1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for interfacing to Open Firmware. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 */ 11 12 #undef DEBUG_PROM 13 14 /* we cannot use FORTIFY as it brings in new symbols */ 15 #define __NO_FORTIFY 16 17 #include <stdarg.h> 18 #include <linux/kernel.h> 19 #include <linux/string.h> 20 #include <linux/init.h> 21 #include <linux/threads.h> 22 #include <linux/spinlock.h> 23 #include <linux/types.h> 24 #include <linux/pci.h> 25 #include <linux/proc_fs.h> 26 #include <linux/delay.h> 27 #include <linux/initrd.h> 28 #include <linux/bitops.h> 29 #include <linux/pgtable.h> 30 #include <asm/prom.h> 31 #include <asm/rtas.h> 32 #include <asm/page.h> 33 #include <asm/processor.h> 34 #include <asm/irq.h> 35 #include <asm/io.h> 36 #include <asm/smp.h> 37 #include <asm/mmu.h> 38 #include <asm/iommu.h> 39 #include <asm/btext.h> 40 #include <asm/sections.h> 41 #include <asm/machdep.h> 42 #include <asm/asm-prototypes.h> 43 #include <asm/ultravisor-api.h> 44 45 #include <linux/linux_logo.h> 46 47 /* All of prom_init bss lives here */ 48 #define __prombss __section(".bss.prominit") 49 50 /* 51 * Eventually bump that one up 52 */ 53 #define DEVTREE_CHUNK_SIZE 0x100000 54 55 /* 56 * This is the size of the local memory reserve map that gets copied 57 * into the boot params passed to the kernel. That size is totally 58 * flexible as the kernel just reads the list until it encounters an 59 * entry with size 0, so it can be changed without breaking binary 60 * compatibility 61 */ 62 #define MEM_RESERVE_MAP_SIZE 8 63 64 /* 65 * prom_init() is called very early on, before the kernel text 66 * and data have been mapped to KERNELBASE. At this point the code 67 * is running at whatever address it has been loaded at. 68 * On ppc32 we compile with -mrelocatable, which means that references 69 * to extern and static variables get relocated automatically. 70 * ppc64 objects are always relocatable, we just need to relocate the 71 * TOC. 72 * 73 * Because OF may have mapped I/O devices into the area starting at 74 * KERNELBASE, particularly on CHRP machines, we can't safely call 75 * OF once the kernel has been mapped to KERNELBASE. Therefore all 76 * OF calls must be done within prom_init(). 77 * 78 * ADDR is used in calls to call_prom. The 4th and following 79 * arguments to call_prom should be 32-bit values. 80 * On ppc64, 64 bit values are truncated to 32 bits (and 81 * fortunately don't get interpreted as two arguments). 82 */ 83 #define ADDR(x) (u32)(unsigned long)(x) 84 85 #ifdef CONFIG_PPC64 86 #define OF_WORKAROUNDS 0 87 #else 88 #define OF_WORKAROUNDS of_workarounds 89 static int of_workarounds __prombss; 90 #endif 91 92 #define OF_WA_CLAIM 1 /* do phys/virt claim separately, then map */ 93 #define OF_WA_LONGTRAIL 2 /* work around longtrail bugs */ 94 95 #define PROM_BUG() do { \ 96 prom_printf("kernel BUG at %s line 0x%x!\n", \ 97 __FILE__, __LINE__); \ 98 __builtin_trap(); \ 99 } while (0) 100 101 #ifdef DEBUG_PROM 102 #define prom_debug(x...) prom_printf(x) 103 #else 104 #define prom_debug(x...) do { } while (0) 105 #endif 106 107 108 typedef u32 prom_arg_t; 109 110 struct prom_args { 111 __be32 service; 112 __be32 nargs; 113 __be32 nret; 114 __be32 args[10]; 115 }; 116 117 struct prom_t { 118 ihandle root; 119 phandle chosen; 120 int cpu; 121 ihandle stdout; 122 ihandle mmumap; 123 ihandle memory; 124 }; 125 126 struct mem_map_entry { 127 __be64 base; 128 __be64 size; 129 }; 130 131 typedef __be32 cell_t; 132 133 extern void __start(unsigned long r3, unsigned long r4, unsigned long r5, 134 unsigned long r6, unsigned long r7, unsigned long r8, 135 unsigned long r9); 136 137 #ifdef CONFIG_PPC64 138 extern int enter_prom(struct prom_args *args, unsigned long entry); 139 #else 140 static inline int enter_prom(struct prom_args *args, unsigned long entry) 141 { 142 return ((int (*)(struct prom_args *))entry)(args); 143 } 144 #endif 145 146 extern void copy_and_flush(unsigned long dest, unsigned long src, 147 unsigned long size, unsigned long offset); 148 149 /* prom structure */ 150 static struct prom_t __prombss prom; 151 152 static unsigned long __prombss prom_entry; 153 154 static char __prombss of_stdout_device[256]; 155 static char __prombss prom_scratch[256]; 156 157 static unsigned long __prombss dt_header_start; 158 static unsigned long __prombss dt_struct_start, dt_struct_end; 159 static unsigned long __prombss dt_string_start, dt_string_end; 160 161 static unsigned long __prombss prom_initrd_start, prom_initrd_end; 162 163 #ifdef CONFIG_PPC64 164 static int __prombss prom_iommu_force_on; 165 static int __prombss prom_iommu_off; 166 static unsigned long __prombss prom_tce_alloc_start; 167 static unsigned long __prombss prom_tce_alloc_end; 168 #endif 169 170 #ifdef CONFIG_PPC_PSERIES 171 static bool __prombss prom_radix_disable; 172 static bool __prombss prom_radix_gtse_disable; 173 static bool __prombss prom_xive_disable; 174 #endif 175 176 #ifdef CONFIG_PPC_SVM 177 static bool __prombss prom_svm_enable; 178 #endif 179 180 struct platform_support { 181 bool hash_mmu; 182 bool radix_mmu; 183 bool radix_gtse; 184 bool xive; 185 }; 186 187 /* Platforms codes are now obsolete in the kernel. Now only used within this 188 * file and ultimately gone too. Feel free to change them if you need, they 189 * are not shared with anything outside of this file anymore 190 */ 191 #define PLATFORM_PSERIES 0x0100 192 #define PLATFORM_PSERIES_LPAR 0x0101 193 #define PLATFORM_LPAR 0x0001 194 #define PLATFORM_POWERMAC 0x0400 195 #define PLATFORM_GENERIC 0x0500 196 197 static int __prombss of_platform; 198 199 static char __prombss prom_cmd_line[COMMAND_LINE_SIZE]; 200 201 static unsigned long __prombss prom_memory_limit; 202 203 static unsigned long __prombss alloc_top; 204 static unsigned long __prombss alloc_top_high; 205 static unsigned long __prombss alloc_bottom; 206 static unsigned long __prombss rmo_top; 207 static unsigned long __prombss ram_top; 208 209 static struct mem_map_entry __prombss mem_reserve_map[MEM_RESERVE_MAP_SIZE]; 210 static int __prombss mem_reserve_cnt; 211 212 static cell_t __prombss regbuf[1024]; 213 214 static bool __prombss rtas_has_query_cpu_stopped; 215 216 217 /* 218 * Error results ... some OF calls will return "-1" on error, some 219 * will return 0, some will return either. To simplify, here are 220 * macros to use with any ihandle or phandle return value to check if 221 * it is valid 222 */ 223 224 #define PROM_ERROR (-1u) 225 #define PHANDLE_VALID(p) ((p) != 0 && (p) != PROM_ERROR) 226 #define IHANDLE_VALID(i) ((i) != 0 && (i) != PROM_ERROR) 227 228 /* Copied from lib/string.c and lib/kstrtox.c */ 229 230 static int __init prom_strcmp(const char *cs, const char *ct) 231 { 232 unsigned char c1, c2; 233 234 while (1) { 235 c1 = *cs++; 236 c2 = *ct++; 237 if (c1 != c2) 238 return c1 < c2 ? -1 : 1; 239 if (!c1) 240 break; 241 } 242 return 0; 243 } 244 245 static char __init *prom_strcpy(char *dest, const char *src) 246 { 247 char *tmp = dest; 248 249 while ((*dest++ = *src++) != '\0') 250 /* nothing */; 251 return tmp; 252 } 253 254 static int __init prom_strncmp(const char *cs, const char *ct, size_t count) 255 { 256 unsigned char c1, c2; 257 258 while (count) { 259 c1 = *cs++; 260 c2 = *ct++; 261 if (c1 != c2) 262 return c1 < c2 ? -1 : 1; 263 if (!c1) 264 break; 265 count--; 266 } 267 return 0; 268 } 269 270 static size_t __init prom_strlen(const char *s) 271 { 272 const char *sc; 273 274 for (sc = s; *sc != '\0'; ++sc) 275 /* nothing */; 276 return sc - s; 277 } 278 279 static int __init prom_memcmp(const void *cs, const void *ct, size_t count) 280 { 281 const unsigned char *su1, *su2; 282 int res = 0; 283 284 for (su1 = cs, su2 = ct; 0 < count; ++su1, ++su2, count--) 285 if ((res = *su1 - *su2) != 0) 286 break; 287 return res; 288 } 289 290 static char __init *prom_strstr(const char *s1, const char *s2) 291 { 292 size_t l1, l2; 293 294 l2 = prom_strlen(s2); 295 if (!l2) 296 return (char *)s1; 297 l1 = prom_strlen(s1); 298 while (l1 >= l2) { 299 l1--; 300 if (!prom_memcmp(s1, s2, l2)) 301 return (char *)s1; 302 s1++; 303 } 304 return NULL; 305 } 306 307 static size_t __init prom_strlcat(char *dest, const char *src, size_t count) 308 { 309 size_t dsize = prom_strlen(dest); 310 size_t len = prom_strlen(src); 311 size_t res = dsize + len; 312 313 /* This would be a bug */ 314 if (dsize >= count) 315 return count; 316 317 dest += dsize; 318 count -= dsize; 319 if (len >= count) 320 len = count-1; 321 memcpy(dest, src, len); 322 dest[len] = 0; 323 return res; 324 325 } 326 327 #ifdef CONFIG_PPC_PSERIES 328 static int __init prom_strtobool(const char *s, bool *res) 329 { 330 if (!s) 331 return -EINVAL; 332 333 switch (s[0]) { 334 case 'y': 335 case 'Y': 336 case '1': 337 *res = true; 338 return 0; 339 case 'n': 340 case 'N': 341 case '0': 342 *res = false; 343 return 0; 344 case 'o': 345 case 'O': 346 switch (s[1]) { 347 case 'n': 348 case 'N': 349 *res = true; 350 return 0; 351 case 'f': 352 case 'F': 353 *res = false; 354 return 0; 355 default: 356 break; 357 } 358 default: 359 break; 360 } 361 362 return -EINVAL; 363 } 364 #endif 365 366 /* This is the one and *ONLY* place where we actually call open 367 * firmware. 368 */ 369 370 static int __init call_prom(const char *service, int nargs, int nret, ...) 371 { 372 int i; 373 struct prom_args args; 374 va_list list; 375 376 args.service = cpu_to_be32(ADDR(service)); 377 args.nargs = cpu_to_be32(nargs); 378 args.nret = cpu_to_be32(nret); 379 380 va_start(list, nret); 381 for (i = 0; i < nargs; i++) 382 args.args[i] = cpu_to_be32(va_arg(list, prom_arg_t)); 383 va_end(list); 384 385 for (i = 0; i < nret; i++) 386 args.args[nargs+i] = 0; 387 388 if (enter_prom(&args, prom_entry) < 0) 389 return PROM_ERROR; 390 391 return (nret > 0) ? be32_to_cpu(args.args[nargs]) : 0; 392 } 393 394 static int __init call_prom_ret(const char *service, int nargs, int nret, 395 prom_arg_t *rets, ...) 396 { 397 int i; 398 struct prom_args args; 399 va_list list; 400 401 args.service = cpu_to_be32(ADDR(service)); 402 args.nargs = cpu_to_be32(nargs); 403 args.nret = cpu_to_be32(nret); 404 405 va_start(list, rets); 406 for (i = 0; i < nargs; i++) 407 args.args[i] = cpu_to_be32(va_arg(list, prom_arg_t)); 408 va_end(list); 409 410 for (i = 0; i < nret; i++) 411 args.args[nargs+i] = 0; 412 413 if (enter_prom(&args, prom_entry) < 0) 414 return PROM_ERROR; 415 416 if (rets != NULL) 417 for (i = 1; i < nret; ++i) 418 rets[i-1] = be32_to_cpu(args.args[nargs+i]); 419 420 return (nret > 0) ? be32_to_cpu(args.args[nargs]) : 0; 421 } 422 423 424 static void __init prom_print(const char *msg) 425 { 426 const char *p, *q; 427 428 if (prom.stdout == 0) 429 return; 430 431 for (p = msg; *p != 0; p = q) { 432 for (q = p; *q != 0 && *q != '\n'; ++q) 433 ; 434 if (q > p) 435 call_prom("write", 3, 1, prom.stdout, p, q - p); 436 if (*q == 0) 437 break; 438 ++q; 439 call_prom("write", 3, 1, prom.stdout, ADDR("\r\n"), 2); 440 } 441 } 442 443 444 /* 445 * Both prom_print_hex & prom_print_dec takes an unsigned long as input so that 446 * we do not need __udivdi3 or __umoddi3 on 32bits. 447 */ 448 static void __init prom_print_hex(unsigned long val) 449 { 450 int i, nibbles = sizeof(val)*2; 451 char buf[sizeof(val)*2+1]; 452 453 for (i = nibbles-1; i >= 0; i--) { 454 buf[i] = (val & 0xf) + '0'; 455 if (buf[i] > '9') 456 buf[i] += ('a'-'0'-10); 457 val >>= 4; 458 } 459 buf[nibbles] = '\0'; 460 call_prom("write", 3, 1, prom.stdout, buf, nibbles); 461 } 462 463 /* max number of decimal digits in an unsigned long */ 464 #define UL_DIGITS 21 465 static void __init prom_print_dec(unsigned long val) 466 { 467 int i, size; 468 char buf[UL_DIGITS+1]; 469 470 for (i = UL_DIGITS-1; i >= 0; i--) { 471 buf[i] = (val % 10) + '0'; 472 val = val/10; 473 if (val == 0) 474 break; 475 } 476 /* shift stuff down */ 477 size = UL_DIGITS - i; 478 call_prom("write", 3, 1, prom.stdout, buf+i, size); 479 } 480 481 __printf(1, 2) 482 static void __init prom_printf(const char *format, ...) 