ 1651 for (node = 0; prom_next_node(&node); ) { 1652 compatible[0] = 0; 1653 type[0] = 0; 1654 model[0] = 0; 1655 prom_getprop(node, "compatible", 1656 compatible, sizeof(compatible)); 1657 prom_getprop(node, "device_type", type, sizeof(type)); 1658 prom_getprop(node, "model", model, sizeof(model)); 1659 1660 if ((type[0] == 0) || (strstr(type, RELOC("pci")) == NULL)) 1661 continue; 1662 1663 /* Keep the old logic intact to avoid regression. */ 1664 if (compatible[0] != 0) { 1665 if ((strstr(compatible, RELOC("python")) == NULL) && 1666 (strstr(compatible, RELOC("Speedwagon")) == NULL) && 1667 (strstr(compatible, RELOC("Winnipeg")) == NULL)) 1668 continue; 1669 } else if (model[0] != 0) { 1670 if ((strstr(model, RELOC("ython")) == NULL) && 1671 (strstr(model, RELOC("peedwagon")) == NULL) && 1672 (strstr(model, RELOC("innipeg")) == NULL)) 1673 continue; 1674 } 1675 1676 if (prom_getprop(node, "tce-table-minalign", &minalign, 1677 sizeof(minalign)) == PROM_ERROR) 1678 minalign = 0; 1679 if (prom_getprop(node, "tce-table-minsize", &minsize, 1680 sizeof(minsize)) == PROM_ERROR) 1681 minsize = 4UL << 20; 1682 1683 /* 1684 * Even though we read what OF wants, we just set the table 1685 * size to 4 MB. This is enough to map 2GB of PCI DMA space. 1686 * By doing this, we avoid the pitfalls of trying to DMA to 1687 * MMIO space and the DMA alias hole. 1688 * 1689 * On POWER4, firmware sets the TCE region by assuming 1690 * each TCE table is 8MB. Using this memory for anything 1691 * else will impact performance, so we always allocate 8MB. 1692 * Anton 1693 */ 1694 if (__is_processor(PV_POWER4) || __is_processor(PV_POWER4p)) 1695 minsize = 8UL << 20; 1696 else 1697 minsize = 4UL << 20; 1698 1699 /* Align to the greater of the align or size */ 1700 align = max(minalign, minsize); 1701 base = alloc_down(minsize, align, 1); 1702 if (base == 0) 1703 prom_panic("ERROR, cannot find space for TCE table.\n"); 1704 if (base < local_alloc_bottom) 1705 local_alloc_bottom = base; 1706 1707 /* It seems OF doesn't null-terminate the path :-( */ 1708 memset(path, 0, PROM_SCRATCH_SIZE); 1709 /* Call OF to setup the TCE hardware */ 1710 if (call_prom("package-to-path", 3, 1, node, 1711 path, PROM_SCRATCH_SIZE-1) == PROM_ERROR) { 1712 prom_printf("package-to-path failed\n"); 1713 } 1714 1715 /* Save away the TCE table attributes for later use. */ 1716 prom_setprop(node, path, "linux,tce-base", &base, sizeof(base)); 1717 prom_setprop(node, path, "linux,tce-size", &minsize, sizeof(minsize)); 1718 1719 prom_debug("TCE table: %s\n", path); 1720 prom_debug("\tnode = 0x%x\n", node); 1721 prom_debug("\tbase = 0x%x\n", base); 1722 prom_debug("\tsize = 0x%x\n", minsize); 1723 1724 /* Initialize the table to have a one-to-one mapping 1725 * over the allocated size. 1726 */ 1727 tce_entryp = (u64 *)base; 1728 for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) { 1729 tce_entry = (i << PAGE_SHIFT); 1730 tce_entry |= 0x3; 1731 *tce_entryp = tce_entry; 1732 } 1733 1734 prom_printf("opening PHB %s", path); 1735 phb_node = call_prom("open", 1, 1, path); 1736 if (phb_node == 0) 1737 prom_printf("... failed\n"); 1738 else 1739 prom_printf("... done\n"); 1740 1741 call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"), 1742 phb_node, -1, minsize, 1743 (u32) base, (u32) (base >> 32)); 1744 call_prom("close", 1, 0, phb_node); 1745 } 1746 1747 reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom); 1748 1749 /* These are only really needed if there is a memory limit in 1750 * effect, but we don't know so export them always. */ 1751 RELOC(prom_tce_alloc_start) = local_alloc_bottom; 1752 RELOC(prom_tce_alloc_end) = local_alloc_top; 1753 1754 /* Flag the first invalid entry */ 1755 prom_debug("ending prom_initialize_tce_table\n"); 1756 } 1757 #endif 1758 1759 /* 1760 * With CHRP SMP we need to use the OF to start the other processors. 1761 * We can't wait until smp_boot_cpus (the OF is trashed by then) 1762 * so we have to put the processors into a holding pattern controlled 1763 * by the kernel (not OF) before we destroy the OF. 1764 * 1765 * This uses a chunk of low memory, puts some holding pattern 1766 * code there and sends the other processors off to there until 1767 * smp_boot_cpus tells them to do something. The holding pattern 1768 * checks that address until its cpu # is there, when it is that 1769 * cpu jumps to __secondary_start(). smp_boot_cpus() takes care 1770 * of setting those values. 1771 * 1772 * We also use physical address 0x4 here to tell when a cpu 1773 * is in its holding pattern code. 1774 * 1775 * -- Cort 1776 */ 1777 /* 1778 * We want to reference the copy of __secondary_hold_* in the 1779 * 0 - 0x100 address range 1780 */ 1781 #define LOW_ADDR(x) (((unsigned long) &(x)) & 0xff) 1782 1783 static void __init prom_hold_cpus(void) 1784 { 1785 unsigned long i; 1786 unsigned int reg; 1787 phandle node; 1788 char type[64]; 1789 struct prom_t *_prom = &RELOC(prom); 1790 unsigned long *spinloop 1791 = (void *) LOW_ADDR(__secondary_hold_spinloop); 1792 unsigned long *acknowledge 1793 = (void *) LOW_ADDR(__secondary_hold_acknowledge); 1794 unsigned long secondary_hold = LOW_ADDR(__secondary_hold); 1795 1796 prom_debug("prom_hold_cpus: start...