483 { 484 const char *p, *q, *s; 485 va_list args; 486 unsigned long v; 487 long vs; 488 int n = 0; 489 490 va_start(args, format); 491 for (p = format; *p != 0; p = q) { 492 for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q) 493 ; 494 if (q > p) 495 call_prom("write", 3, 1, prom.stdout, p, q - p); 496 if (*q == 0) 497 break; 498 if (*q == '\n') { 499 ++q; 500 call_prom("write", 3, 1, prom.stdout, 501 ADDR("\r\n"), 2); 502 continue; 503 } 504 ++q; 505 if (*q == 0) 506 break; 507 while (*q == 'l') { 508 ++q; 509 ++n; 510 } 511 switch (*q) { 512 case 's': 513 ++q; 514 s = va_arg(args, const char *); 515 prom_print(s); 516 break; 517 case 'x': 518 ++q; 519 switch (n) { 520 case 0: 521 v = va_arg(args, unsigned int); 522 break; 523 case 1: 524 v = va_arg(args, unsigned long); 525 break; 526 case 2: 527 default: 528 v = va_arg(args, unsigned long long); 529 break; 530 } 531 prom_print_hex(v); 532 break; 533 case 'u': 534 ++q; 535 switch (n) { 536 case 0: 537 v = va_arg(args, unsigned int); 538 break; 539 case 1: 540 v = va_arg(args, unsigned long); 541 break; 542 case 2: 543 default: 544 v = va_arg(args, unsigned long long); 545 break; 546 } 547 prom_print_dec(v); 548 break; 549 case 'd': 550 ++q; 551 switch (n) { 552 case 0: 553 vs = va_arg(args, int); 554 break; 555 case 1: 556 vs = va_arg(args, long); 557 break; 558 case 2: 559 default: 560 vs = va_arg(args, long long); 561 break; 562 } 563 if (vs < 0) { 564 prom_print("-"); 565 vs = -vs; 566 } 567 prom_print_dec(vs); 568 break; 569 } 570 } 571 va_end(args); 572 } 573 574 575 static unsigned int __init prom_claim(unsigned long virt, unsigned long size, 576 unsigned long align) 577 { 578 579 if (align == 0 && (OF_WORKAROUNDS & OF_WA_CLAIM)) { 580 /* 581 * Old OF requires we claim physical and virtual separately 582 * and then map explicitly (assuming virtual mode) 583 */ 584 int ret; 585 prom_arg_t result; 586 587 ret = call_prom_ret("call-method", 5, 2, &result, 588 ADDR("claim"), prom.memory, 589 align, size, virt); 590 if (ret != 0 || result == -1) 591 return -1; 592 ret = call_prom_ret("call-method", 5, 2, &result, 593 ADDR("claim"), prom.mmumap, 594 align, size, virt); 595 if (ret != 0) { 596 call_prom("call-method", 4, 1, ADDR("release"), 597 prom.memory, size, virt); 598 return -1; 599 } 600 /* the 0x12 is M (coherence) + PP == read/write */ 601 call_prom("call-method", 6, 1, 602 ADDR("map"), prom.mmumap, 0x12, size, virt, virt); 603 return virt; 604 } 605 return call_prom("claim", 3, 1, (prom_arg_t)virt, (prom_arg_t)size, 606 (prom_arg_t)align); 607 } 608 609 static void __init __attribute__((noreturn)) prom_panic(const char *reason) 610 { 611 prom_print(reason); 612 /* Do not call exit because it clears the screen on pmac 613 * it also causes some sort of double-fault on early pmacs */ 614 if (of_platform == PLATFORM_POWERMAC) 615 asm("trap\n"); 616 617 /* ToDo: should put up an SRC here on pSeries */ 618 call_prom("exit", 0, 0); 619 620 for (;;) /* should never get here */ 621 ; 622 } 623 624 625 static int __init prom_next_node(phandle *nodep) 626 { 627 phandle node; 628 629 if ((node = *nodep) != 0 630 && (*nodep = call_prom("child", 1, 1, node)) != 0) 631 return 1; 632 if ((*nodep = call_prom("peer", 1, 1, node)) != 0) 633 return 1; 634 for (;;) { 635 if ((node = call_prom("parent", 1, 1, node)) == 0) 636 return 0; 637 if ((*nodep = call_prom("peer", 1, 1, node)) != 0) 638 return 1; 639 } 640 } 641 642 static inline int __init prom_getprop(phandle node, const char *pname, 643 void *value, size_t valuelen) 644 { 645 return call_prom("getprop", 4, 1, node, ADDR(pname), 646 (u32)(unsigned long) value, (u32) valuelen); 647 } 648 649 static inline int __init prom_getproplen(phandle node, const char *pname) 650 { 651 return call_prom("getproplen", 2, 1, node, ADDR(pname)); 652 } 653 654 static void add_string(char **str, const char *q) 655 { 656 char *p = *str; 657 658 while (*q) 659 *p++ = *q++; 660 *p++ = ' '; 661 *str = p; 662 } 663 664 static char *tohex(unsigned int x) 665 { 666 static const char digits[] __initconst = "0123456789abcdef"; 667 static char result[9] __prombss; 668 int i; 669 670 result[8] = 0; 671 i = 8; 672 do { 673 --i; 674 result[i] = digits[x & 0xf]; 675 x >>= 4; 676 } while (x != 0 && i > 0); 677 return &result[i]; 678 } 679 680 static int __init prom_setprop(phandle node, const char *nodename, 681 const char *pname, void *value, size_t valuelen) 682 { 683 char cmd[256], *p; 684 685 if (!(OF_WORKAROUNDS & OF_WA_LONGTRAIL)) 686 return call_prom("setprop", 4, 1, node, ADDR(pname), 687 (u32)(unsigned long) value, (u32) valuelen); 688 689 /* gah... setprop doesn't work on longtrail, have to use interpret */ 690 p = cmd; 691 add_string(&p, "dev"); 692 add_string(&p, nodename); 693 add_string(&p, tohex((u32)(unsigned long) value)); 694 add_string(&p, tohex(valuelen)); 695 add_string(&p, tohex(ADDR(pname))); 696 add_string(&p, tohex(prom_strlen(pname))); 697 add_string(&p, "property"); 698 *p = 0; 699 return call_prom("interpret", 1, 1, (u32)(unsigned long) cmd); 700 } 701 702 /* We can't use the standard versions because of relocation headaches. */ 703 #define isxdigit(c) (('0' <= (c) && (c) <= '9') \ 704 || ('a' <= (c) && (c) <= 'f') \ 705 || ('A' <= (c) && (c) <= 'F')) 706 707 #define isdigit(c) ('0' <= (c) && (c) <= '9') 708 #define islower(c) ('a' <= (c) && (c) <= 'z') 709 #define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c)) 710 711 static unsigned long prom_strtoul(const char *cp, const char **endp) 712 { 713 unsigned long result = 0, base = 10, value; 714 715 if (*cp == '0') { 716 base = 8; 717 cp++; 718 if (toupper(*cp) == 'X') { 719 cp++; 720 base = 16; 721 } 722 } 723 724 while (isxdigit(*cp) && 725 (value = isdigit(*cp) ? *cp - '0' : toupper(*cp) - 'A' + 10) < base) { 726 result = result * base + value; 727 cp++; 728 } 729 730 if (endp) 731 *endp = cp; 732 733 return result; 734 } 735 736 static unsigned long prom_memparse(const char *ptr, const char **retptr) 737 { 738 unsigned long ret = prom_strtoul(ptr, retptr); 739 int shift = 0; 740 741 /* 742 * We can't use a switch here because GCC *may* generate a 743 * jump table which won't work, because we're not running at 744 * the address we're linked at. 745 */ 746 if ('G' == **retptr || 'g' == **retptr) 747 shift = 30; 748 749 if ('M' == **retptr || 'm' == **retptr) 750 shift = 20; 751 752 if ('K' == **retptr || 'k' == **retptr) 753 shift = 10; 754 755 if (shift) { 756 ret <<= shift; 757 (*retptr)++; 758 } 759 760 return ret; 761 } 762 763 /* 764 * Early parsing of the command line passed to the kernel, used for 765 * "mem=x" and the options that affect the iommu 766 */ 767 static void __init early_cmdline_parse(void) 768 { 769 const char *opt; 770 771 char *p; 772 int l = 0; 773 774 prom_cmd_line[0] = 0; 775 p = prom_cmd_line; 776 777 if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && (long)prom.chosen > 0) 778 l = prom_getprop(prom.chosen, "bootargs", p, COMMAND_LINE_SIZE-1); 779 780 if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) || l <= 0 || p[0] == '\0') 781 prom_strlcat(prom_cmd_line, " " CONFIG_CMDLINE, 782 sizeof(prom_cmd_line)); 783 784 prom_printf("command line: %s\n", prom_cmd_line); 785 786 #ifdef CONFIG_PPC64 787 opt = prom_strstr(prom_cmd_line, "iommu="); 788 if (opt) { 789 prom_printf("iommu opt is: %s\n", opt); 790 opt += 6; 791 while (*opt && *opt == ' ') 792 opt++; 793 if (!prom_strncmp(opt, "off", 3)) 794 prom_iommu_off = 1; 795 else if (!prom_strncmp(opt, "force", 5)) 796 prom_iommu_force_on = 1; 797 } 798 #endif 799 opt = prom_strstr(prom_cmd_line, "mem="); 800 if (opt) { 801 opt += 4; 802 prom_memory_limit = prom_memparse(opt, (const char **)&opt); 803 #ifdef CONFIG_PPC64 804 /* Align to 16 MB == size of ppc64 large page */ 805 prom_memory_limit = ALIGN(prom_memory_limit, 0x1000000); 806 #endif 807 } 808 809 #ifdef CONFIG_PPC_PSERIES 810 prom_radix_disable = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT); 811 opt = prom_strstr(prom_cmd_line, "disable_radix"); 812 if (opt) { 813 opt += 13; 814 if (*opt && *opt == '=') { 815 bool val; 816 817 if (prom_strtobool(++opt, &val)) 818 prom_radix_disable = false; 819 else 820 prom_radix_disable = val; 821 } else 822 prom_radix_disable = true; 823 } 824 if (prom_radix_disable) 825 prom_debug("Radix disabled from cmdline\n"); 826 827 opt = prom_strstr(prom_cmd_line, "radix_hcall_invalidate=on"); 828 if (opt) { 829 prom_radix_gtse_disable = true; 830 prom_debug("Radix GTSE disabled from cmdline\n"); 831 } 832 833 opt = prom_strstr(prom_cmd_line, "xive=off"); 834 if (opt) { 835 prom_xive_disable = true; 836 prom_debug("XIVE disabled from cmdline\n"); 837 } 838 #endif /* CONFIG_PPC_PSERIES */ 839 840 #ifdef CONFIG_PPC_SVM 841 opt = prom_strstr(prom_cmd_line, "svm="); 842 if (opt) { 843 bool val; 844 845 opt += sizeof("svm=") - 1; 846 if (!prom_strtobool(opt, &val)) 847 prom_svm_enable = val; 848 } 849 #endif /* CONFIG_PPC_SVM */ 850 } 851 852 #ifdef CONFIG_PPC_PSERIES 853 /* 854 * The architecture vector has an array of PVR mask/value pairs, 855 * followed by # option vectors - 1, followed by the option vectors. 856 * 857 * See prom.h for the definition of the bits specified in the 858 * architecture vector. 859 */ 860 861 /* Firmware expects the value to be n - 1, where n is the # of vectors */ 862 #define NUM_VECTORS(n) ((n) - 1) 863 864 /* 865 * Firmware expects 1 + n - 2, where n is the length of the option vector in 866 * bytes. The 1 accounts for the length byte itself, the - 2 .. ? 867 */ 868 #define VECTOR_LENGTH(n) (1 + (n) - 2) 869 870 struct option_vector1 { 871 u8 byte1; 872 u8 arch_versions; 873 u8 arch_versions3; 874 } __packed; 875 876 struct option_vector2 { 877 u8 byte1; 878 __be16 reserved; 879 __be32 real_base; 880 __be32 real_size; 881 __be32 virt_base; 882 __be32 virt_size; 883 __be32 load_base; 884 __be32 min_rma; 885 __be32 min_load; 886 u8 min_rma_percent; 887 u8 max_pft_size; 888 } __packed; 889 890 struct option_vector3 { 891 u8 byte1; 892 u8 byte2; 893 } __packed; 894 895 struct option_vector4 { 896 u8 byte1; 897 u8 min_vp_cap; 898 } __packed; 899 900 struct option_vector5 { 901 u8 byte1; 902 u8 byte2; 903 u8 byte3; 904 u8 cmo; 905 u8 associativity; 906 u8 bin_opts; 907 u8 micro_checkpoint; 908 u8 reserved0; 909 __be32 max_cpus; 910 __be16 papr_level; 911 __be16 reserved1; 912 u8 platform_facilities; 913 u8 reserved2; 914 __be16 reserved3; 915 u8 subprocessors; 916 u8 byte22; 917 u8 intarch; 918 u8 mmu; 919 u8 hash_ext; 920 u8 radix_ext; 921 } __packed; 922 923 struct option_vector6 { 924 u8 reserved; 925 u8 secondary_pteg; 926 u8 os_name; 927 } __packed; 928 929 struct ibm_arch_vec { 930 struct { u32 mask, val; } pvrs[14]; 931 932 u8 num_vectors; 933 934 u8 vec1_len; 935 struct option_vector1 vec1; 936 937 u8 vec2_len; 938 struct option_vector2 vec2; 939 940 u8 vec3_len; 941 struct option_vector3 vec3; 942 943 u8 vec4_len; 944 struct option_vector4 vec4; 945 946 u8 vec5_len; 947 struct option_vector5 vec5; 948 949 u8 vec6_len; 950 struct option_vector6 vec6; 951 } __packed; 952 953 static const struct ibm_arch_vec ibm_architecture_vec_template __initconst = { 954 .pvrs = { 955 { 956 .mask = cpu_to_be32(0xfffe0000), /* POWER5/POWER5+ */ 957 .val = cpu_to_be32(0x003a0000), 958 }, 959 { 960 .mask = cpu_to_be32(0xffff0000), /* POWER6 */ 961 .val = cpu_to_be32(0x003e0000), 962 }, 963 { 964 .mask = cpu_to_be32(0xffff0000), /* POWER7 */ 965 .val = cpu_to_be32(0x003f0000), 966 }, 967 { 968 .mask = cpu_to_be32(0xffff0000), /* POWER8E */ 969 .val = cpu_to_be32(0x004b0000), 970 }, 971 { 972 .mask = cpu_to_be32(0xffff0000), /* POWER8NVL */ 973 .val = cpu_to_be32(0x004c0000), 974 }, 975 { 976 .mask = cpu_to_be32(0xffff0000), /* POWER8 */ 977 .val = cpu_to_be32(0x004d0000), 978 }, 979 { 980 .mask = cpu_to_be32(0xffff0000), /* POWER9 */ 981 .val = cpu_to_be32(0x004e0000), 982 }, 983 { 984 .mask = cpu_to_be32(0xffff0000), /* POWER10 */ 985 .val = cpu_to_be32(0x00800000), 986 }, 987 { 988 .mask = cpu_to_be32(0xffffffff), /* all 3.1-compliant */ 989 .val = cpu_to_be32(0x0f000006), 990 }, 991 { 992 .mask = cpu_to_be32(0xffffffff), /* all 3.00-compliant */ 993 .val = cpu_to_be32(0x0f000005), 994 }, 995 { 996 .mask = cpu_to_be32(0xffffffff), /* all 2.07-compliant */ 997 .val = cpu_to_be32(0x0f000004), 998 }, 999 { 1000 .mask = cpu_to_be32(0xffffffff), /* all 2.06-compliant */ 1001 .val = cpu_to_be32(0x0f000003), 1002 }, 1003 { 1004 .mask = cpu_to_be32(0xffffffff), /* all 2.05-compliant */ 1005 .val = cpu_to_be32(0x0f000002), 1006 }, 1007 { 1008 .mask = cpu_to_be32(0xfffffffe), /* all 2.04-compliant and earlier */ 1009 .val = cpu_to_be32(0x0f000001), 1010 }, 1011 }, 1012 1013 .num_vectors = NUM_VECTORS(6), 1014 1015 .vec1_len = VECTOR_LENGTH(sizeof(struct option_vector1)), 1016 .vec1 = { 1017 .byte1 = 0, 1018 .arch_versions = OV1_PPC_2_00 | OV1_PPC_2_01 | OV1_PPC_2_02 | OV1_PPC_2_03 | 1019 OV1_PPC_2_04 | OV1_PPC_2_05 | OV1_PPC_2_06 | OV1_PPC_2_07, 1020 .arch_versions3 = OV1_PPC_3_00 | OV1_PPC_3_1, 1021 }, 1022 1023 .vec2_len = VECTOR_LENGTH(sizeof(struct option_vector2)), 1024 /* option vector 2: Open Firmware options supported */ 1025 .vec2 = { 1026 .byte1 = OV2_REAL_MODE, 1027 .reserved = 0, 1028 .real_base = cpu_to_be32(0xffffffff), 1029 .real_size = cpu_to_be32(0xffffffff), 1030 .virt_base = cpu_to_be32(0xffffffff), 1031 .virt_size = cpu_to_be32(0xffffffff), 