\n"); 1797 prom_debug(" 1) spinloop = 0x%x\n", (unsigned long)spinloop); 1798 prom_debug(" 1) *spinloop = 0x%x\n", *spinloop); 1799 prom_debug(" 1) acknowledge = 0x%x\n", 1800 (unsigned long)acknowledge); 1801 prom_debug(" 1) *acknowledge = 0x%x\n", *acknowledge); 1802 prom_debug(" 1) secondary_hold = 0x%x\n", secondary_hold); 1803 1804 /* Set the common spinloop variable, so all of the secondary cpus 1805 * will block when they are awakened from their OF spinloop. 1806 * This must occur for both SMP and non SMP kernels, since OF will 1807 * be trashed when we move the kernel. 1808 */ 1809 *spinloop = 0; 1810 1811 /* look for cpus */ 1812 for (node = 0; prom_next_node(&node); ) { 1813 type[0] = 0; 1814 prom_getprop(node, "device_type", type, sizeof(type)); 1815 if (strcmp(type, RELOC("cpu")) != 0) 1816 continue; 1817 1818 /* Skip non-configured cpus. */ 1819 if (prom_getprop(node, "status", type, sizeof(type)) > 0) 1820 if (strcmp(type, RELOC("okay")) != 0) 1821 continue; 1822 1823 reg = -1; 1824 prom_getprop(node, "reg", ®, sizeof(reg)); 1825 1826 prom_debug("cpu hw idx = %lu\n", reg); 1827 1828 /* Init the acknowledge var which will be reset by 1829 * the secondary cpu when it awakens from its OF 1830 * spinloop. 1831 */ 1832 *acknowledge = (unsigned long)-1; 1833 1834 if (reg != _prom->cpu) { 1835 /* Primary Thread of non-boot cpu or any thread */ 1836 prom_printf("starting cpu hw idx %lu... ", reg); 1837 call_prom("start-cpu", 3, 0, node, 1838 secondary_hold, reg); 1839 1840 for (i = 0; (i < 100000000) && 1841 (*acknowledge == ((unsigned long)-1)); i++ ) 1842 mb(); 1843 1844 if (*acknowledge == reg) 1845 prom_printf("done\n"); 1846 else 1847 prom_printf("failed: %x\n", *acknowledge); 1848 } 1849 #ifdef CONFIG_SMP 1850 else 1851 prom_printf("boot cpu hw idx %lu\n", reg); 1852 #endif /* CONFIG_SMP */ 1853 } 1854 1855 prom_debug("prom_hold_cpus: end...\n"); 1856 } 1857 1858 1859 static void __init prom_init_client_services(unsigned long pp) 1860 { 1861 struct prom_t *_prom = &RELOC(prom); 1862 1863 /* Get a handle to the prom entry point before anything else */ 1864 RELOC(prom_entry) = pp; 1865 1866 /* get a handle for the stdout device */ 1867 _prom->chosen = call_prom("finddevice", 1, 1, ADDR("/chosen")); 1868 if (!PHANDLE_VALID(_prom->chosen)) 1869 prom_panic("cannot find chosen"); /* msg won't be printed :( */ 1870 1871 /* get device tree root */ 1872 _prom->root = call_prom("finddevice", 1, 1, ADDR("/")); 1873 if (!PHANDLE_VALID(_prom->root)) 1874 prom_panic("cannot find device tree root"); /* msg won't be printed :( */ 1875 1876 _prom->mmumap = 0; 1877 } 1878 1879 #ifdef CONFIG_PPC32 1880 /* 1881 * For really old powermacs, we need to map things we claim. 1882 * For that, we need the ihandle of the mmu. 1883 * Also, on the longtrail, we need to work around other bugs. 1884 */ 1885 static void __init prom_find_mmu(void) 1886 { 1887 struct prom_t *_prom = &RELOC(prom); 1888 phandle oprom; 1889 char version[64]; 1890 1891 oprom = call_prom("finddevice", 1, 1, ADDR("/openprom")); 1892 if (!PHANDLE_VALID(oprom)) 1893 return; 1894 if (prom_getprop(oprom, "model", version, sizeof(version)) <= 0) 1895 return; 1896 version[sizeof(version) - 1] = 0; 1897 /* XXX might need to add other versions here */ 1898 if (strcmp(version, "Open Firmware, 1.0.5") == 0) 1899 of_workarounds = OF_WA_CLAIM; 1900 else if (strncmp(version, "FirmWorks,3.", 12) == 0) { 1901 of_workarounds = OF_WA_CLAIM | OF_WA_LONGTRAIL; 1902 call_prom("interpret", 1, 1, "dev /memory 0 to allow-reclaim"); 1903 } else 1904 return; 1905 _prom->memory = call_prom("open", 1, 1, ADDR("/memory")); 1906 prom_getprop(_prom->chosen, "mmu", &_prom->mmumap, 1907 sizeof(_prom->mmumap)); 1908 if (!IHANDLE_VALID(_prom->memory) || !IHANDLE_VALID(_prom->mmumap)) 1909 of_workarounds &= ~OF_WA_CLAIM; /* hmmm */ 1910 } 1911 #else 1912 #define prom_find_mmu() 1913 #endif 1914 1915 static void __init prom_init_stdout(void) 1916 { 1917 struct prom_t *_prom = &RELOC(prom); 1918 char *path = RELOC(of_stdout_device); 1919 char type[16]; 1920 u32 val; 1921 1922 if (prom_getprop(_prom->chosen, "stdout", &val, sizeof(val)) <= 0) 1923 prom_panic("cannot find stdout"); 1924 1925 _prom->stdout = val; 1926 1927 /* Get the full OF pathname of the stdout device */ 1928 memset(path, 0, 256); 1929 call_prom("instance-to-path", 3, 1, _prom->stdout, path, 255); 1930 val = call_prom("instance-to-package", 1, 1, _prom->stdout); 1931 prom_setprop(_prom->chosen, "/chosen", "linux,stdout-package", 1932 &val, sizeof(val)); 1933 prom_printf("OF stdout device is: %s\n", RELOC(of_stdout_device)); 1934 prom_setprop(_prom->chosen, "/chosen", "linux,stdout-path", 1935 path, strlen(path) + 1); 1936 1937 /* If it's a display, note it */ 1938 memset(type, 0, sizeof(type)); 1939 prom_getprop(val, "device_type", type, sizeof(type)); 1940 if (strcmp(type, RELOC("display")) == 0) 1941 prom_setprop(val, path, "linux,boot-display", NULL, 0); 1942 } 1943 1944 static int __init prom_find_machine_type(void) 1945 { 1946 struct prom_t *_prom = &RELOC(prom); 1947 char compat[256]; 1948 int len, i = 0; 1949 #ifdef CONFIG_PPC64 1950 phandle rtas; 1951 int x; 1952 #endif 1953 1954 /* Look for a PowerMac or a Cell */ 1955 len = prom_getprop(_prom->root, "compatible", 1956 compat, sizeof(compat)-1); 1957 if (len > 0) { 1958 compat[len] = 0; 1959 while (i < len) { 1960 char *p = &compat[i]; 1961 int sl = strlen(p); 1962 if (sl == 0) 1963 break; 1964 if (strstr(p, RELOC("Power Macintosh")) || 1965 strstr(p, RELOC("MacRISC"))) 1966 return PLATFORM_POWERMAC; 1967 #ifdef CONFIG_PPC64 1968 /* We must make sure we don't detect the IBM Cell 1969 * blades as pSeries due to some firmware issues, 1970 * so we do it here. 1971 */ 1972 if (strstr(p, RELOC("IBM,CBEA")) || 1973 strstr(p, RELOC("IBM,CPBW-1.0"))) 1974 return PLATFORM_GENERIC; 1975 #endif /* CONFIG_PPC64 */ 1976 i += sl + 1; 1977 } 1978 } 1979 #ifdef CONFIG_PPC64 1980 /* Try to detect OPAL */ 1981 if (PHANDLE_VALID(call_prom("finddevice", 1, 1, ADDR("/ibm,opal")))) 1982 return PLATFORM_OPAL; 1983 1984 /* Try to figure out if it's an IBM pSeries or any other 1985 * PAPR compliant platform. We assume it is if : 1986 * - /device_type is "chrp" (please, do NOT use that for future 1987 * non-IBM designs ! 