1032 .load_base = cpu_to_be32(0xffffffff), 1033 .min_rma = cpu_to_be32(512), /* 512MB min RMA */ 1034 .min_load = cpu_to_be32(0xffffffff), /* full client load */ 1035 .min_rma_percent = 0, /* min RMA percentage of total RAM */ 1036 .max_pft_size = 48, /* max log_2(hash table size) */ 1037 }, 1038 1039 .vec3_len = VECTOR_LENGTH(sizeof(struct option_vector3)), 1040 /* option vector 3: processor options supported */ 1041 .vec3 = { 1042 .byte1 = 0, /* don't ignore, don't halt */ 1043 .byte2 = OV3_FP | OV3_VMX | OV3_DFP, 1044 }, 1045 1046 .vec4_len = VECTOR_LENGTH(sizeof(struct option_vector4)), 1047 /* option vector 4: IBM PAPR implementation */ 1048 .vec4 = { 1049 .byte1 = 0, /* don't halt */ 1050 .min_vp_cap = OV4_MIN_ENT_CAP, /* minimum VP entitled capacity */ 1051 }, 1052 1053 .vec5_len = VECTOR_LENGTH(sizeof(struct option_vector5)), 1054 /* option vector 5: PAPR/OF options */ 1055 .vec5 = { 1056 .byte1 = 0, /* don't ignore, don't halt */ 1057 .byte2 = OV5_FEAT(OV5_LPAR) | OV5_FEAT(OV5_SPLPAR) | OV5_FEAT(OV5_LARGE_PAGES) | 1058 OV5_FEAT(OV5_DRCONF_MEMORY) | OV5_FEAT(OV5_DONATE_DEDICATE_CPU) | 1059 #ifdef CONFIG_PCI_MSI 1060 /* PCIe/MSI support. Without MSI full PCIe is not supported */ 1061 OV5_FEAT(OV5_MSI), 1062 #else 1063 0, 1064 #endif 1065 .byte3 = 0, 1066 .cmo = 1067 #ifdef CONFIG_PPC_SMLPAR 1068 OV5_FEAT(OV5_CMO) | OV5_FEAT(OV5_XCMO), 1069 #else 1070 0, 1071 #endif 1072 .associativity = OV5_FEAT(OV5_TYPE1_AFFINITY) | OV5_FEAT(OV5_PRRN), 1073 .bin_opts = OV5_FEAT(OV5_RESIZE_HPT) | OV5_FEAT(OV5_HP_EVT), 1074 .micro_checkpoint = 0, 1075 .reserved0 = 0, 1076 .max_cpus = cpu_to_be32(NR_CPUS), /* number of cores supported */ 1077 .papr_level = 0, 1078 .reserved1 = 0, 1079 .platform_facilities = OV5_FEAT(OV5_PFO_HW_RNG) | OV5_FEAT(OV5_PFO_HW_ENCR) | OV5_FEAT(OV5_PFO_HW_842), 1080 .reserved2 = 0, 1081 .reserved3 = 0, 1082 .subprocessors = 1, 1083 .byte22 = OV5_FEAT(OV5_DRMEM_V2) | OV5_FEAT(OV5_DRC_INFO), 1084 .intarch = 0, 1085 .mmu = 0, 1086 .hash_ext = 0, 1087 .radix_ext = 0, 1088 }, 1089 1090 /* option vector 6: IBM PAPR hints */ 1091 .vec6_len = VECTOR_LENGTH(sizeof(struct option_vector6)), 1092 .vec6 = { 1093 .reserved = 0, 1094 .secondary_pteg = 0, 1095 .os_name = OV6_LINUX, 1096 }, 1097 }; 1098 1099 static struct ibm_arch_vec __prombss ibm_architecture_vec ____cacheline_aligned; 1100 1101 /* Old method - ELF header with PT_NOTE sections only works on BE */ 1102 #ifdef __BIG_ENDIAN__ 1103 static const struct fake_elf { 1104 Elf32_Ehdr elfhdr; 1105 Elf32_Phdr phdr[2]; 1106 struct chrpnote { 1107 u32 namesz; 1108 u32 descsz; 1109 u32 type; 1110 char name[8]; /* "PowerPC" */ 1111 struct chrpdesc { 1112 u32 real_mode; 1113 u32 real_base; 1114 u32 real_size; 1115 u32 virt_base; 1116 u32 virt_size; 1117 u32 load_base; 1118 } chrpdesc; 1119 } chrpnote; 1120 struct rpanote { 1121 u32 namesz; 1122 u32 descsz; 1123 u32 type; 1124 char name[24]; /* "IBM,RPA-Client-Config" */ 1125 struct rpadesc { 1126 u32 lpar_affinity; 1127 u32 min_rmo_size; 1128 u32 min_rmo_percent; 1129 u32 max_pft_size; 1130 u32 splpar; 1131 u32 min_load; 1132 u32 new_mem_def; 1133 u32 ignore_me; 1134 } rpadesc; 1135 } rpanote; 1136 } fake_elf __initconst = { 1137 .elfhdr = { 1138 .e_ident = { 0x7f, 'E', 'L', 'F', 1139 ELFCLASS32, ELFDATA2MSB, EV_CURRENT }, 1140 .e_type = ET_EXEC, /* yeah right */ 1141 .e_machine = EM_PPC, 1142 .e_version = EV_CURRENT, 1143 .e_phoff = offsetof(struct fake_elf, phdr), 1144 .e_phentsize = sizeof(Elf32_Phdr), 1145 .e_phnum = 2 1146 }, 1147 .phdr = { 1148 [0] = { 1149 .p_type = PT_NOTE, 1150 .p_offset = offsetof(struct fake_elf, chrpnote), 1151 .p_filesz = sizeof(struct chrpnote) 1152 }, [1] = { 1153 .p_type = PT_NOTE, 1154 .p_offset = offsetof(struct fake_elf, rpanote), 1155 .p_filesz = sizeof(struct rpanote) 1156 } 1157 }, 1158 .chrpnote = { 1159 .namesz = sizeof("PowerPC"), 1160 .descsz = sizeof(struct chrpdesc), 1161 .type = 0x1275, 1162 .name = "PowerPC", 1163 .chrpdesc = { 1164 .real_mode = ~0U, /* ~0 means "don't care" */ 1165 .real_base = ~0U, 1166 .real_size = ~0U, 1167 .virt_base = ~0U, 1168 .virt_size = ~0U, 1169 .load_base = ~0U 1170 }, 1171 }, 1172 .rpanote = { 1173 .namesz = sizeof("IBM,RPA-Client-Config"), 1174 .descsz = sizeof(struct rpadesc), 1175 .type = 0x12759999, 1176 .name = "IBM,RPA-Client-Config", 1177 .rpadesc = { 1178 .lpar_affinity = 0, 1179 .min_rmo_size = 64, /* in megabytes */ 1180 .min_rmo_percent = 0, 1181 .max_pft_size = 48, /* 2^48 bytes max PFT size */ 1182 .splpar = 1, 1183 .min_load = ~0U, 1184 .new_mem_def = 0 1185 } 1186 } 1187 }; 1188 #endif /* __BIG_ENDIAN__ */ 1189 1190 static int __init prom_count_smt_threads(void) 1191 { 1192 phandle node; 1193 char type[64]; 1194 unsigned int plen; 1195 1196 /* Pick up th first CPU node we can find */ 1197 for (node = 0; prom_next_node(&node); ) { 1198 type[0] = 0; 1199 prom_getprop(node, "device_type", type, sizeof(type)); 1200 1201 if (prom_strcmp(type, "cpu")) 1202 continue; 1203 /* 1204 * There is an entry for each smt thread, each entry being 1205 * 4 bytes long. All cpus should have the same number of 1206 * smt threads, so return after finding the first. 1207 */ 1208 plen = prom_getproplen(node, "ibm,ppc-interrupt-server#s"); 1209 if (plen == PROM_ERROR) 1210 break; 1211 plen >>= 2; 1212 prom_debug("Found %lu smt threads per core\n", (unsigned long)plen); 1213 1214 /* Sanity check */ 1215 if (plen < 1 || plen > 64) { 1216 prom_printf("Threads per core %lu out of bounds, assuming 1\n", 1217 (unsigned long)plen); 1218 return 1; 1219 } 1220 return plen; 1221 } 1222 prom_debug("No threads found, assuming 1 per core\n"); 1223 1224 return 1; 1225 1226 } 1227 1228 static void __init prom_parse_mmu_model(u8 val, 1229 struct platform_support *support) 1230 { 1231 switch (val) { 1232 case OV5_FEAT(OV5_MMU_DYNAMIC): 1233 case OV5_FEAT(OV5_MMU_EITHER): /* Either Available */ 1234 prom_debug("MMU - either supported\n"); 1235 support->radix_mmu = !prom_radix_disable; 1236 support->hash_mmu = true; 1237 break; 1238 case OV5_FEAT(OV5_MMU_RADIX): /* Only Radix */ 1239 prom_debug("MMU - radix only\n"); 1240 if (prom_radix_disable) { 1241 /* 1242 * If we __have__ to do radix, we're better off ignoring 1243 * the command line rather than not booting. 1244 */ 1245 prom_printf("WARNING: Ignoring cmdline option disable_radix\n"); 1246 } 1247 support->radix_mmu = true; 1248 break; 1249 case OV5_FEAT(OV5_MMU_HASH): 1250 prom_debug("MMU - hash only\n"); 1251 support->hash_mmu = true; 1252 break; 1253 default: 1254 prom_debug("Unknown mmu support option: 0x%x\n", val); 1255 break; 1256 } 1257 } 1258 1259 static void __init prom_parse_xive_model(u8 val, 1260 struct platform_support *support) 1261 { 1262 switch (val) { 1263 case OV5_FEAT(OV5_XIVE_EITHER): /* Either Available */ 1264 prom_debug("XIVE - either mode supported\n"); 1265 support->xive = !prom_xive_disable; 1266 break; 1267 case OV5_FEAT(OV5_XIVE_EXPLOIT): /* Only Exploitation mode */ 1268 prom_debug("XIVE - exploitation mode supported\n"); 1269 if (prom_xive_disable) { 1270 /* 1271 * If we __have__ to do XIVE, we're better off ignoring 1272 * the command line rather than not booting. 1273 */ 1274 prom_printf("WARNING: Ignoring cmdline option xive=off\n"); 1275 } 1276 support->xive = true; 1277 break; 1278 case OV5_FEAT(OV5_XIVE_LEGACY): /* Only Legacy mode */ 1279 prom_debug("XIVE - legacy mode supported\n"); 1280 break; 1281 default: 1282 prom_debug("Unknown xive support option: 0x%x\n", val); 1283 break; 1284 } 1285 } 1286 1287 static void __init prom_parse_platform_support(u8 index, u8 val, 1288 struct platform_support *support) 1289 { 1290 switch (index) { 1291 case OV5_INDX(OV5_MMU_SUPPORT): /* MMU Model */ 1292 prom_parse_mmu_model(val & OV5_FEAT(OV5_MMU_SUPPORT), support); 1293 break; 1294 case OV5_INDX(OV5_RADIX_GTSE): /* Radix Extensions */ 1295 if (val & OV5_FEAT(OV5_RADIX_GTSE)) 1296 support->radix_gtse = !prom_radix_gtse_disable; 1297 break; 1298 case OV5_INDX(OV5_XIVE_SUPPORT): /* Interrupt mode */ 1299 prom_parse_xive_model(val & OV5_FEAT(OV5_XIVE_SUPPORT), 1300 support); 1301 break; 1302 } 1303 } 1304 1305 static void __init prom_check_platform_support(void) 1306 { 1307 struct platform_support supported = { 1308 .hash_mmu = false, 1309 .radix_mmu = false, 1310 .radix_gtse = false, 1311 .xive = false 1312 }; 1313 int prop_len = prom_getproplen(prom.chosen, 1314 "ibm,arch-vec-5-platform-support"); 1315 1316 /* 1317 * First copy the architecture vec template 1318 * 1319 * use memcpy() instead of *vec = *vec_template so that GCC replaces it 1320 * by __memcpy() when KASAN is active 1321 */ 1322 memcpy(&ibm_architecture_vec, &ibm_architecture_vec_template, 1323 sizeof(ibm_architecture_vec)); 1324 1325 if (prop_len > 1) { 1326 int i; 1327 u8 vec[8]; 1328 prom_debug("Found ibm,arch-vec-5-platform-support, len: %d\n", 1329 prop_len); 1330 if (prop_len > sizeof(vec)) 1331 prom_printf("WARNING: ibm,arch-vec-5-platform-support longer than expected (len: %d)\n", 1332 prop_len); 1333 prom_getprop(prom.chosen, "ibm,arch-vec-5-platform-support", 1334 &vec, sizeof(vec)); 1335 for (i = 0; i < sizeof(vec); i += 2) { 1336 prom_debug("%d: index = 0x%x val = 0x%x\n", i / 2 1337 , vec[i] 1338 , vec[i + 1]); 1339 prom_parse_platform_support(vec[i], vec[i + 1], 1340 &supported); 1341 } 1342 } 1343 1344 if (supported.radix_mmu && IS_ENABLED(CONFIG_PPC_RADIX_MMU)) { 1345 /* Radix preferred - Check if GTSE is also supported */ 1346 prom_debug("Asking for radix\n"); 1347 ibm_architecture_vec.vec5.mmu = OV5_FEAT(OV5_MMU_RADIX); 1348 if (supported.radix_gtse) 1349 ibm_architecture_vec.vec5.radix_ext = 1350 OV5_FEAT(OV5_RADIX_GTSE); 1351 else 1352 prom_debug("Radix GTSE isn't supported\n"); 1353 } else if (supported.hash_mmu) { 1354 /* Default to hash mmu (if we can) */ 1355 prom_debug("Asking for hash\n"); 1356 ibm_architecture_vec.vec5.mmu = OV5_FEAT(OV5_MMU_HASH); 1357 } else { 1358 /* We're probably on a legacy hypervisor */ 1359 prom_debug("Assuming legacy hash support\n"); 1360 } 1361 1362 if (supported.xive) { 1363 prom_debug("Asking for XIVE\n"); 1364 ibm_architecture_vec.vec5.intarch = OV5_FEAT(OV5_XIVE_EXPLOIT); 1365 } 1366 } 1367 1368 static void __init prom_send_capabilities(void) 1369 { 1370 ihandle root; 1371 prom_arg_t ret; 1372 u32 cores; 1373 1374 /* Check ibm,arch-vec-5-platform-support and fixup vec5 if required */ 1375 prom_check_platform_support(); 1376 1377 root = call_prom("open", 1, 1, ADDR("/")); 1378 if (root != 0) { 1379 /* We need to tell the FW about the number of cores we support. 1380 * 1381 * To do that, we count the number of threads on the first core 1382 * (we assume this is the same for all cores) and use it to 1383 * divide NR_CPUS. 1384 */ 1385 1386 cores = DIV_ROUND_UP(NR_CPUS, prom_count_smt_threads()); 1387 prom_printf("Max number of cores passed to firmware: %u (NR_CPUS = %d)\n", 1388 cores, NR_CPUS); 1389 1390 ibm_architecture_vec.vec5.max_cpus = cpu_to_be32(cores); 1391 1392 /* try calling the ibm,client-architecture-support method */ 1393 prom_printf("Calling ibm,client-architecture-support..."); 1394 if (call_prom_ret("call-method", 3, 2, &ret, 1395 ADDR("ibm,client-architecture-support"), 1396 root, 1397 ADDR(&ibm_architecture_vec)) == 0) { 1398 /* the call exists... */ 1399 if (ret) 1400 prom_printf("\nWARNING: ibm,client-architecture" 1401 "-support call FAILED!\n"); 1402 call_prom("close", 1, 0, root); 1403 prom_printf(" done\n"); 1404 return; 1405 } 1406 call_prom("close", 1, 0, root); 1407 prom_printf(" not implemented\n"); 1408 } 1409 1410 #ifdef __BIG_ENDIAN__ 1411 { 1412 ihandle elfloader; 1413 1414 /* no ibm,client-architecture-support call, try the old way */ 1415 elfloader = call_prom("open", 1, 1, 1416 ADDR("/packages/elf-loader")); 1417 if (elfloader == 0) { 1418 prom_printf("couldn't open /packages/elf-loader\n"); 1419 return; 1420 } 1421 call_prom("call-method", 3, 1, ADDR("process-elf-header"), 1422 elfloader, ADDR(&fake_elf)); 1423 call_prom("close", 1, 0, elfloader); 1424 } 1425 #endif /* __BIG_ENDIAN__ */ 1426 } 1427 #endif /* CONFIG_PPC_PSERIES */ 1428 1429 /* 1430 * Memory allocation strategy... our layout is normally: 1431 * 1432 * at 14Mb or more we have vmlinux, then a gap and initrd. In some 1433 * rare cases, initrd might end up being before the kernel though. 1434 * We assume this won't override the final kernel at 0, we have no 1435 * provision to handle that in this version, but it should hopefully 1436 * never happen. 1437 * 1438 * alloc_top is set to the top of RMO, eventually shrink down if the 1439 * TCEs overlap 1440 * 1441 * alloc_bottom is set to the top of kernel/initrd 1442 * 1443 * from there, allocations are done this way : rtas is allocated 1444 * topmost, and the device-tree is allocated from the bottom. We try 1445 * to grow the device-tree allocation as we progress. If we can't, 1446 * then we fail, we don't currently have a facility to restart 1447 * elsewhere, but that shouldn't be necessary. 1448 * 1449 * Note that calls to reserve_mem have to be done explicitly, memory 1450 * allocated with either alloc_up or alloc_down isn't automatically 1451 * reserved. 1452 */ 1453 1454 1455 /* 1456 * Allocates memory in the RMO upward from the kernel/initrd 1457 * 1458 * When align is 0, this is a special case, it means to allocate in place 1459 * at the current location of alloc_bottom or fail (that is basically 1460 * extending the previous allocation). Used for the device-tree flattening 1461 */ 1462 static unsigned long __init alloc_up(unsigned long size, unsigned long align) 1463 { 1464 unsigned long base = alloc_bottom; 1465 unsigned long addr = 0; 1466 1467 if (align) 1468 base = ALIGN(base, align); 1469 prom_debug("%s(%lx, %lx)\n", __func__, size, align); 1470 if (ram_top == 0) 1471 prom_panic("alloc_up() called with mem not initialized\n"); 1472 1473 if (align) 1474 base = ALIGN(alloc_bottom, align); 1475 else 1476 base = alloc_bottom; 1477 1478 for(; (base + size) <= alloc_top; 1479 base = ALIGN(base + 0x100000, align)) { 1480 prom_debug(" trying: 0x%lx\n\r", base); 1481 addr = (unsigned long)prom_claim(base, size, 0); 1482 if (addr != PROM_ERROR && addr != 0) 1483 break; 1484 addr = 0; 1485 if (align == 0) 1486 break; 1487 } 1488 if (addr == 0) 1489 return 0; 1490 alloc_bottom = addr + size; 1491 1492 prom_debug(" -> %lx\n", addr); 1493 prom_debug(" alloc_bottom : %lx\n", alloc_bottom); 1494 prom_debug(" alloc_top : %lx\n", alloc_top); 1495 prom_debug(" alloc_top_hi : %lx\n", alloc_top_high); 1496 prom_debug(" rmo_top : %lx\n", rmo_top); 1497 prom_debug(" ram_top : %lx\n", ram_top); 1498 1499 return addr; 1500 } 1501 1502 /* 1503 * Allocates memory downward, either from top of RMO, or if highmem 1504 * is set, from the top of RAM. Note that this one doesn't handle 1505 * failures. It does claim memory if highmem is not set. 1506 */ 1507 static unsigned long __init alloc_down(unsigned long size, unsigned long align, 1508 int highmem) 1509 { 1510 unsigned long base, addr = 0; 1511 1512 prom_debug("%s(%lx, %lx, %s)\n", __func__, size, align, 1513 highmem ? "(high)" : "(low)"); 1514 if (ram_top == 0) 1515 prom_panic("alloc_down() called with mem not initialized\n"); 1516 1517 if (highmem) { 1518 /* Carve out storage for the TCE table. */ 1519 addr = ALIGN_DOWN(alloc_top_high - size, align); 1520 if (addr <= alloc_bottom) 1521 return 0; 1522 /* Will we bump into the RMO ? If yes, check out that we 1523 * didn't overlap existing allocations there, if we did, 1524 * we are dead, we must be the first in town ! 1525 */ 1526 if (addr < rmo_top) { 1527 /* Good, we are first */ 1528 if (alloc_top == rmo_top) 1529 alloc_top = rmo_top = addr; 1530 else 1531 return 0; 1532 } 1533 alloc_top_high = addr; 1534 goto bail; 1535 } 1536 1537 base = ALIGN_DOWN(alloc_top - size, align); 1538 for (; base > alloc_bottom; 1539 base = ALIGN_DOWN(base - 0x100000, align)) { 1540 prom_debug(" trying: 0x%lx\n\r", base); 1541 addr = (unsigned long)prom_claim(base, size, 0); 1542 if (addr != PROM_ERROR && addr != 0) 1543 break; 1544 addr = 0; 1545 } 1546 if (addr == 0) 1547 return 0; 1548 alloc_top = addr; 1549 1550 bail: 1551 prom_debug(" -> %lx\n", addr); 1552 prom_debug(" alloc_bottom : %lx\n", alloc_bottom); 1553 prom_debug(" alloc_top : %lx\n", alloc_top); 1554 prom_debug(" alloc_top_hi : %lx\n", alloc_top_high); 1555 prom_debug(" rmo_top : %lx\n", rmo_top); 1556 prom_debug(" ram_top : %lx\n", ram_top); 1557 1558 return addr; 1559 } 1560 1561 /* 1562 * Parse a "reg" cell 1563 */ 1564 static unsigned long __init prom_next_cell(int s, cell_t **cellp) 1565 { 1566 cell_t *p = *cellp; 1567 unsigned long r = 0; 1568 1569 /* Ignore more than 2 cells */ 1570 while (s > sizeof(unsigned long) / 4) { 1571 p++; 1572 s--; 1573 } 1574 r = be32_to_cpu(*p++); 1575 #ifdef CONFIG_PPC64 1576 if (s > 1) { 1577 r <<= 32; 1578 r |= be32_to_cpu(*(p++)); 1579 } 1580 #endif 1581 *cellp = p; 1582 return r; 1583 } 1584 1585 /* 1586 * Very dumb function for adding to the memory reserve list, but 1587 * we don't need anything smarter at this point 1588 * 1589 * XXX Eventually check for collisions. They should NEVER happen. 1590 * If problems seem to show up, it would be a good start to track 1591 * them down. 1592 */ 1593 static void __init reserve_mem(u64 base, u64 size) 1594 { 1595 u64 top = base + size; 1596 unsigned long cnt = mem_reserve_cnt; 1597 1598 if (size == 0) 1599 return; 1600 1601 /* We need to always keep one empty entry so that we 1602 * have our terminator with "size" set to 0 since we are 1603 * dumb and just copy this entire array to the boot params 1604 */ 1605 base = ALIGN_DOWN(base, PAGE_SIZE); 1606 top = ALIGN(top, PAGE_SIZE); 1607 size = top - base; 1608 1609 if (cnt >= (MEM_RESERVE_MAP_SIZE - 1)) 1610 prom_panic("Memory reserve map exhausted !\n"); 1611 mem_reserve_map[cnt].base = cpu_to_be64(base); 1612 mem_reserve_map[cnt].size = cpu_to_be64(size); 1613 mem_reserve_cnt = cnt + 1; 1614 } 1615 1616 /* 1617 * Initialize memory allocation mechanism, parse "memory" nodes and 1618 * obtain that way the top of memory and RMO to setup out local allocator 1619 */ 1620 static void __init prom_init_mem(void) 1621 { 1622 phandle node; 1623 char type[64]; 1624 unsigned int plen; 1625 cell_t *p, *endp; 1626 __be32 val; 1627 u32 rac, rsc; 1628 1629 /* 1630 * We iterate the memory nodes to find 1631 * 1) top of RMO (first node) 1632 * 2) top of memory 1633 */ 1634 val = cpu_to_be32(2); 1635 prom_getprop(prom.root, "#address-cells", &val, sizeof(val)); 1636 rac = be32_to_cpu(val); 1637 val = cpu_to_be32(1); 1638 prom_getprop(prom.root, "#size-cells", &val, sizeof(rsc)); 1639 rsc = be32_to_cpu(val); 1640 prom_debug("root_addr_cells: %x\n", rac); 1641 prom_debug("root_size_cells: %x\n", rsc); 1642 1643 prom_debug("scanning memory:\n"); 1644 1645 for (node = 0; prom_next_node(&node); ) { 1646 type[0] = 0; 1647 prom_getprop(node, "device_type", type, sizeof(type)); 1648 1649 if (type[0] == 0) { 1650 /* 1651 * CHRP Longtrail machines have no device_type 1652 * on the memory node, so check the name instead... 1653 */ 1654 prom_getprop(node, "name", type, sizeof(type)); 1655 } 1656 if (prom_strcmp(type, "memory")) 1657 continue; 1658 1659 plen = prom_getprop(node, "reg", regbuf, sizeof(regbuf)); 1660 if (plen > sizeof(regbuf)) { 1661 prom_printf("memory node too large for buffer !\n"); 1662 plen = sizeof(regbuf); 1663 } 1664 p = regbuf; 1665 endp = p + (plen / sizeof(cell_t)); 1666 1667 #ifdef DEBUG_PROM 1668 memset(prom_scratch, 0, sizeof(prom_scratch)); 1669 call_prom("package-to-path", 3, 1, node, prom_scratch, 1670 sizeof(prom_scratch) - 1); 1671 prom_debug(" node %s :\n", prom_scratch); 1672 #endif /* DEBUG_PROM */ 1673 1674 while ((endp - p) >= (rac + rsc)) { 1675 unsigned long base, size; 1676 1677 base = prom_next_cell(rac, &p); 1678 size = prom_next_cell(rsc, &p); 1679 1680 if (size == 0) 1681 continue; 1682 prom_debug(" %lx %lx\n", base, size); 1683 if (base == 0 && (of_platform & PLATFORM_LPAR)) 1684 rmo_top = size; 1685 if ((base + size) > ram_top) 1686 ram_top = base + size; 1687 } 1688 } 1689 1690 alloc_bottom = PAGE_ALIGN((unsigned long)&_end + 0x4000); 1691 1692 /* 1693 * If prom_memory_limit is set we reduce the upper limits *except* for 1694 * alloc_top_high. This must be the real top of RAM so we can put 1695 * TCE's up there. 1696 */ 1697 1698 alloc_top_high = ram_top; 1699 1700 if (prom_memory_limit) { 1701 if (prom_memory_limit <= alloc_bottom) { 1702 prom_printf("Ignoring mem=%lx <= alloc_bottom.\n", 1703 prom_memory_limit); 1704 prom_memory_limit = 0; 1705 } else if (prom_memory_limit >= ram_top) { 1706 prom_printf("Ignoring mem=%lx >= ram_top.\n", 1707 prom_memory_limit); 1708 prom_memory_limit = 0; 1709 } else { 1710 ram_top = prom_memory_limit; 1711 rmo_top = min(rmo_top, prom_memory_limit); 1712 } 1713 } 1714 1715 /* 1716 * Setup our top alloc point, that is top of RMO or top of 1717 * segment 0 when running non-LPAR. 1718 * Some RS64 machines have buggy firmware where claims up at 1719 * 1GB fail. Cap at 768MB as a workaround. 1720 * Since 768MB is plenty of room, and we need to cap to something 1721 * reasonable on 32-bit, cap at 768MB on all machines. 1722 */ 1723 if (!rmo_top) 1724 rmo_top = ram_top; 1725 rmo_top = min(0x30000000ul, rmo_top); 1726 alloc_top = rmo_top; 1727 alloc_top_high = ram_top; 1728 1729 /* 1730 * Check if we have an initrd after the kernel but still inside 1731 * the RMO. If we do move our bottom point to after it. 1732 */ 1733 if (prom_initrd_start && 1734 prom_initrd_start < rmo_top && 1735 prom_initrd_end > alloc_bottom) 1736 alloc_bottom = PAGE_ALIGN(prom_initrd_end); 1737 1738 prom_printf("memory layout at init:\n"); 1739 prom_printf(" memory_limit : %lx (16 MB aligned)\n", 1740 prom_memory_limit); 1741 prom_printf(" alloc_bottom : %lx\n", alloc_bottom); 1742 prom_printf(" alloc_top : %lx\n", alloc_top); 1743 prom_printf(" alloc_top_hi : %lx\n", alloc_top_high); 1744 prom_printf(" rmo_top : %lx\n", rmo_top); 1745 prom_printf(" ram_top : %lx\n", ram_top); 1746 } 1747 1748 static void __init prom_close_stdin(void) 1749 { 1750 __be32 val; 1751 ihandle stdin; 1752 1753 if (prom_getprop(prom.chosen, "stdin", &val, sizeof(val)) > 0) { 1754 stdin = be32_to_cpu(val); 1755 call_prom("close", 1, 0, stdin); 1756 } 1757 } 1758 1759 #ifdef CONFIG_PPC_SVM 1760 static int prom_rtas_hcall(uint64_t args) 1761 { 1762 register uint64_t arg1 asm("r3") = H_RTAS; 1763 register uint64_t arg2 asm("r4") = args; 1764 1765 asm volatile("sc 1\n" : "=r" (arg1) : 1766 "r" (arg1), 1767 "r" (arg2) :); 1768 return arg1; 1769 } 1770 1771 static struct rtas_args __prombss os_term_args; 1772 1773 static void __init prom_rtas_os_term(char *str) 1774 { 1775 phandle rtas_node; 1776 __be32 val; 1777 u32 token; 1778 1779 prom_debug("%s: start...\n", __func__); 1780 rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas")); 1781 prom_debug("rtas_node: %x\n", rtas_node); 1782 if (!PHANDLE_VALID(rtas_node)) 1783 return; 1784 1785 val = 0; 1786 prom_getprop(rtas_node, "ibm,os-term", &val, sizeof(val)); 1787 token = be32_to_cpu(val); 1788 prom_debug("ibm,os-term: %x\n", token); 1789 if (token == 0) 1790 prom_panic("Could not get token for ibm,os-term\n"); 1791 os_term_args.token = cpu_to_be32(token); 1792 os_term_args.nargs = cpu_to_be32(1); 1793 os_term_args.nret = cpu_to_be32(1); 1794 os_term_args.args[0] = cpu_to_be32(__pa(str)); 1795 prom_rtas_hcall((uint64_t)&os_term_args); 1796 } 1797 #endif /* CONFIG_PPC_SVM */ 1798 1799 /* 1800 * Allocate room for and instantiate RTAS 1801 */ 1802 static void __init prom_instantiate_rtas(void) 1803 { 1804 phandle rtas_node; 1805 ihandle rtas_inst; 1806 u32 base, entry = 0; 1807 __be32 val; 1808 u32 size = 0; 1809 1810 prom_debug("prom_instantiate_rtas: start...\n"); 1811 1812 rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas")); 1813 prom_debug("rtas_node: %x\n", rtas_node); 1814 if (!PHANDLE_VALID(rtas_node)) 1815 return; 1816 1817 val = 0; 1818 prom_getprop(rtas_node, "rtas-size", &val, sizeof(size)); 1819 size = be32_to_cpu(val); 1820 if (size == 0) 1821 return; 1822 1823 base = alloc_down(size, PAGE_SIZE, 0); 1824 if (base == 0) 1825 prom_panic("Could not allocate memory for RTAS\n"); 1826 1827 rtas_inst = call_prom("open", 1, 1, ADDR("/rtas")); 1828 if (!IHANDLE_VALID(rtas_inst)) { 1829 prom_printf("opening rtas package failed (%x)\n", rtas_inst); 1830 return; 1831 } 1832 1833 prom_printf("instantiating rtas at 0x%x...", base); 1834 1835 if (call_prom_ret("call-method", 3, 2, &entry, 1836 ADDR("instantiate-rtas"), 1837 rtas_inst, base) != 0 1838 || entry == 0) { 1839 prom_printf(" failed\n"); 1840 return; 1841 } 1842 prom_printf(" done\n"); 1843 1844 reserve_mem(base, size); 1845 1846 val = cpu_to_be32(base); 1847 prom_setprop(rtas_node, "/rtas", "linux,rtas-base", 1848 &val, sizeof(val)); 1849 val = cpu_to_be32(entry); 1850 prom_setprop(rtas_node, "/rtas", "linux,rtas-entry", 1851 &val, sizeof(val)); 1852 1853 /* Check if it supports "query-cpu-stopped-state" */ 1854 if (prom_getprop(rtas_node, "query-cpu-stopped-state", 1855 &val, sizeof(val)) != PROM_ERROR) 1856 rtas_has_query_cpu_stopped = true; 1857 1858 prom_debug("rtas base = 0x%x\n", base); 1859 prom_debug("rtas entry = 0x%x\n", entry); 1860 prom_debug("rtas size = 0x%x\n", size); 1861 1862 prom_debug("prom_instantiate_rtas: end...