1988 * - it has /rtas 1989 */ 1990 len = prom_getprop(_prom->root, "device_type", 1991 compat, sizeof(compat)-1); 1992 if (len <= 0) 1993 return PLATFORM_GENERIC; 1994 if (strcmp(compat, RELOC("chrp"))) 1995 return PLATFORM_GENERIC; 1996 1997 /* Default to pSeries. We need to know if we are running LPAR */ 1998 rtas = call_prom("finddevice", 1, 1, ADDR("/rtas")); 1999 if (!PHANDLE_VALID(rtas)) 2000 return PLATFORM_GENERIC; 2001 x = prom_getproplen(rtas, "ibm,hypertas-functions"); 2002 if (x != PROM_ERROR) { 2003 prom_debug("Hypertas detected, assuming LPAR !\n"); 2004 return PLATFORM_PSERIES_LPAR; 2005 } 2006 return PLATFORM_PSERIES; 2007 #else 2008 return PLATFORM_GENERIC; 2009 #endif 2010 } 2011 2012 static int __init prom_set_color(ihandle ih, int i, int r, int g, int b) 2013 { 2014 return call_prom("call-method", 6, 1, ADDR("color!"), ih, i, b, g, r); 2015 } 2016 2017 /* 2018 * If we have a display that we don't know how to drive, 2019 * we will want to try to execute OF's open method for it 2020 * later. However, OF will probably fall over if we do that 2021 * we've taken over the MMU. 2022 * So we check whether we will need to open the display, 2023 * and if so, open it now. 2024 */ 2025 static void __init prom_check_displays(void) 2026 { 2027 char type[16], *path; 2028 phandle node; 2029 ihandle ih; 2030 int i; 2031 2032 static unsigned char default_colors[] = { 2033 0x00, 0x00, 0x00, 2034 0x00, 0x00, 0xaa, 2035 0x00, 0xaa, 0x00, 2036 0x00, 0xaa, 0xaa, 2037 0xaa, 0x00, 0x00, 2038 0xaa, 0x00, 0xaa, 2039 0xaa, 0xaa, 0x00, 2040 0xaa, 0xaa, 0xaa, 2041 0x55, 0x55, 0x55, 2042 0x55, 0x55, 0xff, 2043 0x55, 0xff, 0x55, 2044 0x55, 0xff, 0xff, 2045 0xff, 0x55, 0x55, 2046 0xff, 0x55, 0xff, 2047 0xff, 0xff, 0x55, 2048 0xff, 0xff, 0xff 2049 }; 2050 const unsigned char *clut; 2051 2052 prom_debug("Looking for displays\n"); 2053 for (node = 0; prom_next_node(&node); ) { 2054 memset(type, 0, sizeof(type)); 2055 prom_getprop(node, "device_type", type, sizeof(type)); 2056 if (strcmp(type, RELOC("display")) != 0) 2057 continue; 2058 2059 /* It seems OF doesn't null-terminate the path :-( */ 2060 path = RELOC(prom_scratch); 2061 memset(path, 0, PROM_SCRATCH_SIZE); 2062 2063 /* 2064 * leave some room at the end of the path for appending extra 2065 * arguments 2066 */ 2067 if (call_prom("package-to-path", 3, 1, node, path, 2068 PROM_SCRATCH_SIZE-10) == PROM_ERROR) 2069 continue; 2070 prom_printf("found display : %s, opening... ", path); 2071 2072 ih = call_prom("open", 1, 1, path); 2073 if (ih == 0) { 2074 prom_printf("failed\n"); 2075 continue; 2076 } 2077 2078 /* Success */ 2079 prom_printf("done\n"); 2080 prom_setprop(node, path, "linux,opened", NULL, 0); 2081 2082 /* Setup a usable color table when the appropriate 2083 * method is available. Should update this to set-colors */ 2084 clut = RELOC(default_colors); 2085 for (i = 0; i < 16; i++, clut += 3) 2086 if (prom_set_color(ih, i, clut[0], clut[1], 2087 clut[2]) != 0) 2088 break; 2089 2090 #ifdef CONFIG_LOGO_LINUX_CLUT224 2091 clut = PTRRELOC(RELOC(logo_linux_clut224.clut)); 2092 for (i = 0; i < RELOC(logo_linux_clut224.clutsize); i++, clut += 3) 2093 if (prom_set_color(ih, i + 32, clut[0], clut[1], 2094 clut[2]) != 0) 2095 break; 2096 #endif /* CONFIG_LOGO_LINUX_CLUT224 */ 2097 } 2098 } 2099 2100 2101 /* Return (relocated) pointer to this much memory: moves initrd if reqd. */ 2102 static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end, 2103 unsigned long needed, unsigned long align) 2104 { 2105 void *ret; 2106 2107 *mem_start = _ALIGN(*mem_start, align); 2108 while ((*mem_start + needed) > *mem_end) { 2109 unsigned long room, chunk; 2110 2111 prom_debug("Chunk exhausted, claiming more at %x...\n", 2112 RELOC(alloc_bottom)); 2113 room = RELOC(alloc_top) - RELOC(alloc_bottom); 2114 if (room > DEVTREE_CHUNK_SIZE) 2115 room = DEVTREE_CHUNK_SIZE; 2116 if (room < PAGE_SIZE) 2117 prom_panic("No memory for flatten_device_tree " 2118 "(no room)\n"); 2119 chunk = alloc_up(room, 0); 2120 if (chunk == 0) 2121 prom_panic("No memory for flatten_device_tree " 2122 "(claim failed)\n"); 2123 *mem_end = chunk + room; 2124 } 2125 2126 ret = (void *)*mem_start; 2127 *mem_start += needed; 2128 2129 return ret; 2130 } 2131 2132 #define dt_push_token(token, mem_start, mem_end) \ 2133 do { *((u32 *)make_room(mem_start, mem_end, 4, 4)) = token; } while(0) 2134 2135 static unsigned long __init dt_find_string(char *str) 2136 { 2137 char *s, *os; 2138 2139 s = os = (char *)RELOC(dt_string_start); 2140 s += 4; 2141 while (s < (char *)RELOC(dt_string_end)) { 2142 if (strcmp(s, str) == 0) 2143 return s - os; 2144 s += strlen(s) + 1; 2145 } 2146 return 0; 2147 } 2148 2149 /* 2150 * The Open Firmware 1275 specification states properties must be 31 bytes or 2151 * less, however not all firmwares obey this. Make it 64 bytes to be safe. 2152 */ 2153 #define MAX_PROPERTY_NAME 64 2154 2155 static void __init scan_dt_build_strings(phandle node, 2156 unsigned long *mem_start, 2157 unsigned long *mem_end) 2158 { 2159 char *prev_name, *namep, *sstart; 2160 unsigned long soff; 2161 phandle child; 2162 2163 sstart = (char *)RELOC(dt_string_start); 2164 2165 /* get and store all property names */ 2166 prev_name = RELOC(""); 2167 for (;;) { 2168 /* 64 is max len of name including nul. */ 2169 namep = make_room(mem_start, mem_end, MAX_PROPERTY_NAME, 1); 2170 if (call_prom("nextprop", 3, 1, node, prev_name, namep) != 1) { 2171 /* No more nodes: unwind alloc */ 2172 *mem_start = (unsigned long)namep; 2173 break; 2174 } 2175 2176 /* skip "name" */ 2177 if (strcmp(namep, RELOC("name")) == 0) { 2178 *mem_start = (unsigned long)namep; 2179 prev_name = RELOC("name"); 2180 continue; 2181 } 2182 /* get/create string entry */ 2183 soff = dt_find_string(namep); 2184 if (soff != 0) { 2185 *mem_start = (unsigned long)namep; 2186 namep = sstart + soff; 2187 } else { 2188 /* Trim off some if we can */ 2189 *mem_start = (unsigned long)namep + strlen(namep) + 1; 2190 RELOC(dt_string_end) = *mem_start; 2191 } 2192 prev_name = namep; 2193 } 2194 2195 /* do all our children */ 2196 child = call_prom("child", 1, 1, node); 2197 while (child != 0) { 2198 scan_dt_build_strings(child, mem_start, mem_end); 2199 child = call_prom("peer", 1, 1, child); 2200 } 2201 } 2202 2203 static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start, 2204 unsigned long *mem_end) 2205 { 2206 phandle child; 2207 char *namep, *prev_name, *sstart, *p, *ep, *lp, *path; 2208 unsigned long soff; 2209 unsigned char *valp; 2210 static char pname[MAX_PROPERTY_NAME]; 2211 int l, room, has_phandle = 0; 2212 2213 dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end); 2214 2215 /* get the node's full name */ 2216 namep = (char *)*mem_start; 2217 room = *mem_end - *mem_start; 2218 if (room > 255) 2219 room = 255; 2220 l = call_prom("package-to-path", 3, 1, node, namep, room); 2221 if (l >= 0) { 2222 /* Didn't fit? Get more room. */ 2223 if (l >= room) { 2224 if (l >= *mem_end - *mem_start) 2225 namep = make_room(mem_start, mem_end, l+1, 1); 2226 call_prom("package-to-path", 3, 1, node, namep, l); 2227 } 2228 namep[l] = '\0'; 2229 2230 /* Fixup an Apple bug where they have bogus \0 chars in the 2231 * middle of the path in some properties, and extract 2232 * the unit name (everything after the last '/'). 2233 */ 2234 for (lp = p = namep, ep = namep + l; p < ep; p++) { 2235 if (*p == '/') 2236 lp = namep; 2237 else if (*p != 0) 2238 *lp++ = *p; 2239 } 2240 *lp = 0; 2241 *mem_start = _ALIGN((unsigned long)lp + 1, 4); 2242 } 2243 2244 /* get it again for debugging */ 2245 path = RELOC(prom_scratch); 2246 memset(path, 0, PROM_SCRATCH_SIZE); 2247 call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1); 2248 2249 /* get and store all properties */ 2250 prev_name = RELOC(""); 2251 sstart = (char *)RELOC(dt_string_start); 2252 for (;;) { 2253 if (call_prom("nextprop", 3, 1, node, prev_name, 2254 RELOC(pname)) != 1) 2255 break; 2256 2257 /* skip "name" */ 2258 if (strcmp(RELOC(pname), RELOC("name")) == 0) { 2259 prev_name = RELOC("name"); 2260 continue; 2261 } 2262 2263 /* find string offset */ 2264 soff = dt_find_string(RELOC(pname)); 2265 if (soff == 0) { 2266 prom_printf("WARNING: Can't find string index for" 2267 " <%s>, node %s\n", RELOC(pname), path); 2268 break; 2269 } 2270 prev_name = sstart + soff; 2271 2272 /* get length */ 2273 l = call_prom("getproplen", 2, 1, node, RELOC(pname)); 2274 2275 /* sanity checks */ 2276 if (l == PROM_ERROR) 2277 continue; 2278 2279 /* push property head */ 2280 dt_push_token(OF_DT_PROP, mem_start, mem_end); 2281 dt_push_token(l, mem_start, mem_end); 2282 dt_push_token(soff, mem_start, mem_end); 2283 2284 /* push property content */ 2285 valp = make_room(mem_start, mem_end, l, 4); 2286 call_prom("getprop", 4, 1, node, RELOC(pname), valp, l); 2287 *mem_start = _ALIGN(*mem_start, 4); 2288 2289 if (!strcmp(RELOC(pname), RELOC("phandle"))) 2290 has_phandle = 1; 2291 } 2292 2293 /* Add a "linux,phandle" property if no "phandle" property already 2294 * existed (can happen with OPAL) 2295 */ 2296 if (!has_phandle) { 2297 soff = dt_find_string(RELOC("linux,phandle")); 2298 if (soff == 0) 2299 prom_printf("WARNING: Can't find string index for" 2300 " <linux-phandle> node %s\n", path); 2301 else { 2302 dt_push_token(OF_DT_PROP, mem_start, mem_end); 2303 dt_push_token(4, mem_start, mem_end); 2304 dt_push_token(soff, mem_start, mem_end); 2305 valp = make_room(mem_start, mem_end, 4, 4); 2306 *(u32 *)valp = node; 2307 } 2308 } 2309 2310 /* do all our children */ 2311 child = call_prom("child", 1, 1, node); 2312 while (child != 0) { 2313 scan_dt_build_struct(child, mem_start, mem_end); 2314 child = call_prom("peer", 1, 1, child); 2315 } 2316 2317 dt_push_token(OF_DT_END_NODE, mem_start, mem_end); 2318 } 2319 2320 static void __init flatten_device_tree(void) 2321 { 2322 phandle root; 2323 unsigned long mem_start, mem_end, room; 2324 struct boot_param_header *hdr; 2325 