\n"); 1863 } 1864 1865 #ifdef CONFIG_PPC64 1866 /* 1867 * Allocate room for and instantiate Stored Measurement Log (SML) 1868 */ 1869 static void __init prom_instantiate_sml(void) 1870 { 1871 phandle ibmvtpm_node; 1872 ihandle ibmvtpm_inst; 1873 u32 entry = 0, size = 0, succ = 0; 1874 u64 base; 1875 __be32 val; 1876 1877 prom_debug("prom_instantiate_sml: start...\n"); 1878 1879 ibmvtpm_node = call_prom("finddevice", 1, 1, ADDR("/vdevice/vtpm")); 1880 prom_debug("ibmvtpm_node: %x\n", ibmvtpm_node); 1881 if (!PHANDLE_VALID(ibmvtpm_node)) 1882 return; 1883 1884 ibmvtpm_inst = call_prom("open", 1, 1, ADDR("/vdevice/vtpm")); 1885 if (!IHANDLE_VALID(ibmvtpm_inst)) { 1886 prom_printf("opening vtpm package failed (%x)\n", ibmvtpm_inst); 1887 return; 1888 } 1889 1890 if (prom_getprop(ibmvtpm_node, "ibm,sml-efi-reformat-supported", 1891 &val, sizeof(val)) != PROM_ERROR) { 1892 if (call_prom_ret("call-method", 2, 2, &succ, 1893 ADDR("reformat-sml-to-efi-alignment"), 1894 ibmvtpm_inst) != 0 || succ == 0) { 1895 prom_printf("Reformat SML to EFI alignment failed\n"); 1896 return; 1897 } 1898 1899 if (call_prom_ret("call-method", 2, 2, &size, 1900 ADDR("sml-get-allocated-size"), 1901 ibmvtpm_inst) != 0 || size == 0) { 1902 prom_printf("SML get allocated size failed\n"); 1903 return; 1904 } 1905 } else { 1906 if (call_prom_ret("call-method", 2, 2, &size, 1907 ADDR("sml-get-handover-size"), 1908 ibmvtpm_inst) != 0 || size == 0) { 1909 prom_printf("SML get handover size failed\n"); 1910 return; 1911 } 1912 } 1913 1914 base = alloc_down(size, PAGE_SIZE, 0); 1915 if (base == 0) 1916 prom_panic("Could not allocate memory for sml\n"); 1917 1918 prom_printf("instantiating sml at 0x%llx...", base); 1919 1920 memset((void *)base, 0, size); 1921 1922 if (call_prom_ret("call-method", 4, 2, &entry, 1923 ADDR("sml-handover"), 1924 ibmvtpm_inst, size, base) != 0 || entry == 0) { 1925 prom_printf("SML handover failed\n"); 1926 return; 1927 } 1928 prom_printf(" done\n"); 1929 1930 reserve_mem(base, size); 1931 1932 prom_setprop(ibmvtpm_node, "/vdevice/vtpm", "linux,sml-base", 1933 &base, sizeof(base)); 1934 prom_setprop(ibmvtpm_node, "/vdevice/vtpm", "linux,sml-size", 1935 &size, sizeof(size)); 1936 1937 prom_debug("sml base = 0x%llx\n", base); 1938 prom_debug("sml size = 0x%x\n", size); 1939 1940 prom_debug("prom_instantiate_sml: end...\n"); 1941 } 1942 1943 /* 1944 * Allocate room for and initialize TCE tables 1945 */ 1946 #ifdef __BIG_ENDIAN__ 1947 static void __init prom_initialize_tce_table(void) 1948 { 1949 phandle node; 1950 ihandle phb_node; 1951 char compatible[64], type[64], model[64]; 1952 char *path = prom_scratch; 1953 u64 base, align; 1954 u32 minalign, minsize; 1955 u64 tce_entry, *tce_entryp; 1956 u64 local_alloc_top, local_alloc_bottom; 1957 u64 i; 1958 1959 if (prom_iommu_off) 1960 return; 1961 1962 prom_debug("starting prom_initialize_tce_table\n"); 1963 1964 /* Cache current top of allocs so we reserve a single block */ 1965 local_alloc_top = alloc_top_high; 1966 local_alloc_bottom = local_alloc_top; 1967 1968 /* Search all nodes looking for PHBs. */ 1969 for (node = 0; prom_next_node(&node); ) { 1970 compatible[0] = 0; 1971 type[0] = 0; 1972 model[0] = 0; 1973 prom_getprop(node, "compatible", 1974 compatible, sizeof(compatible)); 1975 prom_getprop(node, "device_type", type, sizeof(type)); 1976 prom_getprop(node, "model", model, sizeof(model)); 1977 1978 if ((type[0] == 0) || (prom_strstr(type, "pci") == NULL)) 1979 continue; 1980 1981 /* Keep the old logic intact to avoid regression. */ 1982 if (compatible[0] != 0) { 1983 if ((prom_strstr(compatible, "python") == NULL) && 1984 (prom_strstr(compatible, "Speedwagon") == NULL) && 1985 (prom_strstr(compatible, "Winnipeg") == NULL)) 1986 continue; 1987 } else if (model[0] != 0) { 1988 if ((prom_strstr(model, "ython") == NULL) && 1989 (prom_strstr(model, "peedwagon") == NULL) && 1990 (prom_strstr(model, "innipeg") == NULL)) 1991 continue; 1992 } 1993 1994 if (prom_getprop(node, "tce-table-minalign", &minalign, 1995 sizeof(minalign)) == PROM_ERROR) 1996 minalign = 0; 1997 if (prom_getprop(node, "tce-table-minsize", &minsize, 1998 sizeof(minsize)) == PROM_ERROR) 1999 minsize = 4UL << 20; 2000 2001 /* 2002 * Even though we read what OF wants, we just set the table 2003 * size to 4 MB. This is enough to map 2GB of PCI DMA space. 2004 * By doing this, we avoid the pitfalls of trying to DMA to 2005 * MMIO space and the DMA alias hole. 2006 */ 2007 minsize = 4UL << 20; 2008 2009 /* Align to the greater of the align or size */ 2010 align = max(minalign, minsize); 2011 base = alloc_down(minsize, align, 1); 2012 if (base == 0) 2013 prom_panic("ERROR, cannot find space for TCE table.\n"); 2014 if (base < local_alloc_bottom) 2015 local_alloc_bottom = base; 2016 2017 /* It seems OF doesn't null-terminate the path :-( */ 2018 memset(path, 0, sizeof(prom_scratch)); 2019 /* Call OF to setup the TCE hardware */ 2020 if (call_prom("package-to-path", 3, 1, node, 2021 path, sizeof(prom_scratch) - 1) == PROM_ERROR) { 2022 prom_printf("package-to-path failed\n"); 2023 } 2024 2025 /* Save away the TCE table attributes for later use. */ 2026 prom_setprop(node, path, "linux,tce-base", &base, sizeof(base)); 2027 prom_setprop(node, path, "linux,tce-size", &minsize, sizeof(minsize)); 2028 2029 prom_debug("TCE table: %s\n", path); 2030 prom_debug("\tnode = 0x%x\n", node); 2031 prom_debug("\tbase = 0x%llx\n", base); 2032 prom_debug("\tsize = 0x%x\n", minsize); 2033 2034 /* Initialize the table to have a one-to-one mapping 2035 * over the allocated size. 2036 */ 2037 tce_entryp = (u64 *)base; 2038 for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) { 2039 tce_entry = (i << PAGE_SHIFT); 2040 tce_entry |= 0x3; 2041 *tce_entryp = tce_entry; 2042 } 2043 2044 prom_printf("opening PHB %s", path); 2045 phb_node = call_prom("open", 1, 1, path); 2046 if (phb_node == 0) 2047 prom_printf("... failed\n"); 2048 else 2049 prom_printf("... done\n"); 2050 2051 call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"), 2052 phb_node, -1, minsize, 2053 (u32) base, (u32) (base >> 32)); 2054 call_prom("close", 1, 0, phb_node); 2055 } 2056 2057 reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom); 2058 2059 /* These are only really needed if there is a memory limit in 2060 * effect, but we don't know so export them always. */ 2061 prom_tce_alloc_start = local_alloc_bottom; 2062 prom_tce_alloc_end = local_alloc_top; 2063 2064 /* Flag the first invalid entry */ 2065 prom_debug("ending prom_initialize_tce_table\n"); 2066 } 2067 #endif /* __BIG_ENDIAN__ */ 2068 #endif /* CONFIG_PPC64 */ 2069 2070 /* 2071 * With CHRP SMP we need to use the OF to start the other processors. 2072 * We can't wait until smp_boot_cpus (the OF is trashed by then) 2073 * so we have to put the processors into a holding pattern controlled 2074 * by the kernel (not OF) before we destroy the OF. 2075 * 2076 * This uses a chunk of low memory, puts some holding pattern 2077 * code there and sends the other processors off to there until 2078 * smp_boot_cpus tells them to do something. The holding pattern 2079 * checks that address until its cpu # is there, when it is that 2080 * cpu jumps to __secondary_start(). smp_boot_cpus() takes care 2081 * of setting those values. 2082 * 2083 * We also use physical address 0x4 here to tell when a cpu 2084 * is in its holding pattern code. 2085 * 2086 * -- Cort 2087 */ 2088 /* 2089 * We want to reference the copy of __secondary_hold_* in the 2090 * 0 - 0x100 address range 2091 */ 2092 #define LOW_ADDR(x) (((unsigned long) &(x)) & 0xff) 2093 2094 static void __init prom_hold_cpus(void) 2095 { 2096 unsigned long i; 2097 phandle node; 2098 char type[64]; 2099 unsigned long *spinloop 2100 = (void *) LOW_ADDR(__secondary_hold_spinloop); 2101 unsigned long *acknowledge 2102 = (void *) LOW_ADDR(__secondary_hold_acknowledge); 2103 unsigned long secondary_hold = LOW_ADDR(__secondary_hold); 2104 2105 /* 2106 * On pseries, if RTAS supports "query-cpu-stopped-state", 2107 * we skip this stage, the CPUs will be started by the 2108 * kernel using RTAS. 2109 */ 2110 if ((of_platform == PLATFORM_PSERIES || 2111 of_platform == PLATFORM_PSERIES_LPAR) && 2112 rtas_has_query_cpu_stopped) { 2113 prom_printf("prom_hold_cpus: skipped\n"); 2114 return; 2115 } 2116 2117 prom_debug("prom_hold_cpus: start...\n"); 2118 prom_debug(" 1) spinloop = 0x%lx\n", (unsigned long)spinloop); 2119 prom_debug(" 1) *spinloop = 0x%lx\n", *spinloop); 2120 prom_debug(" 1) acknowledge = 0x%lx\n", 2121 (unsigned long)acknowledge); 2122 prom_debug(" 1) *acknowledge = 0x%lx\n", *acknowledge); 2123 prom_debug(" 1) secondary_hold = 0x%lx\n", secondary_hold); 2124 2125 /* Set the common spinloop variable, so all of the secondary cpus 2126 * will block when they are awakened from their OF spinloop. 2127 * This must occur for both SMP and non SMP kernels, since OF will 2128 * be trashed when we move the kernel. 2129 */ 2130 *spinloop = 0; 2131 2132 /* look for cpus */ 2133 for (node = 0; prom_next_node(&node); ) { 2134 unsigned int cpu_no; 2135 __be32 reg; 2136 2137 type[0] = 0; 2138 prom_getprop(node, "device_type", type, sizeof(type)); 2139 if (prom_strcmp(type, "cpu") != 0) 2140 continue; 2141 2142 /* Skip non-configured cpus. */ 2143 if (prom_getprop(node, "status", type, sizeof(type)) > 0) 2144 if (prom_strcmp(type, "okay") != 0) 2145 continue; 2146 2147 reg = cpu_to_be32(-1); /* make sparse happy */ 2148 prom_getprop(node, "reg", ®, sizeof(reg)); 2149 cpu_no = be32_to_cpu(reg); 2150 2151 prom_debug("cpu hw idx = %u\n", cpu_no); 2152 2153 /* Init the acknowledge var which will be reset by 2154 * the secondary cpu when it awakens from its OF 2155 * spinloop. 2156 */ 2157 *acknowledge = (unsigned long)-1; 2158 2159 if (cpu_no != prom.cpu) { 2160 /* Primary Thread of non-boot cpu or any thread */ 2161 prom_printf("starting cpu hw idx %u... ", cpu_no); 2162 call_prom("start-cpu", 3, 0, node, 2163 secondary_hold, cpu_no); 2164 2165 for (i = 0; (i < 100000000) && 2166 (*acknowledge == ((unsigned long)-1)); i++ ) 2167 mb(); 2168 2169 if (*acknowledge == cpu_no) 2170 prom_printf("done\n"); 2171 else 2172 prom_printf("failed: %lx\n", *acknowledge); 2173 } 2174 #ifdef CONFIG_SMP 2175 else 2176 prom_printf("boot cpu hw idx %u\n", cpu_no); 2177 #endif /* CONFIG_SMP */ 2178 } 2179 2180 prom_debug("prom_hold_cpus: end...\n"); 2181 } 2182 2183 2184 static void __init prom_init_client_services(unsigned long pp) 2185 { 2186 /* Get a handle to the prom entry point before anything else */ 2187 prom_entry = pp; 2188 2189 /* get a handle for the stdout device */ 2190 prom.chosen = call_prom("finddevice", 1, 1, ADDR("/chosen")); 2191 if (!PHANDLE_VALID(prom.chosen)) 2192 prom_panic("cannot find chosen"); /* msg won't be printed :( */ 2193 2194 /* get device tree root */ 2195 prom.root = call_prom("finddevice", 1, 1, ADDR("/")); 2196 if (!PHANDLE_VALID(prom.root)) 2197 prom_panic("cannot find device tree root"); /* msg won't be printed :( */ 2198 2199 prom.mmumap = 0; 2200 } 2201 2202 #ifdef CONFIG_PPC32 2203 /* 2204 * For really old powermacs, we need to map things we claim. 2205 * For that, we need the ihandle of the mmu. 2206 * Also, on the longtrail, we need to work around other bugs. 2207 */ 2208 static void __init prom_find_mmu(void) 2209 { 2210 phandle oprom; 2211 char version[64]; 2212 2213 oprom = call_prom("finddevice", 1, 1, ADDR("/openprom")); 2214 if (!PHANDLE_VALID(oprom)) 2215 return; 2216 if (prom_getprop(oprom, "model", version, sizeof(version)) <= 0) 2217 return; 2218 version[sizeof(version) - 1] = 0; 2219 /* XXX might need to add other versions here */ 2220 if (prom_strcmp(version, "Open Firmware, 1.0.5") == 0) 2221 of_workarounds = OF_WA_CLAIM; 2222 else if (prom_strncmp(version, "FirmWorks,3.", 12) == 0) { 2223 of_workarounds = OF_WA_CLAIM | OF_WA_LONGTRAIL; 2224 call_prom("interpret", 1, 1, "dev /memory 0 to allow-reclaim"); 2225 } else 2226 return; 2227 prom.memory = call_prom("open", 1, 1, ADDR("/memory")); 2228 prom_getprop(prom.chosen, "mmu", &prom.mmumap, 2229 sizeof(prom.mmumap)); 2230 prom.mmumap = be32_to_cpu(prom.mmumap); 2231 if (!IHANDLE_VALID(prom.memory) || !IHANDLE_VALID(prom.mmumap)) 2232 of_workarounds &= ~OF_WA_CLAIM; /* hmmm */ 2233 } 2234 #else 2235 #define prom_find_mmu() 2236 #endif 2237 2238 static void __init prom_init_stdout(void) 2239 { 2240 char *path = of_stdout_device; 2241 char type[16]; 2242 phandle stdout_node; 2243 __be32 val; 2244 2245 if (prom_getprop(prom.chosen, "stdout", &val, sizeof(val)) <= 0) 2246 prom_panic("cannot find stdout"); 2247 2248 prom.stdout = be32_to_cpu(val); 2249 2250 /* Get the full OF pathname of the stdout device */ 2251 memset(path, 0, 256); 2252 call_prom("instance-to-path", 3, 1, prom.stdout, path, 255); 2253 prom_printf("OF stdout device is: %s\n", of_stdout_device); 2254 prom_setprop(prom.chosen, "/chosen", "linux,stdout-path", 2255 path, prom_strlen(path) + 1); 2256 2257 /* instance-to-package fails on PA-Semi */ 2258 stdout_node = call_prom("instance-to-package", 1, 1, prom.stdout); 2259 if (stdout_node != PROM_ERROR) { 2260 val = cpu_to_be32(stdout_node); 2261 2262 /* If it's a display, note it */ 2263 memset(type, 0, sizeof(type)); 2264 prom_getprop(stdout_node, "device_type", type, sizeof(type)); 2265 if (prom_strcmp(type, "display") == 0) 2266 prom_setprop(stdout_node, path, "linux,boot-display", NULL, 0); 2267 } 2268 } 2269 2270 static int __init prom_find_machine_type(void) 2271 { 2272 char compat[256]; 2273 int len, i = 0; 2274 #ifdef CONFIG_PPC64 2275 phandle rtas; 2276 int x; 2277 #endif 2278 2279 /* Look for a PowerMac or a Cell */ 2280 len = prom_getprop(prom.root, "compatible", 2281 compat, sizeof(compat)-1); 2282 if (len > 0) { 2283 compat[len] = 0; 2284 while (i < len) { 2285 char *p = &compat[i]; 2286 int sl = prom_strlen(p); 2287 if (sl == 0) 2288 break; 2289 if (prom_strstr(p, "Power Macintosh") || 2290 prom_strstr(p, "MacRISC")) 2291 return PLATFORM_POWERMAC; 2292 #ifdef CONFIG_PPC64 2293 /* We must make sure we don't detect the IBM Cell 2294 * blades as pSeries due to some firmware issues, 2295 * so we do it here. 2296 */ 2297 if (prom_strstr(p, "IBM,CBEA") || 2298 prom_strstr(p, "IBM,CPBW-1.0")) 2299 return PLATFORM_GENERIC; 2300 #endif /* CONFIG_PPC64 */ 2301 i += sl + 1; 2302 } 2303 } 2304 #ifdef CONFIG_PPC64 2305 /* Try to figure out if it's an IBM pSeries or any other 2306 * PAPR compliant platform. We assume it is if : 2307 * - /device_type is "chrp" (please, do NOT use that for future 2308 * non-IBM designs ! 2309 * - it has /rtas 2310 */ 2311 len = prom_getprop(prom.root, "device_type", 2312 compat, sizeof(compat)-1); 2313 if (len <= 0) 2314 return PLATFORM_GENERIC; 2315 if (prom_strcmp(compat, "chrp")) 2316 return PLATFORM_GENERIC; 2317 2318 /* Default to pSeries. We need to know if we are running LPAR */ 2319 rtas = call_prom("finddevice", 1, 1, ADDR("/rtas")); 2320 if (!PHANDLE_VALID(rtas)) 2321 return PLATFORM_GENERIC; 2322 x = prom_getproplen(rtas, "ibm,hypertas-functions"); 2323 if (x != PROM_ERROR) { 2324 prom_debug("Hypertas detected, assuming LPAR !\n"); 2325 return PLATFORM_PSERIES_LPAR; 2326 } 2327 return PLATFORM_PSERIES; 2328 #else 2329 return PLATFORM_GENERIC; 2330 #endif 2331 } 2332 2333 static int __init prom_set_color(ihandle ih, int i, int r, int g, int b) 2334 { 2335 return call_prom("call-method", 6, 1, ADDR("color!"), ih, i, b, g, r); 2336 } 2337 2338 /* 2339 * If we have a display that we don't know how to drive, 2340 * we will want to try to execute OF's open method for it 2341 * later. However, OF will probably fall over if we do that 2342 * we've taken over the MMU. 2343 * So we check whether we will need to open the display, 2344 * and if so, open it now. 2345 */ 2346 static void __init prom_check_displays(void) 2347 { 2348 char type[16], *path; 2349 phandle node; 2350 ihandle ih; 2351 int i; 2352 2353 static const unsigned char default_colors[] __initconst = { 2354 0x00, 0x00, 0x00, 2355 0x00, 0x00, 0xaa, 2356 0x00, 0xaa, 0x00, 2357 0x00, 0xaa, 0xaa, 2358 0xaa, 0x00, 0x00, 2359 0xaa, 0x00, 0xaa, 2360 0xaa, 0xaa, 0x00, 2361 0xaa, 0xaa, 0xaa, 2362 0x55, 0x55, 0x55, 2363 0x55, 0x55, 0xff, 2364 0x55, 0xff, 0x55, 2365 0x55, 0xff, 0xff, 2366 0xff, 0x55, 0x55, 2367 0xff, 0x55, 0xff, 2368 0xff, 0xff, 0x55, 2369 0xff, 0xff, 0xff 2370 }; 2371 const unsigned char *clut; 2372 2373 prom_debug("Looking for displays\n"); 2374 for (node = 0; prom_next_node(&node); ) { 2375 memset(type, 0, sizeof(type)); 2376 prom_getprop(node, "device_type", type, sizeof(type)); 2377 if (prom_strcmp(type, "display") != 0) 2378 continue; 2379 2380 /* It seems OF doesn't null-terminate the path :-( */ 2381 path = prom_scratch; 2382 memset(path, 0, sizeof(prom_scratch)); 2383 2384 /* 2385 * leave some room at the end of the path for appending extra 2386 * arguments 2387 */ 2388 if (call_prom("package-to-path", 3, 1, node, path, 2389 sizeof(prom_scratch) - 10) == PROM_ERROR) 2390 continue; 2391 prom_printf("found display : %s, opening... ", path); 2392 2393 ih = call_prom("open", 1, 1, path); 2394 if (ih == 0) { 2395 prom_printf("failed\n"); 2396 continue; 2397 } 2398 2399 /* Success */ 2400 prom_printf("done\n"); 2401 prom_setprop(node, path, "linux,opened", NULL, 0); 2402 2403 /* Setup a usable color table when the appropriate 2404 * method is available. Should update this to set-colors */ 2405 clut = default_colors; 2406 for (i = 0; i < 16; i++, clut += 3) 2407 if (prom_set_color(ih, i, clut[0], clut[1], 2408 clut[2]) != 0) 2409 break; 2410 2411 #ifdef CONFIG_LOGO_LINUX_CLUT224 2412 clut = PTRRELOC(logo_linux_clut224.clut); 2413 for (i = 0; i < logo_linux_clut224.clutsize; i++, clut += 3) 2414 if (prom_set_color(ih, i + 32, clut[0], clut[1], 2415 clut[2]) != 0) 2416 break; 2417 #endif /* CONFIG_LOGO_LINUX_CLUT224 */ 2418 2419 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX 2420 if (prom_getprop(node, "linux,boot-display", NULL, 0) != 2421 PROM_ERROR) { 2422 u32 width, height, pitch, addr; 2423 2424 prom_printf("Setting btext !\n"); 2425 2426 if (prom_getprop(node, "width", &width, 4) == PROM_ERROR) 2427 return; 2428 2429 if (prom_getprop(node, "height", &height, 4) == PROM_ERROR) 2430 return; 2431 2432 if (prom_getprop(node, "linebytes", &pitch, 4) == PROM_ERROR) 2433 return; 2434 2435 if (prom_getprop(node, "address", &addr, 4) == PROM_ERROR) 2436 return; 2437 2438 prom_printf("W=%d H=%d LB=%d addr=0x%x\n", 2439 width, height, pitch, addr); 2440 btext_setup_display(width, height, 8, pitch, addr); 2441 btext_prepare_BAT(); 2442 } 2443 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ 2444 } 2445 } 2446 2447 2448 /* Return (relocated) pointer to this much memory: moves initrd if reqd. */ 2449 static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end, 2450 unsigned long needed, unsigned long align) 2451 { 2452 void *ret; 2453 2454 *mem_start = ALIGN(*mem_start, align); 2455 while ((*mem_start + needed) > *mem_end) { 2456 unsigned long room, chunk; 2457 2458 prom_debug("Chunk exhausted, claiming more at %lx...\n", 2459 alloc_bottom); 2460 room = alloc_top - alloc_bottom; 2461 if (room > DEVTREE_CHUNK_SIZE) 2462 room = DEVTREE_CHUNK_SIZE; 2463 if (room < PAGE_SIZE) 2464 prom_panic("No memory for flatten_device_tree " 2465 "(no room)\n"); 2466 chunk = alloc_up(room, 0); 2467 if (chunk == 0) 2468 prom_panic("No memory for flatten_device_tree " 2469 "(claim failed)\n"); 2470 *mem_end = chunk + room; 2471 } 2472 2473 ret = (void *)*mem_start; 2474 *mem_start += needed; 2475 2476 return ret; 2477 } 2478 2479 #define dt_push_token(token, mem_start, mem_end) do { \ 2480 void *room = make_room(mem_start, mem_end, 4, 4); \ 2481 *(__be32 *)room = cpu_to_be32(token); \ 2482 } while(0) 2483 2484 static unsigned long __init dt_find_string(char *str) 2485 { 2486 char *s, *os; 2487 2488 s = os = (char *)dt_string_start; 2489 s += 4; 2490 while (s < (char *)dt_string_end) { 2491 if (prom_strcmp(s, str) == 0) 2492 return s - os; 2493 s += prom_strlen(s) + 1; 2494 } 2495 return 0; 2496 } 2497 2498 /* 2499 * The Open Firmware 1275 specification states properties must be 31 bytes or 2500 * less, however not all firmwares obey this. Make it 64 bytes to be safe. 2501 */ 2502 #define MAX_PROPERTY_NAME 64 2503 2504 static void __init scan_dt_build_strings(phandle node, 2505 unsigned long *mem_start, 2506 unsigned long *mem_end) 2507 { 2508 char *prev_name, *namep, *sstart; 2509 unsigned long soff; 2510 phandle child; 2511 2512 sstart = (char *)dt_string_start; 2513 2514 /* get and store all property names */ 2515 prev_name = ""; 2516 for (;;) { 2517 /* 64 is max len of name including nul. */ 2518 namep = make_room(mem_start, mem_end, MAX_PROPERTY_NAME, 1); 2519 if (call_prom("nextprop", 3, 1, node, prev_name, namep) != 1) { 2520 /* No more nodes: unwind alloc */ 2521 *mem_start = (unsigned long)namep; 2522 break; 2523 } 2524 2525 /* skip "name" */ 2526 if (prom_strcmp(namep, "name") == 0) { 2527 *mem_start = (unsigned long)namep; 2528 prev_name = "name"; 2529 continue; 2530 } 2531 /* get/create string entry */ 2532 soff = dt_find_string(namep); 2533 if (soff != 0) { 2534 *mem_start = (unsigned long)namep; 2535 namep = sstart + soff; 2536 } else { 2537 /* Trim off some if we can */ 2538 *mem_start = (unsigned long)namep + prom_strlen(namep) + 1; 2539 dt_string_end = *mem_start; 2540 } 2541 prev_name = namep; 2542 } 2543 2544 /* do all our children */ 2545 child = call_prom("child", 1, 1, node); 2546 while (child != 0) { 2547 scan_dt_build_strings(child, mem_start, mem_end); 2548 child = call_prom("peer", 1, 1, child); 2549 } 2550 } 2551 2552 static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start, 2553 unsigned long *mem_end) 2554 { 2555 phandle child; 2556 char *namep, *prev_name, *sstart, *p, *ep, *lp, *path; 2557 unsigned long soff; 2558 unsigned char *valp; 2559 static char pname[MAX_PROPERTY_NAME] __prombss; 2560 int l, room, has_phandle = 0; 2561 2562 dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end); 2563 2564 /* get the node's full name */ 2565 namep = (char *)*mem_start; 2566 room = *mem_end - *mem_start; 2567 if (room > 255) 2568 room = 255; 2569 l = call_prom("package-to-path", 3, 1, node, namep, room); 2570 if (l >= 0) { 2571 /* Didn't fit? Get more room. */ 2572 if (l >= room) { 2573 if (l >= *mem_end - *mem_start) 2574 namep = make_room(mem_start, mem_end, l+1, 1); 2575 call_prom("package-to-path", 3, 1, node, namep, l); 2576 } 2577 namep[l] = '\0'; 2578 2579 /* Fixup an Apple bug where they have bogus \0 chars in the 2580 * middle of the path in some properties, and extract 2581 * the unit name (everything after the last '/'). 2582 */ 2583 for (lp = p = namep, ep = namep + l; p < ep; p++) { 2584 if (*p == '/') 2585 lp = namep; 2586 else if (*p != 0) 2587 *lp++ = *p; 2588 } 2589 *lp = 0; 2590 *mem_start = ALIGN((unsigned long)lp + 1, 4); 2591 } 2592 2593 /* get it again for debugging */ 2594 path = prom_scratch; 2595 memset(path, 0, sizeof(prom_scratch)); 2596 call_prom("package-to-path", 3, 1, node, path, sizeof(prom_scratch) - 1); 2597 2598 /* get and store all properties */ 2599 prev_name = ""; 2600 sstart = (char *)dt_string_start; 2601 for (;;) { 2602 if (call_prom("nextprop", 3, 1, node, prev_name, 2603 pname) != 1) 2604 break; 2605 2606 /* skip "name" */ 2607 if (prom_strcmp(pname, "name") == 0) { 2608 prev_name = "name"; 2609 continue; 2610 } 2611 2612 /* find string offset */ 2613 soff = dt_find_string(pname); 2614 if (soff == 0) { 2615 prom_printf("WARNING: Can't find string index for" 2616 " <%s>, node %s\n", pname, path); 2617 break; 2618 } 2619 prev_name = sstart + soff; 2620 2621 /* get length */ 2622 l = call_prom("getproplen", 2, 1, node, pname); 2623 2624 /* sanity checks */ 2625 if (l == PROM_ERROR) 2626 continue; 2627 2628 /* push property head */ 2629 dt_push_token(OF_DT_PROP, mem_start, mem_end); 2630 dt_push_token(l, mem_start, mem_end); 2631 dt_push_token(soff, mem_start, mem_end); 2632 2633 /* push property content */ 2634 valp = make_room(mem_start, mem_end, l, 4); 2635 call_prom("getprop", 4, 1, node, pname, valp, l); 2636 *mem_start = ALIGN(*mem_start, 4); 2637 2638 if (!prom_strcmp(pname, "phandle")) 2639 has_phandle = 1; 2640 } 2641 2642 /* Add a "phandle" property if none already exist */ 2643 if (!has_phandle) { 2644 soff = dt_find_string("phandle"); 2645 if (soff == 0) 2646 prom_printf("WARNING: Can't find string index for <phandle> node %s\n", path); 2647 else { 2648 dt_push_token(OF_DT_PROP, mem_start, mem_end); 2649 dt_push_token(4, mem_start, mem_end); 2650 dt_push_token(soff, mem_start, mem_end); 2651 valp = make_room(mem_start, mem_end, 4, 4); 2652 *(__be32 *)valp = cpu_to_be32(node); 2653 } 2654 } 2655 2656 /* do all our children */ 2657 child = call_prom("child", 1, 1, node); 2658 while (child != 0) { 2659 scan_dt_build_struct(child, mem_start, mem_end); 2660 child = call_prom("peer", 1, 1, child); 2661 } 2662 2663 dt_push_token(OF_DT_END_NODE, mem_start, mem_end); 2664 } 2665 2666 static void __init flatten_device_tree(void) 2667 { 2668 phandle root; 2669 unsigned long mem_start, mem_end, room; 2670 struct boot_param_header *hdr; 2671 char *namep; 2672 u64 *rsvmap; 2673 2674 /* 2675 * Check how much room we have between alloc top & bottom (+/- a 2676 * few pages), crop to 1MB, as this is our "chunk" size 2677 */ 2678 room = alloc_top - alloc_bottom - 0x4000; 2679 if (room > DEVTREE_CHUNK_SIZE) 2680 room = DEVTREE_CHUNK_SIZE; 2681 prom_debug("starting device tree allocs at %lx\n", alloc_bottom); 2682 2683 /* Now try to claim that */ 2684 mem_start = (unsigned long)alloc_up(room, PAGE_SIZE); 2685 if (mem_start == 0) 2686 prom_panic("Can't allocate initial device-tree chunk\n"); 2687 mem_end = mem_start + room; 2688 2689 /* Get root of tree */ 2690 root = call_prom("peer", 1, 1, (phandle)0); 2691 if (root == (phandle)0) 2692 prom_panic ("couldn't get device tree root\n"); 2693 2694 /* Build header and make room for mem rsv map */ 2695 mem_start = ALIGN(mem_start, 4); 2696 hdr = make_room(&mem_start, &mem_end, 2697 sizeof(struct boot_param_header), 4); 2698 dt_header_start = (unsigned long)hdr; 2699 rsvmap = make_room(&mem_start, &mem_end, sizeof(mem_reserve_map), 8); 2700 2701 /* Start of strings */ 2702 mem_start = PAGE_ALIGN(mem_start); 2703 dt_string_start = mem_start; 2704 mem_start += 4; /* hole */ 2705 2706 /* Add "phandle" in there, we'll need it */ 2707 namep = make_room(&mem_start, &mem_end, 16, 1); 2708 prom_strcpy(namep, "phandle"); 2709 mem_start = (unsigned long)namep + prom_strlen(namep) + 1; 2710 2711 /* Build string array */ 2712 prom_printf("Building dt strings...