struct prom_t *_prom = &RELOC(prom); 2326 char *namep; 2327 u64 *rsvmap; 2328 2329 /* 2330 * Check how much room we have between alloc top & bottom (+/- a 2331 * few pages), crop to 1MB, as this is our "chunk" size 2332 */ 2333 room = RELOC(alloc_top) - RELOC(alloc_bottom) - 0x4000; 2334 if (room > DEVTREE_CHUNK_SIZE) 2335 room = DEVTREE_CHUNK_SIZE; 2336 prom_debug("starting device tree allocs at %x\n", RELOC(alloc_bottom)); 2337 2338 /* Now try to claim that */ 2339 mem_start = (unsigned long)alloc_up(room, PAGE_SIZE); 2340 if (mem_start == 0) 2341 prom_panic("Can't allocate initial device-tree chunk\n"); 2342 mem_end = mem_start + room; 2343 2344 /* Get root of tree */ 2345 root = call_prom("peer", 1, 1, (phandle)0); 2346 if (root == (phandle)0) 2347 prom_panic ("couldn't get device tree root\n"); 2348 2349 /* Build header and make room for mem rsv map */ 2350 mem_start = _ALIGN(mem_start, 4); 2351 hdr = make_room(&mem_start, &mem_end, 2352 sizeof(struct boot_param_header), 4); 2353 RELOC(dt_header_start) = (unsigned long)hdr; 2354 rsvmap = make_room(&mem_start, &mem_end, sizeof(mem_reserve_map), 8); 2355 2356 /* Start of strings */ 2357 mem_start = PAGE_ALIGN(mem_start); 2358 RELOC(dt_string_start) = mem_start; 2359 mem_start += 4; /* hole */ 2360 2361 /* Add "linux,phandle" in there, we'll need it */ 2362 namep = make_room(&mem_start, &mem_end, 16, 1); 2363 strcpy(namep, RELOC("linux,phandle")); 2364 mem_start = (unsigned long)namep + strlen(namep) + 1; 2365 2366 /* Build string array */ 2367 prom_printf("Building dt strings...\n"); 2368 scan_dt_build_strings(root, &mem_start, &mem_end); 2369 RELOC(dt_string_end) = mem_start; 2370 2371 /* Build structure */ 2372 mem_start = PAGE_ALIGN(mem_start); 2373 RELOC(dt_struct_start) = mem_start; 2374 prom_printf("Building dt structure...\n"); 2375 scan_dt_build_struct(root, &mem_start, &mem_end); 2376 dt_push_token(OF_DT_END, &mem_start, &mem_end); 2377 RELOC(dt_struct_end) = PAGE_ALIGN(mem_start); 2378 2379 /* Finish header */ 2380 hdr->boot_cpuid_phys = _prom->cpu; 2381 hdr->magic = OF_DT_HEADER; 2382 hdr->totalsize = RELOC(dt_struct_end) - RELOC(dt_header_start); 2383 hdr->off_dt_struct = RELOC(dt_struct_start) - RELOC(dt_header_start); 2384 hdr->off_dt_strings = RELOC(dt_string_start) - RELOC(dt_header_start); 2385 hdr->dt_strings_size = RELOC(dt_string_end) - RELOC(dt_string_start); 2386 hdr->off_mem_rsvmap = ((unsigned long)rsvmap) - RELOC(dt_header_start); 2387 hdr->version = OF_DT_VERSION; 2388 /* Version 16 is not backward compatible */ 2389 hdr->last_comp_version = 0x10; 2390 2391 /* Copy the reserve map in */ 2392 memcpy(rsvmap, RELOC(mem_reserve_map), sizeof(mem_reserve_map)); 2393 2394 #ifdef DEBUG_PROM 2395 { 2396 int i; 2397 prom_printf("reserved memory map:\n"); 2398 for (i = 0; i < RELOC(mem_reserve_cnt); i++) 2399 prom_printf(" %x - %x\n", 2400 RELOC(mem_reserve_map)[i].base, 2401 RELOC(mem_reserve_map)[i].size); 2402 } 2403 #endif 2404 /* Bump mem_reserve_cnt to cause further reservations to fail 2405 * since it's too late. 2406 */ 2407 RELOC(mem_reserve_cnt) = MEM_RESERVE_MAP_SIZE; 2408 2409 prom_printf("Device tree strings 0x%x -> 0x%x\n", 2410 RELOC(dt_string_start), RELOC(dt_string_end)); 2411 prom_printf("Device tree struct 0x%x -> 0x%x\n", 2412 RELOC(dt_struct_start), RELOC(dt_struct_end)); 2413 2414 } 2415 2416 #ifdef CONFIG_PPC_MAPLE 2417 /* PIBS Version 1.05.0000 04/26/2005 has an incorrect /ht/isa/ranges property. 2418 * The values are bad, and it doesn't even have the right number of cells. */ 2419 static void __init fixup_device_tree_maple(void) 2420 { 2421 phandle isa; 2422 u32 rloc = 0x01002000; /* IO space; PCI device = 4 */ 2423 u32 isa_ranges[6]; 2424 char *name; 2425 2426 name = "/ht@0/isa@4"; 2427 isa = call_prom("finddevice", 1, 1, ADDR(name)); 2428 if (!PHANDLE_VALID(isa)) { 2429 name = "/ht@0/isa@6"; 2430 isa = call_prom("finddevice", 1, 1, ADDR(name)); 2431 rloc = 0x01003000; /* IO space; PCI device = 6 */ 2432 } 2433 if (!PHANDLE_VALID(isa)) 2434 return; 2435 2436 if (prom_getproplen(isa, "ranges") != 12) 2437 return; 2438 if (prom_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)) 2439 == PROM_ERROR) 2440 return; 2441 2442 if (isa_ranges[0] != 0x1 || 2443 isa_ranges[1] != 0xf4000000 || 2444 isa_ranges[2] != 0x00010000) 2445 return; 2446 2447 prom_printf("Fixing up bogus ISA range on Maple/Apache...\n"); 2448 2449 isa_ranges[0] = 0x1; 2450 isa_ranges[1] = 0x0; 2451 isa_ranges[2] = rloc; 2452 isa_ranges[3] = 0x0; 2453 isa_ranges[4] = 0x0; 2454 isa_ranges[5] = 0x00010000; 2455 prom_setprop(isa, name, "ranges", 2456 isa_ranges, sizeof(isa_ranges)); 2457 } 2458 2459 #define CPC925_MC_START 0xf8000000 2460 #define CPC925_MC_LENGTH 0x1000000 2461 /* The values for memory-controller don't have right number of cells */ 2462 static void __init fixup_device_tree_maple_memory_controller(void) 2463 { 2464 phandle mc; 2465 u32 mc_reg[4]; 2466 char *name = "/hostbridge@f8000000"; 2467 struct prom_t *_prom = &RELOC(prom); 2468 u32 ac, sc; 2469 2470 mc = call_prom("finddevice", 1, 1, ADDR(name)); 2471 if (!PHANDLE_VALID(mc)) 2472 return; 2473 2474 if (prom_getproplen(mc, "reg") != 8) 2475 return; 2476 2477 prom_getprop(_prom->root, "#address-cells", &ac, sizeof(ac)); 2478 prom_getprop(_prom->root, "#size-cells", &sc, sizeof(sc)); 2479 if ((ac != 2) || (sc != 2)) 2480 return; 2481 2482 if (prom_getprop(mc, "reg", mc_reg, sizeof(mc_reg)) == PROM_ERROR) 2483 return; 2484 2485 if (mc_reg[0] != CPC925_MC_START || mc_reg[1] != CPC925_MC_LENGTH) 2486 return; 2487 2488 prom_printf("Fixing up bogus hostbridge on Maple...