\n"); 2713 scan_dt_build_strings(root, &mem_start, &mem_end); 2714 dt_string_end = mem_start; 2715 2716 /* Build structure */ 2717 mem_start = PAGE_ALIGN(mem_start); 2718 dt_struct_start = mem_start; 2719 prom_printf("Building dt structure...\n"); 2720 scan_dt_build_struct(root, &mem_start, &mem_end); 2721 dt_push_token(OF_DT_END, &mem_start, &mem_end); 2722 dt_struct_end = PAGE_ALIGN(mem_start); 2723 2724 /* Finish header */ 2725 hdr->boot_cpuid_phys = cpu_to_be32(prom.cpu); 2726 hdr->magic = cpu_to_be32(OF_DT_HEADER); 2727 hdr->totalsize = cpu_to_be32(dt_struct_end - dt_header_start); 2728 hdr->off_dt_struct = cpu_to_be32(dt_struct_start - dt_header_start); 2729 hdr->off_dt_strings = cpu_to_be32(dt_string_start - dt_header_start); 2730 hdr->dt_strings_size = cpu_to_be32(dt_string_end - dt_string_start); 2731 hdr->off_mem_rsvmap = cpu_to_be32(((unsigned long)rsvmap) - dt_header_start); 2732 hdr->version = cpu_to_be32(OF_DT_VERSION); 2733 /* Version 16 is not backward compatible */ 2734 hdr->last_comp_version = cpu_to_be32(0x10); 2735 2736 /* Copy the reserve map in */ 2737 memcpy(rsvmap, mem_reserve_map, sizeof(mem_reserve_map)); 2738 2739 #ifdef DEBUG_PROM 2740 { 2741 int i; 2742 prom_printf("reserved memory map:\n"); 2743 for (i = 0; i < mem_reserve_cnt; i++) 2744 prom_printf(" %llx - %llx\n", 2745 be64_to_cpu(mem_reserve_map[i].base), 2746 be64_to_cpu(mem_reserve_map[i].size)); 2747 } 2748 #endif 2749 /* Bump mem_reserve_cnt to cause further reservations to fail 2750 * since it's too late. 2751 */ 2752 mem_reserve_cnt = MEM_RESERVE_MAP_SIZE; 2753 2754 prom_printf("Device tree strings 0x%lx -> 0x%lx\n", 2755 dt_string_start, dt_string_end); 2756 prom_printf("Device tree struct 0x%lx -> 0x%lx\n", 2757 dt_struct_start, dt_struct_end); 2758 } 2759 2760 #ifdef CONFIG_PPC_MAPLE 2761 /* PIBS Version 1.05.0000 04/26/2005 has an incorrect /ht/isa/ranges property. 2762 * The values are bad, and it doesn't even have the right number of cells. */ 2763 static void __init fixup_device_tree_maple(void) 2764 { 2765 phandle isa; 2766 u32 rloc = 0x01002000; /* IO space; PCI device = 4 */ 2767 u32 isa_ranges[6]; 2768 char *name; 2769 2770 name = "/ht@0/isa@4"; 2771 isa = call_prom("finddevice", 1, 1, ADDR(name)); 2772 if (!PHANDLE_VALID(isa)) { 2773 name = "/ht@0/isa@6"; 2774 isa = call_prom("finddevice", 1, 1, ADDR(name)); 2775 rloc = 0x01003000; /* IO space; PCI device = 6 */ 2776 } 2777 if (!PHANDLE_VALID(isa)) 2778 return; 2779 2780 if (prom_getproplen(isa, "ranges") != 12) 2781 return; 2782 if (prom_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)) 2783 == PROM_ERROR) 2784 return; 2785 2786 if (isa_ranges[0] != 0x1 || 2787 isa_ranges[1] != 0xf4000000 || 2788 isa_ranges[2] != 0x00010000) 2789 return; 2790 2791 prom_printf("Fixing up bogus ISA range on Maple/Apache...\n"); 2792 2793 isa_ranges[0] = 0x1; 2794 isa_ranges[1] = 0x0; 2795 isa_ranges[2] = rloc; 2796 isa_ranges[3] = 0x0; 2797 isa_ranges[4] = 0x0; 2798 isa_ranges[5] = 0x00010000; 2799 prom_setprop(isa, name, "ranges", 2800 isa_ranges, sizeof(isa_ranges)); 2801 } 2802 2803 #define CPC925_MC_START 0xf8000000 2804 #define CPC925_MC_LENGTH 0x1000000 2805 /* The values for memory-controller don't have right number of cells */ 2806 static void __init fixup_device_tree_maple_memory_controller(void) 2807 { 2808 phandle mc; 2809 u32 mc_reg[4]; 2810 char *name = "/hostbridge@f8000000"; 2811 u32 ac, sc; 2812 2813 mc = call_prom("finddevice", 1, 1, ADDR(name)); 2814 if (!PHANDLE_VALID(mc)) 2815 return; 2816 2817 if (prom_getproplen(mc, "reg") != 8) 2818 return; 2819 2820 prom_getprop(prom.root, "#address-cells", &ac, sizeof(ac)); 2821 prom_getprop(prom.root, "#size-cells", &sc, sizeof(sc)); 2822 if ((ac != 2) || (sc != 2)) 2823 return; 2824 2825 if (prom_getprop(mc, "reg", mc_reg, sizeof(mc_reg)) == PROM_ERROR) 2826 return; 2827 2828 if (mc_reg[0] != CPC925_MC_START || mc_reg[1] != CPC925_MC_LENGTH) 2829 return; 2830 2831 prom_printf("Fixing up bogus hostbridge on Maple...\n"); 2832 2833 mc_reg[0] = 0x0; 2834 mc_reg[1] = CPC925_MC_START; 2835 mc_reg[2] = 0x0; 2836 mc_reg[3] = CPC925_MC_LENGTH; 2837 prom_setprop(mc, name, "reg", mc_reg, sizeof(mc_reg)); 2838 } 2839 #else 2840 #define fixup_device_tree_maple() 2841 #define fixup_device_tree_maple_memory_controller() 2842 #endif 2843 2844 #ifdef CONFIG_PPC_CHRP 2845 /* 2846 * Pegasos and BriQ lacks the "ranges" property in the isa node 2847 * Pegasos needs decimal IRQ 14/15, not hexadecimal 2848 * Pegasos has the IDE configured in legacy mode, but advertised as native 2849 */ 2850 static void __init fixup_device_tree_chrp(void) 2851 { 2852 phandle ph; 2853 u32 prop[6]; 2854 u32 rloc = 0x01006000; /* IO space; PCI device = 12 */ 2855 char *name; 2856 int rc; 2857 2858 name = "/pci@80000000/isa@c"; 2859 ph = call_prom("finddevice", 1, 1, ADDR(name)); 2860 if (!PHANDLE_VALID(ph)) { 2861 name = "/pci@ff500000/isa@6"; 2862 ph = call_prom("finddevice", 1, 1, ADDR(name)); 2863 rloc = 0x01003000; /* IO space; PCI device = 6 */ 2864 } 2865 if (PHANDLE_VALID(ph)) { 2866 rc = prom_getproplen(ph, "ranges"); 2867 if (rc == 0 || rc == PROM_ERROR) { 2868 prom_printf("Fixing up missing ISA range on Pegasos...\n"); 2869 2870 prop[0] = 0x1; 2871 prop[1] = 0x0; 2872 prop[2] = rloc; 2873 prop[3] = 0x0; 2874 prop[4] = 0x0; 2875 prop[5] = 0x00010000; 2876 prom_setprop(ph, name, "ranges", prop, sizeof(prop)); 2877 } 2878 } 2879 2880 name = "/pci@80000000/ide@C,1"; 2881 ph = call_prom("finddevice", 1, 1, ADDR(name)); 2882 if (PHANDLE_VALID(ph)) { 2883 prom_printf("Fixing up IDE interrupt on Pegasos...\n"); 2884 prop[0] = 14; 2885 prop[1] = 0x0; 2886 prom_setprop(ph, name, "interrupts", prop, 2*sizeof(u32)); 2887 prom_printf("Fixing up IDE class-code on Pegasos...\n"); 2888 rc = prom_getprop(ph, "class-code", prop, sizeof(u32)); 2889 if (rc == sizeof(u32)) { 2890 prop[0] &= ~0x5; 2891 prom_setprop(ph, name, "class-code", prop, sizeof(u32)); 2892 } 2893 } 2894 } 2895 #else 2896 #define fixup_device_tree_chrp() 2897 #endif 2898 2899 #if defined(CONFIG_PPC64) && defined(CONFIG_PPC_PMAC) 2900 static void __init fixup_device_tree_pmac(void) 2901 { 2902 phandle u3, i2c, mpic; 2903 u32 u3_rev; 2904 u32 interrupts[2]; 2905 u32 parent; 2906 2907 /* Some G5s have a missing interrupt definition, fix it up here */ 2908 u3 = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000")); 2909 if (!PHANDLE_VALID(u3)) 2910 return; 2911 i2c = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/i2c@f8001000")); 2912 if (!PHANDLE_VALID(i2c)) 2913 return; 2914 mpic = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/mpic@f8040000")); 2915 if (!PHANDLE_VALID(mpic)) 2916 return; 2917 2918 /* check if proper rev of u3 */ 2919 if (prom_getprop(u3, "device-rev", &u3_rev, sizeof(u3_rev)) 2920 == PROM_ERROR) 2921 return; 2922 if (u3_rev < 0x35 || u3_rev > 0x39) 2923 return; 2924 /* does it need fixup ? */ 2925 if (prom_getproplen(i2c, "interrupts") > 0) 2926 return; 2927 2928 prom_printf("fixing up bogus interrupts for u3 i2c...\n"); 2929 2930 /* interrupt on this revision of u3 is number 0 and level */ 2931 interrupts[0] = 0; 2932 interrupts[1] = 1; 2933 prom_setprop(i2c, "/u3@0,f8000000/i2c@f8001000", "interrupts", 2934 &interrupts, sizeof(interrupts)); 2935 parent = (u32)mpic; 2936 prom_setprop(i2c, "/u3@0,f8000000/i2c@f8001000", "interrupt-parent", 2937 &parent, sizeof(parent)); 2938 } 2939 #else 2940 #define fixup_device_tree_pmac() 2941 #endif 2942 2943 #ifdef CONFIG_PPC_EFIKA 2944 /* 2945 * The MPC5200 FEC driver requires an phy-handle property to tell it how 2946 * to talk to the phy. If the phy-handle property is missing, then this 2947 * function is called to add the appropriate nodes and link it to the 2948 * ethernet node. 2949 */ 2950 static void __init fixup_device_tree_efika_add_phy(void) 2951 { 2952 u32 node; 2953 char prop[64]; 2954 int rv; 2955 2956 /* Check if /builtin/ethernet exists - bail if it doesn't */ 2957 node = call_prom("finddevice", 1, 1, ADDR("/builtin/ethernet")); 2958 if (!PHANDLE_VALID(node)) 2959 return; 2960 2961 /* Check if the phy-handle property exists - bail if it does */ 2962 rv = prom_getprop(node, "phy-handle", prop, sizeof(prop)); 2963 if (!rv) 2964 return; 2965 2966 /* 2967 * At this point the ethernet device doesn't have a phy described. 2968 * Now we need to add the missing phy node and linkage 2969 */ 2970 2971 /* Check for an MDIO bus node - if missing then create one */ 2972 node = call_prom("finddevice", 1, 1, ADDR("/builtin/mdio")); 2973 if (!PHANDLE_VALID(node)) { 2974 prom_printf("Adding Ethernet MDIO node\n"); 2975 call_prom("interpret", 1, 1, 2976 " s\" /builtin\" find-device" 2977 " new-device" 2978 " 1 encode-int s\" #address-cells\" property" 2979 " 0 encode-int s\" #size-cells\" property" 2980 " s\" mdio\" device-name" 2981 " s\" fsl,mpc5200b-mdio\" encode-string" 2982 " s\" compatible\" property" 2983 " 0xf0003000 0x400 reg" 2984 " 0x2 encode-int" 2985 " 0x5 encode-int encode+" 2986 " 0x3 encode-int encode+" 2987 " s\" interrupts\" property" 2988 " finish-device"); 2989 }; 2990 2991 /* Check for a PHY device node - if missing then create one and 2992 * give it's phandle to the ethernet node */ 2993 node = call_prom("finddevice", 1, 1, 2994 ADDR("/builtin/mdio/ethernet-phy")); 2995 if (!PHANDLE_VALID(node)) { 2996 prom_printf("Adding Ethernet PHY node\n"); 2997 call_prom("interpret", 1, 1, 2998 " s\" /builtin/mdio\" find-device" 2999 " new-device" 3000 " s\" ethernet-phy\" device-name" 3001 " 0x10 encode-int s\" reg\" property" 3002 " my-self" 3003 " ihandle>phandle" 3004 " finish-device" 3005 " s\" /builtin/ethernet\" find-device" 3006 " encode-int" 3007 " s\" phy-handle\" property" 3008 " device-end"); 3009 } 3010 } 3011 3012 static void __init fixup_device_tree_efika(void) 3013 { 3014 int sound_irq[3] = { 2, 2, 0 }; 3015 int bcomm_irq[3*16] = { 3,0,0, 3,1,0, 3,2,0, 3,3,0, 3016 3,4,0, 3,5,0, 3,6,0, 3,7,0, 3017 3,8,0, 3,9,0, 3,10,0, 3,11,0, 3018 3,12,0, 3,13,0, 3,14,0, 3,15,0 }; 3019 u32 node; 3020 char prop[64]; 3021 int rv, len; 3022 3023 /* Check if we're really running on a EFIKA */ 3024 node = call_prom("finddevice", 1, 1, ADDR("/")); 3025 if (!PHANDLE_VALID(node)) 3026 return; 3027 3028 rv = prom_getprop(node, "model", prop, sizeof(prop)); 3029 if (rv == PROM_ERROR) 3030 return; 3031 if (prom_strcmp(prop, "EFIKA5K2")) 3032 return; 3033 3034 prom_printf("Applying EFIKA device tree fixups\n"); 3035 3036 /* Claiming to be 'chrp' is death */ 3037 node = call_prom("finddevice", 1, 1, ADDR("/")); 3038 rv = prom_getprop(node, "device_type", prop, sizeof(prop)); 3039 if (rv != PROM_ERROR && (prom_strcmp(prop, "chrp") == 0)) 3040 prom_setprop(node, "/", "device_type", "efika", sizeof("efika")); 3041 3042 /* CODEGEN,description is exposed in /proc/cpuinfo so 3043 fix that too */ 3044 rv = prom_getprop(node, "CODEGEN,description", prop, sizeof(prop)); 3045 if (rv != PROM_ERROR && (prom_strstr(prop, "CHRP"))) 3046 prom_setprop(node, "/", "CODEGEN,description", 3047 "Efika 5200B PowerPC System", 3048 sizeof("Efika 5200B PowerPC System")); 3049 3050 /* Fixup bestcomm interrupts property */ 3051 node = call_prom("finddevice", 1, 1, ADDR("/builtin/bestcomm")); 3052 if (PHANDLE_VALID(node)) { 3053 len = prom_getproplen(node, "interrupts"); 3054 if (len == 12) { 3055 prom_printf("Fixing bestcomm interrupts property\n"); 3056 prom_setprop(node, "/builtin/bestcom", "interrupts", 3057 bcomm_irq, sizeof(bcomm_irq)); 3058 } 3059 } 3060 3061 /* Fixup sound interrupts property */ 3062 node = call_prom("finddevice", 1, 1, ADDR("/builtin/sound")); 3063 if (PHANDLE_VALID(node)) { 3064 rv = prom_getprop(node, "interrupts", prop, sizeof(prop)); 3065 if (rv == PROM_ERROR) { 3066 prom_printf("Adding sound interrupts property\n"); 3067 prom_setprop(node, "/builtin/sound", "interrupts", 3068 sound_irq, sizeof(sound_irq)); 3069 } 3070 } 3071 3072 /* Make sure ethernet phy-handle property exists */ 3073 fixup_device_tree_efika_add_phy(); 3074 } 3075 #else 3076 #define fixup_device_tree_efika() 3077 #endif 3078 3079 #ifdef CONFIG_PPC_PASEMI_NEMO 3080 /* 3081 * CFE supplied on Nemo is broken in several ways, biggest 3082 * problem is that it reassigns ISA interrupts to unused mpic ints. 3083 * Add an interrupt-controller property for the io-bridge to use 3084 * and correct the ints so we can attach them to an irq_domain 3085 */ 3086 static void __init fixup_device_tree_pasemi(void) 3087 { 3088 u32 interrupts[2], parent, rval, val = 0; 3089 char *name, *pci_name; 3090 phandle iob, node; 3091 3092 /* Find the root pci node */ 3093 name = "/pxp@0,e0000000"; 3094 iob = call_prom("finddevice", 1, 1, ADDR(name)); 3095 if (!PHANDLE_VALID(iob)) 3096 return; 3097 3098 /* check if interrupt-controller node set yet */ 3099 if (prom_getproplen(iob, "interrupt-controller") !=PROM_ERROR) 3100 return; 3101 3102 prom_printf("adding interrupt-controller property for SB600...\n"); 3103 3104 prom_setprop(iob, name, "interrupt-controller", &val, 0); 3105 3106 pci_name = "/pxp@0,e0000000/pci@11"; 3107 node = call_prom("finddevice", 1, 1, ADDR(pci_name)); 3108 parent = ADDR(iob); 3109 3110 for( ; prom_next_node(&node); ) { 3111 /* scan each node for one with an interrupt */ 3112 if (!PHANDLE_VALID(node)) 3113 continue; 3114 3115 rval = prom_getproplen(node, "interrupts"); 3116 if (rval == 0 || rval == PROM_ERROR) 3117 continue; 3118 3119 prom_getprop(node, "interrupts", &interrupts, sizeof(interrupts)); 3120 if ((interrupts[0] < 212) || (interrupts[0] > 222)) 3121 continue; 3122 3123 /* found a node, update both interrupts and interrupt-parent */ 3124 if ((interrupts[0] >= 212) && (interrupts[0] <= 215)) 3125 interrupts[0] -= 203; 3126 if ((interrupts[0] >= 216) && (interrupts[0] <= 220)) 3127 interrupts[0] -= 213; 3128 if (interrupts[0] == 221) 3129 interrupts[0] = 14; 3130 if (interrupts[0] == 222) 3131 interrupts[0] = 8; 3132 3133 prom_setprop(node, pci_name, "interrupts", interrupts, 3134 sizeof(interrupts)); 3135 prom_setprop(node, pci_name, "interrupt-parent", &parent, 3136 sizeof(parent)); 3137 } 3138 3139 /* 3140 * The io-bridge has device_type set to 'io-bridge' change it to 'isa' 3141 * so that generic isa-bridge code can add the SB600 and its on-board 3142 * peripherals. 3143 */ 3144 name = "/pxp@0,e0000000/io-bridge@0"; 3145 iob = call_prom("finddevice", 1, 1, ADDR(name)); 3146 if (!PHANDLE_VALID(iob)) 3147 return; 3148 3149 /* device_type is already set, just change it. */ 3150 3151 prom_printf("Changing device_type of SB600 node...\n"); 3152 3153 prom_setprop(iob, name, "device_type", "isa", sizeof("isa")); 3154 } 3155 #else /* !CONFIG_PPC_PASEMI_NEMO */ 3156 static inline void fixup_device_tree_pasemi(void) { } 3157 #endif 3158 3159 static void __init fixup_device_tree(void) 3160 { 3161 fixup_device_tree_maple(); 3162 fixup_device_tree_maple_memory_controller(); 3163 fixup_device_tree_chrp(); 3164 fixup_device_tree_pmac(); 3165 fixup_device_tree_efika(); 3166 fixup_device_tree_pasemi(); 3167 } 3168 3169 static void __init prom_find_boot_cpu(void) 3170 { 3171 __be32 rval; 3172 ihandle prom_cpu; 3173 phandle cpu_pkg; 3174 3175 rval = 0; 3176 if (prom_getprop(prom.chosen, "cpu", &rval, sizeof(rval)) <= 0) 3177 return; 3178 prom_cpu = be32_to_cpu(rval); 3179 3180 cpu_pkg = call_prom("instance-to-package", 1, 1, prom_cpu); 3181 3182 if (!PHANDLE_VALID(cpu_pkg)) 3183 return; 3184 3185 prom_getprop(cpu_pkg, "reg", &rval, sizeof(rval)); 3186 prom.cpu = be32_to_cpu(rval); 3187 3188 prom_debug("Booting CPU hw index = %d\n", prom.cpu); 3189 } 3190 3191 static void __init prom_check_initrd(unsigned long r3, unsigned long r4) 3192 { 3193 #ifdef CONFIG_BLK_DEV_INITRD 3194 if (r3 && r4 && r4 != 0xdeadbeef) { 3195 __be64 val; 3196 3197 prom_initrd_start = is_kernel_addr(r3) ? __pa(r3) : r3; 3198 prom_initrd_end = prom_initrd_start + r4; 3199 3200 val = cpu_to_be64(prom_initrd_start); 3201 prom_setprop(prom.chosen, "/chosen", "linux,initrd-start", 3202 &val, sizeof(val)); 3203 val = cpu_to_be64(prom_initrd_end); 3204 prom_setprop(prom.chosen, "/chosen", "linux,initrd-end", 3205 &val, sizeof(val)); 3206 3207 reserve_mem(prom_initrd_start, 3208 prom_initrd_end - prom_initrd_start); 3209 3210 prom_debug("initrd_start=0x%lx\n", prom_initrd_start); 3211 prom_debug("initrd_end=0x%lx\n", prom_initrd_end); 3212 } 3213 #endif /* CONFIG_BLK_DEV_INITRD */ 3214 } 3215 3216 #ifdef CONFIG_PPC64 3217 #ifdef CONFIG_RELOCATABLE 3218 static void reloc_toc(void) 3219 { 3220 } 3221 3222 static void unreloc_toc(void) 3223 { 3224 } 3225 #else 3226 static void __reloc_toc(unsigned long offset, unsigned long nr_entries) 3227 { 3228 unsigned long i; 3229 unsigned long *toc_entry; 3230 3231 /* Get the start of the TOC by using r2 directly. */ 3232 asm volatile("addi %0,2,-0x8000" : "=b" (toc_entry)); 3233 3234 for (i = 0; i < nr_entries; i++) { 3235 *toc_entry = *toc_entry + offset; 3236 toc_entry++; 3237 } 3238 } 3239 3240 static void reloc_toc(void) 3241 { 3242 unsigned long offset = reloc_offset(); 3243 unsigned long nr_entries = 3244 (__prom_init_toc_end - __prom_init_toc_start) / sizeof(long); 3245 3246 __reloc_toc(offset, nr_entries); 3247 3248 mb(); 3249 } 3250 3251 static void unreloc_toc(void) 3252 { 3253 unsigned long offset = reloc_offset(); 3254 unsigned long nr_entries = 3255 (__prom_init_toc_end - __prom_init_toc_start) / sizeof(long); 3256 3257 mb(); 3258 3259 __reloc_toc(-offset, nr_entries); 3260 } 3261 #endif 3262 #endif 3263 3264 #ifdef CONFIG_PPC_SVM 3265 /* 3266 * Perform the Enter Secure Mode ultracall. 3267 */ 3268 static int enter_secure_mode(unsigned long kbase, unsigned long fdt) 3269 { 3270 register unsigned long r3 asm("r3") = UV_ESM; 3271 register unsigned long r4 asm("r4") = kbase; 3272 register unsigned long r5 asm("r5") = fdt; 3273 3274 asm volatile("sc 2" : "+r"(r3) : "r"(r4), "r"(r5)); 3275 3276 return r3; 3277 } 3278 3279 /* 3280 * Call the Ultravisor to transfer us to secure memory if we have an ESM blob. 3281 */ 3282 static void __init setup_secure_guest(unsigned long kbase, unsigned long fdt) 3283 { 3284 int ret; 3285 3286 if (!prom_svm_enable) 3287 return; 3288 3289 /* Switch to secure mode. */ 3290 prom_printf("Switching to secure mode.\n"); 3291 3292 /* 3293 * The ultravisor will do an integrity check of the kernel image but we 3294 * relocated it so the check will fail. Restore the original image by 3295 * relocating it back to the kernel virtual base address. 3296 */ 3297 if (IS_ENABLED(CONFIG_RELOCATABLE)) 3298 relocate(KERNELBASE); 3299 3300 ret = enter_secure_mode(kbase, fdt); 3301 3302 /* Relocate the kernel again. */ 3303 if (IS_ENABLED(CONFIG_RELOCATABLE)) 3304 relocate(kbase); 3305 3306 if (ret != U_SUCCESS) { 3307 prom_printf("Returned %d from switching to secure mode.\n", ret); 3308 prom_rtas_os_term("Switch to secure mode failed.\n"); 3309 } 3310 } 3311 #else 3312 static void __init setup_secure_guest(unsigned long kbase, unsigned long fdt) 3313 { 3314 } 3315 #endif /* CONFIG_PPC_SVM */ 3316 3317 /* 3318 * We enter here early on, when the Open Firmware prom is still 3319 * handling exceptions and the MMU hash table for us. 3320 */ 3321 3322 unsigned long __init prom_init(unsigned long r3, unsigned long r4, 3323 unsigned long pp, 3324 unsigned long r6, unsigned long r7, 3325 unsigned long kbase) 3326 { 3327 unsigned long hdr; 3328 3329 #ifdef CONFIG_PPC32 3330 unsigned long offset = reloc_offset(); 3331 reloc_got2(offset); 3332 #else 3333 reloc_toc(); 3334 #endif 3335 3336 /* 3337 * First zero the BSS 3338 */ 3339 memset(&__bss_start, 0, __bss_stop - __bss_start); 3340 3341 /* 3342 * Init interface to Open Firmware, get some node references, 3343 * like /chosen 3344 */ 3345 prom_init_client_services(pp); 3346 3347 /* 3348 * See if this OF is old enough that we need to do explicit maps 3349 * and other workarounds 3350 */ 3351 prom_find_mmu(); 3352 3353 /* 3354 * Init prom stdout device 3355 */ 3356 prom_init_stdout(); 3357 3358 prom_printf("Preparing to boot %s", linux_banner); 3359 3360 /* 3361 * Get default machine type. At this point, we do not differentiate 3362 * between pSeries SMP and pSeries LPAR 3363 */ 3364 of_platform = prom_find_machine_type(); 3365 prom_printf("Detected machine type: %x\n", of_platform); 3366 3367 #ifndef CONFIG_NONSTATIC_KERNEL 3368 /* Bail if this is a kdump kernel. */ 3369 if (PHYSICAL_START > 0) 3370 prom_panic("Error: You can't boot a kdump kernel from OF!\n"); 3371 #endif 3372 3373 /* 3374 * Check for an initrd 3375 */ 3376 prom_check_initrd(r3, r4); 3377 3378 /* 3379 * Do early parsing of command line 3380 */ 3381 early_cmdline_parse(); 3382 3383 #ifdef CONFIG_PPC_PSERIES 3384 /* 3385 * On pSeries, inform the firmware about our capabilities 3386 */ 3387 if (of_platform == PLATFORM_PSERIES || 3388 of_platform == PLATFORM_PSERIES_LPAR) 3389 prom_send_capabilities(); 3390 #endif 3391 3392 /* 3393 * Copy the CPU hold code 3394 */ 3395 if (of_platform != PLATFORM_POWERMAC) 3396 copy_and_flush(0, kbase, 0x100, 0); 3397 3398 /* 3399 * Initialize memory management within prom_init 3400 */ 3401 prom_init_mem(); 3402 3403 /* 3404 * Determine which cpu is actually running right _now_ 3405 */ 3406 prom_find_boot_cpu(); 3407 3408 /* 3409 * Initialize display devices 3410 */ 3411 prom_check_displays(); 3412 3413 #if defined(CONFIG_PPC64) && defined(__BIG_ENDIAN__) 3414 /* 3415 * Initialize IOMMU (TCE tables) on pSeries. Do that before anything else 3416 * that uses the allocator, we need to make sure we get the top of memory 3417 * available for us here... 3418 */ 3419 if (of_platform == PLATFORM_PSERIES) 3420 prom_initialize_tce_table(); 3421 #endif 3422 3423 /* 3424 * On non-powermacs, try to instantiate RTAS. PowerMacs don't 3425 * have a usable RTAS implementation. 3426 */ 3427 if (of_platform != PLATFORM_POWERMAC) 3428 prom_instantiate_rtas(); 3429 3430 #ifdef CONFIG_PPC64 3431 /* instantiate sml */ 3432 prom_instantiate_sml(); 3433 #endif 3434 3435 /* 3436 * On non-powermacs, put all CPUs in spin-loops. 3437 * 3438 * PowerMacs use a different mechanism to spin CPUs 3439 * 3440 * (This must be done after instanciating RTAS) 3441 */ 3442 if (of_platform != PLATFORM_POWERMAC) 3443 prom_hold_cpus(); 3444 3445 /* 3446 * Fill in some infos for use by the kernel later on 3447 */ 3448 if (prom_memory_limit) { 3449 __be64 val = cpu_to_be64(prom_memory_limit); 3450 prom_setprop(prom.chosen, "/chosen", "linux,memory-limit", 3451 &val, sizeof(val)); 3452 } 3453 #ifdef CONFIG_PPC64 3454 if (prom_iommu_off) 3455 prom_setprop(prom.chosen, "/chosen", "linux,iommu-off", 3456 NULL, 0); 3457 3458 if (prom_iommu_force_on) 3459 prom_setprop(prom.chosen, "/chosen", "linux,iommu-force-on", 3460 NULL, 0); 3461 3462 if (prom_tce_alloc_start) { 3463 prom_setprop(prom.chosen, "/chosen", "linux,tce-alloc-start", 3464 &prom_tce_alloc_start, 3465 sizeof(prom_tce_alloc_start)); 3466 prom_setprop(prom.chosen, "/chosen", "linux,tce-alloc-end", 3467 &prom_tce_alloc_end, 3468 sizeof(prom_tce_alloc_end)); 3469 } 3470 #endif 3471 3472 /* 3473 * Fixup any known bugs in the device-tree 3474 */ 3475 fixup_device_tree(); 3476 3477 /* 3478 * Now finally create the flattened device-tree 3479 */ 3480 prom_printf("copying OF device tree...\n"); 3481 flatten_device_tree(); 3482 3483 /* 3484 * in case stdin is USB and still active on IBM machines... 3485 * Unfortunately quiesce crashes on some powermacs if we have 3486 * closed stdin already (in particular the powerbook 101). 3487 */ 3488 if (of_platform != PLATFORM_POWERMAC) 3489 prom_close_stdin(); 3490 3491 /* 3492 * Call OF "quiesce" method to shut down pending DMA's from 3493 * devices etc... 3494 */ 3495 prom_printf("Quiescing Open Firmware ...\n"); 3496 call_prom("quiesce", 0, 0); 3497 3498 /* 3499 * And finally, call the kernel passing it the flattened device 3500 * tree and NULL as r5, thus triggering the new entry point which 3501 * is common to us and kexec 3502 */ 3503 hdr = dt_header_start; 3504 3505 prom_printf("Booting Linux via __start() @ 0x%lx ...\n", kbase); 3506 prom_debug("->dt_header_start=0x%lx\n", hdr); 3507 3508 #ifdef CONFIG_PPC32 3509 reloc_got2(-offset); 3510 #else 3511 unreloc_toc(); 3512 #endif 3513 3514 /* Move to secure memory if we're supposed to be secure guests. */ 3515 setup_secure_guest(kbase, hdr); 3516 3517 __start(hdr, kbase, 0, 0, 0, 0, 0); 3518 3519 return 0; 3520 } 3521