\n"); 2489 2490 mc_reg[0] = 0x0; 2491 mc_reg[1] = CPC925_MC_START; 2492 mc_reg[2] = 0x0; 2493 mc_reg[3] = CPC925_MC_LENGTH; 2494 prom_setprop(mc, name, "reg", mc_reg, sizeof(mc_reg)); 2495 } 2496 #else 2497 #define fixup_device_tree_maple() 2498 #define fixup_device_tree_maple_memory_controller() 2499 #endif 2500 2501 #ifdef CONFIG_PPC_CHRP 2502 /* 2503 * Pegasos and BriQ lacks the "ranges" property in the isa node 2504 * Pegasos needs decimal IRQ 14/15, not hexadecimal 2505 * Pegasos has the IDE configured in legacy mode, but advertised as native 2506 */ 2507 static void __init fixup_device_tree_chrp(void) 2508 { 2509 phandle ph; 2510 u32 prop[6]; 2511 u32 rloc = 0x01006000; /* IO space; PCI device = 12 */ 2512 char *name; 2513 int rc; 2514 2515 name = "/pci@80000000/isa@c"; 2516 ph = call_prom("finddevice", 1, 1, ADDR(name)); 2517 if (!PHANDLE_VALID(ph)) { 2518 name = "/pci@ff500000/isa@6"; 2519 ph = call_prom("finddevice", 1, 1, ADDR(name)); 2520 rloc = 0x01003000; /* IO space; PCI device = 6 */ 2521 } 2522 if (PHANDLE_VALID(ph)) { 2523 rc = prom_getproplen(ph, "ranges"); 2524 if (rc == 0 || rc == PROM_ERROR) { 2525 prom_printf("Fixing up missing ISA range on Pegasos...\n"); 2526 2527 prop[0] = 0x1; 2528 prop[1] = 0x0; 2529 prop[2] = rloc; 2530 prop[3] = 0x0; 2531 prop[4] = 0x0; 2532 prop[5] = 0x00010000; 2533 prom_setprop(ph, name, "ranges", prop, sizeof(prop)); 2534 } 2535 } 2536 2537 name = "/pci@80000000/ide@C,1"; 2538 ph = call_prom("finddevice", 1, 1, ADDR(name)); 2539 if (PHANDLE_VALID(ph)) { 2540 prom_printf("Fixing up IDE interrupt on Pegasos...\n"); 2541 prop[0] = 14; 2542 prop[1] = 0x0; 2543 prom_setprop(ph, name, "interrupts", prop, 2*sizeof(u32)); 2544 prom_printf("Fixing up IDE class-code on Pegasos...\n"); 2545 rc = prom_getprop(ph, "class-code", prop, sizeof(u32)); 2546 if (rc == sizeof(u32)) { 2547 prop[0] &= ~0x5; 2548 prom_setprop(ph, name, "class-code", prop, sizeof(u32)); 2549 } 2550 } 2551 } 2552 #else 2553 #define fixup_device_tree_chrp() 2554 #endif 2555 2556 #if defined(CONFIG_PPC64) && defined(CONFIG_PPC_PMAC) 2557 static void __init fixup_device_tree_pmac(void) 2558 { 2559 phandle u3, i2c, mpic; 2560 u32 u3_rev; 2561 u32 interrupts[2]; 2562 u32 parent; 2563 2564 /* Some G5s have a missing interrupt definition, fix it up here */ 2565 u3 = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000")); 2566 if (!PHANDLE_VALID(u3)) 2567 return; 2568 i2c = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/i2c@f8001000")); 2569 if (!PHANDLE_VALID(i2c)) 2570 return; 2571 mpic = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/mpic@f8040000")); 2572 if (!PHANDLE_VALID(mpic)) 2573 return; 2574 2575 /* check if proper rev of u3 */ 2576 if (prom_getprop(u3, "device-rev", &u3_rev, sizeof(u3_rev)) 2577 == PROM_ERROR) 2578 return; 2579 if (u3_rev < 0x35 || u3_rev > 0x39) 2580 return; 2581 /* does it need fixup ? */ 2582 if (prom_getproplen(i2c, "interrupts") > 0) 2583 return; 2584 2585 prom_printf("fixing up bogus interrupts for u3 i2c...\n"); 2586 2587 /* interrupt on this revision of u3 is number 0 and level */ 2588 interrupts[0] = 0; 2589 interrupts[1] = 1; 2590 prom_setprop(i2c, "/u3@0,f8000000/i2c@f8001000", "interrupts", 2591 &interrupts, sizeof(interrupts)); 2592 parent = (u32)mpic; 2593 prom_setprop(i2c, "/u3@0,f8000000/i2c@f8001000", "interrupt-parent", 2594 &parent, sizeof(parent)); 2595 } 2596 #else 2597 #define fixup_device_tree_pmac() 2598 #endif 2599 2600 #ifdef CONFIG_PPC_EFIKA 2601 /* 2602 * The MPC5200 FEC driver requires an phy-handle property to tell it how 2603 * to talk to the phy. If the phy-handle property is missing, then this 2604 * function is called to add the appropriate nodes and link it to the 2605 * ethernet node. 2606 */ 2607 static void __init fixup_device_tree_efika_add_phy(void) 2608 { 2609 u32 node; 2610 char prop[64]; 2611 int rv; 2612 2613 /* Check if /builtin/ethernet exists - bail if it doesn't */ 2614 node = call_prom("finddevice", 1, 1, ADDR("/builtin/ethernet")); 2615 if (!PHANDLE_VALID(node)) 2616 return; 2617 2618 /* Check if the phy-handle property exists - bail if it does */ 2619 rv = prom_getprop(node, "phy-handle", prop, sizeof(prop)); 2620 if (!rv) 2621 return; 2622 2623 /* 2624 * At this point the ethernet device doesn't have a phy described. 2625 * Now we need to add the missing phy node and linkage 2626 */ 2627 2628 /* Check for an MDIO bus node - if missing then create one */ 2629 node = call_prom("finddevice", 1, 1, ADDR("/builtin/mdio")); 2630 if (!PHANDLE_VALID(node)) { 2631 prom_printf("Adding Ethernet MDIO node\n"); 2632 call_prom("interpret", 1, 1, 2633 " s\" /builtin\" find-device" 2634 " new-device" 2635 " 1 encode-int s\" #address-cells\" property" 2636 " 0 encode-int s\" #size-cells\" property" 2637 " s\" mdio\" device-name" 2638 " s\" fsl,mpc5200b-mdio\" encode-string" 2639 " s\" compatible\" property" 2640 " 0xf0003000 0x400 reg" 2641 " 0x2 encode-int" 2642 " 0x5 encode-int encode+" 2643 " 0x3 encode-int encode+" 2644 " s\" interrupts\" property" 2645 " finish-device"); 2646 }; 2647 2648 /* Check for a PHY device node - if missing then create one and 2649 * give it's phandle to the ethernet node */ 2650 node = call_prom("finddevice", 1, 1, 2651 ADDR("/builtin/mdio/ethernet-phy")); 2652 if (!PHANDLE_VALID(node)) { 2653 prom_printf("Adding Ethernet PHY node\n"); 2654 call_prom("interpret", 1, 1, 2655 " s\" /builtin/mdio\" find-device" 2656 " new-device" 2657 " s\" ethernet-phy\" device-name" 2658 " 0x10 encode-int s\" reg\" property" 2659 " my-self" 2660 " ihandle>phandle" 2661 " finish-device" 2662 " s\" /builtin/ethernet\" find-device" 2663 " encode-int" 2664 " s\" phy-handle\" property" 2665 " device-end"); 2666 } 2667 } 2668 2669 static void __init fixup_device_tree_efika(void) 2670 { 2671 int sound_irq[3] = { 2, 2, 0 }; 2672 int bcomm_irq[3*16] = { 3,0,0, 3,1,0, 3,2,0, 3,3,0, 2673 3,4,0, 3,5,0, 3,6,0, 3,7,0, 2674 3,8,0, 3,9,0, 3,10,0, 3,11,0, 2675 3,12,0, 3,13,0, 3,14,0, 3,15,0 }; 2676 u32 node; 2677 char prop[64]; 2678 int rv, len; 2679 2680 /* Check if we're really running on a EFIKA */ 2681 node = call_prom("finddevice", 1, 1, ADDR("/")); 2682 if (!PHANDLE_VALID(node)) 2683 return; 2684 2685 rv = prom_getprop(node, "model", prop, sizeof(prop)); 2686 if (rv == PROM_ERROR) 2687 return; 2688 if (strcmp(prop, "EFIKA5K2")) 2689 return; 2690 2691 prom_printf("Applying EFIKA device tree fixups\n"); 2692 2693 /* Claiming to be 'chrp' is death */ 2694 node = call_prom("finddevice", 1, 1, ADDR("/")); 2695 rv = prom_getprop(node, "device_type", prop, sizeof(prop)); 2696 if (rv != PROM_ERROR && (strcmp(prop, "chrp") == 0)) 2697 prom_setprop(node, "/", "device_type", "efika", sizeof("efika")); 2698 2699 /* CODEGEN,description is exposed in /proc/cpuinfo so 2700 fix that too */ 2701 rv = prom_getprop(node, "CODEGEN,description", prop, sizeof(prop)); 2702 if (rv != PROM_ERROR && (strstr(prop, "CHRP"))) 2703 prom_setprop(node, "/", "CODEGEN,description", 2704 "Efika 5200B PowerPC System", 2705 sizeof("Efika 5200B PowerPC System")); 2706 2707 /* Fixup bestcomm interrupts property */ 2708 node = call_prom("finddevice", 1, 1, ADDR("/builtin/bestcomm")); 2709 if (PHANDLE_VALID(node)) { 2710 len = prom_getproplen(node, "interrupts"); 2711 if (len == 12) { 2712 prom_printf("Fixing bestcomm interrupts property\n"); 2713 prom_setprop(node, "/builtin/bestcom", "interrupts", 2714 bcomm_irq, sizeof(bcomm_irq)); 2715 } 2716 } 2717 2718 /* Fixup sound interrupts property */ 2719 node = call_prom("finddevice", 1, 1, ADDR("/builtin/sound")); 2720 if (PHANDLE_VALID(node)) { 2721 rv = prom_getprop(node, "interrupts", prop, sizeof(prop)); 2722 if (rv == PROM_ERROR) { 2723 prom_printf("Adding sound interrupts property\n"); 2724 prom_setprop(node, "/builtin/sound", "interrupts", 2725 sound_irq, sizeof(sound_irq)); 2726 } 2727 } 2728 2729 /* Make sure ethernet phy-handle property exists */ 2730 fixup_device_tree_efika_add_phy(); 2731 } 2732 #else 2733 #define fixup_device_tree_efika() 2734 #endif 2735 2736 static void __init fixup_device_tree(void) 2737 { 2738 fixup_device_tree_maple(); 2739 fixup_device_tree_maple_memory_controller(); 2740 fixup_device_tree_chrp(); 2741 fixup_device_tree_pmac(); 2742 fixup_device_tree_efika(); 2743 } 2744 2745 static void __init prom_find_boot_cpu(void) 2746 { 2747 struct prom_t *_prom = &RELOC(prom); 2748 u32 getprop_rval; 2749 ihandle prom_cpu; 2750 phandle cpu_pkg; 2751 2752 _prom->cpu = 0; 2753 if (prom_getprop(_prom->chosen, "cpu", &prom_cpu, sizeof(prom_cpu)) <= 0) 2754 return; 2755 2756 cpu_pkg = call_prom("instance-to-package", 1, 1, prom_cpu); 2757 2758 prom_getprop(cpu_pkg, "reg", &getprop_rval, sizeof(getprop_rval)); 2759 _prom->cpu = getprop_rval; 2760 2761 prom_debug("Booting CPU hw index = %lu\n", _prom->cpu); 2762 } 2763 2764 static void __init prom_check_initrd(unsigned long r3, unsigned long r4) 2765 { 2766 #ifdef CONFIG_BLK_DEV_INITRD 2767 struct prom_t *_prom = &RELOC(prom); 2768 2769 if (r3 && r4 && r4 != 0xdeadbeef) { 2770 unsigned long val; 2771 2772 RELOC(prom_initrd_start) = is_kernel_addr(r3) ? __pa(r3) : r3; 2773 RELOC(prom_initrd_end) = RELOC(prom_initrd_start) + r4; 2774 2775 val = RELOC(prom_initrd_start); 2776 prom_setprop(_prom->chosen, "/chosen", "linux,initrd-start", 2777 &val, sizeof(val)); 2778 val = RELOC(prom_initrd_end); 2779 prom_setprop(_prom->chosen, "/chosen", "linux,initrd-end", 2780 &val, sizeof(val)); 2781 2782 reserve_mem(RELOC(prom_initrd_start), 2783 RELOC(prom_initrd_end) - RELOC(prom_initrd_start)); 2784 2785 prom_debug("initrd_start=0x%x\n", RELOC(prom_initrd_start)); 2786 prom_debug("initrd_end=0x%x\n", RELOC(prom_initrd_end)); 2787 } 2788 #endif /* CONFIG_BLK_DEV_INITRD */ 2789 } 2790 2791 2792 /* 2793 * We enter here early on, when the Open Firmware prom is still 2794 * handling exceptions and the MMU hash table for us. 2795 */ 2796 2797 unsigned long __init prom_init(unsigned long r3, unsigned long r4, 2798 unsigned long pp, 2799 unsigned long r6, unsigned long r7, 2800 unsigned long kbase) 2801 { 2802 struct prom_t *_prom; 2803 unsigned long hdr; 2804 2805 #ifdef CONFIG_PPC32 2806 unsigned long offset = reloc_offset(); 2807 reloc_got2(offset); 2808 #endif 2809 2810 _prom = &RELOC(prom); 2811 2812 /* 2813 * First zero the BSS 2814 */ 2815 memset(&RELOC(__bss_start), 0, __bss_stop - __bss_start); 2816 2817 /* 2818 * Init interface to Open Firmware, get some node references, 2819 * like /chosen 2820 */ 2821 prom_init_client_services(pp); 2822 2823 /* 2824 * See if this OF is old enough that we need to do explicit maps 2825 * and other workarounds 2826 */ 2827 prom_find_mmu(); 2828 2829 /* 2830 * Init prom stdout device 2831 */ 2832 prom_init_stdout(); 2833 2834 prom_printf("Preparing to boot %s", RELOC(linux_banner)); 2835 2836 /* 2837 * Get default machine type. At this point, we do not differentiate 2838 * between pSeries SMP and pSeries LPAR 2839 */ 2840 RELOC(of_platform) = prom_find_machine_type(); 2841 prom_printf("Detected machine type: %x\n", RELOC(of_platform)); 2842 2843 #ifndef CONFIG_NONSTATIC_KERNEL 2844 /* Bail if this is a kdump kernel. */ 2845 if (PHYSICAL_START > 0) 2846 prom_panic("Error: You can't boot a kdump kernel from OF!\n"); 2847 #endif 2848 2849 /* 2850 * Check for an initrd 2851 */ 2852 prom_check_initrd(r3, r4); 2853 2854 #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV) 2855 /* 2856 * On pSeries, inform the firmware about our capabilities 2857 */ 2858 if (RELOC(of_platform) == PLATFORM_PSERIES || 2859 RELOC(of_platform) == PLATFORM_PSERIES_LPAR) 2860 prom_send_capabilities(); 2861 #endif 2862 2863 /* 2864 * Copy the CPU hold code 2865 */ 2866 if (RELOC(of_platform) != PLATFORM_POWERMAC) 2867 copy_and_flush(0, kbase, 0x100, 0); 2868 2869 /* 2870 * Do early parsing of command line 2871 */ 2872 early_cmdline_parse(); 2873 2874 /* 2875 * Initialize memory management within prom_init 2876 */ 2877 prom_init_mem(); 2878 2879 /* 2880 * Determine which cpu is actually running right _now_ 2881 */ 2882 prom_find_boot_cpu(); 2883 2884 /* 2885 * Initialize display devices 2886 */ 2887 prom_check_displays(); 2888 2889 #ifdef CONFIG_PPC64 2890 /* 2891 * Initialize IOMMU (TCE tables) on pSeries. Do that before anything else 2892 * that uses the allocator, we need to make sure we get the top of memory 2893 * available for us here... 2894 */ 2895 if (RELOC(of_platform) == PLATFORM_PSERIES) 2896 prom_initialize_tce_table(); 2897 #endif 2898 2899 /* 2900 * On non-powermacs, try to instantiate RTAS. PowerMacs don't 2901 * have a usable RTAS implementation. 2902 */ 2903 if (RELOC(of_platform) != PLATFORM_POWERMAC && 2904 RELOC(of_platform) != PLATFORM_OPAL) 2905 prom_instantiate_rtas(); 2906 2907 #ifdef CONFIG_PPC_POWERNV 2908 /* Detect HAL and try instanciating it & doing takeover */ 2909 if (RELOC(of_platform) == PLATFORM_PSERIES_LPAR) { 2910 prom_query_opal(); 2911 if (RELOC(of_platform) == PLATFORM_OPAL) { 2912 prom_opal_hold_cpus(); 2913 prom_opal_takeover(); 2914 } 2915 } else if (RELOC(of_platform) == PLATFORM_OPAL) 2916 prom_instantiate_opal(); 2917 #endif 2918 2919 /* 2920 * On non-powermacs, put all CPUs in spin-loops. 2921 * 2922 * PowerMacs use a different mechanism to spin CPUs 2923 */ 2924 if (RELOC(of_platform) != PLATFORM_POWERMAC && 2925 RELOC(of_platform) != PLATFORM_OPAL) 2926 prom_hold_cpus(); 2927 2928 /* 2929 * Fill in some infos for use by the kernel later on 2930 */ 2931 if (RELOC(prom_memory_limit)) 2932 prom_setprop(_prom->chosen, "/chosen", "linux,memory-limit", 2933 &RELOC(prom_memory_limit), 2934 sizeof(prom_memory_limit)); 2935 #ifdef CONFIG_PPC64 2936 if (RELOC(prom_iommu_off)) 2937 prom_setprop(_prom->chosen, "/chosen", "linux,iommu-off", 2938 NULL, 0); 2939 2940 if (RELOC(prom_iommu_force_on)) 2941 prom_setprop(_prom->chosen, "/chosen", "linux,iommu-force-on", 2942 NULL, 0); 2943 2944 if (RELOC(prom_tce_alloc_start)) { 2945 prom_setprop(_prom->chosen, "/chosen", "linux,tce-alloc-start", 2946 &RELOC(prom_tce_alloc_start), 2947 sizeof(prom_tce_alloc_start)); 2948 prom_setprop(_prom->chosen, "/chosen", "linux,tce-alloc-end", 2949 &RELOC(prom_tce_alloc_end), 2950 sizeof(prom_tce_alloc_end)); 2951 } 2952 #endif 2953 2954 /* 2955 * Fixup any known bugs in the device-tree 2956 */ 2957 fixup_device_tree(); 2958 2959 /* 2960 * Now finally create the flattened device-tree 2961 */ 2962 prom_printf("copying OF device tree...\n"); 2963 flatten_device_tree(); 2964 2965 /* 2966 * in case stdin is USB and still active on IBM machines... 2967 * Unfortunately quiesce crashes on some powermacs if we have 2968 * closed stdin already (in particular the powerbook 101). It 2969 * appears that the OPAL version of OFW doesn't like it either. 2970 */ 2971 if (RELOC(of_platform) != PLATFORM_POWERMAC && 2972 RELOC(of_platform) != PLATFORM_OPAL) 2973 prom_close_stdin(); 2974 2975 /* 2976 * Call OF "quiesce" method to shut down pending DMA's from 2977 * devices etc... 2978 */ 2979 prom_printf("Calling quiesce...\n"); 2980 call_prom("quiesce", 0, 0); 2981 2982 /* 2983 * And finally, call the kernel passing it the flattened device 2984 * tree and NULL as r5, thus triggering the new entry point which 2985 * is common to us and kexec 2986 */ 2987 hdr = RELOC(dt_header_start); 2988 2989 /* Don't print anything after quiesce under OPAL, it crashes OFW */ 2990 if (RELOC(of_platform) != PLATFORM_OPAL) { 2991 prom_printf("returning from prom_init\n"); 2992 prom_debug("->dt_header_start=0x%x\n", hdr); 2993 } 2994 2995 #ifdef CONFIG_PPC32 2996 reloc_got2(-offset); 2997 #endif 2998 2999 #ifdef CONFIG_PPC_EARLY_DEBUG_OPAL 3000 /* OPAL early debug gets the OPAL base & entry in r8 and r9 */ 3001 __start(hdr, kbase, 0, 0, 0, 3002 RELOC(prom_opal_base), RELOC(prom_opal_entry)); 3003 #else 3004 __start(hdr, kbase, 0, 0, 0, 0, 0); 3005 #endif 3006 3007 return 0; 3008 } 3009