1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 */ 15 16 #undef DEBUG 17 18 #include <stdarg.h> 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/init.h> 22 #include <linux/threads.h> 23 #include <linux/spinlock.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/stringify.h> 27 #include <linux/delay.h> 28 #include <linux/initrd.h> 29 #include <linux/bitops.h> 30 #include <linux/export.h> 31 #include <linux/kexec.h> 32 #include <linux/irq.h> 33 #include <linux/memblock.h> 34 #include <linux/of.h> 35 #include <linux/of_fdt.h> 36 #include <linux/libfdt.h> 37 #include <linux/cpu.h> 38 39 #include <asm/prom.h> 40 #include <asm/rtas.h> 41 #include <asm/page.h> 42 #include <asm/processor.h> 43 #include <asm/irq.h> 44 #include <asm/io.h> 45 #include <asm/kdump.h> 46 #include <asm/smp.h> 47 #include <asm/mmu.h> 48 #include <asm/paca.h> 49 #include <asm/pgtable.h> 50 #include <asm/powernv.h> 51 #include <asm/iommu.h> 52 #include <asm/btext.h> 53 #include <asm/sections.h> 54 #include <asm/machdep.h> 55 #include <asm/pci-bridge.h> 56 #include <asm/kexec.h> 57 #include <asm/opal.h> 58 #include <asm/fadump.h> 59 #include <asm/epapr_hcalls.h> 60 #include <asm/firmware.h> 61 #include <asm/dt_cpu_ftrs.h> 62 #include <asm/drmem.h> 63 64 #include <mm/mmu_decl.h> 65 66 #ifdef DEBUG 67 #define DBG(fmt...) printk(KERN_ERR fmt) 68 #else 69 #define DBG(fmt...) 70 #endif 71 72 #ifdef CONFIG_PPC64 73 int __initdata iommu_is_off; 74 int __initdata iommu_force_on; 75 unsigned long tce_alloc_start, tce_alloc_end; 76 u64 ppc64_rma_size; 77 #endif 78 static phys_addr_t first_memblock_size; 79 static int __initdata boot_cpu_count; 80 81 static int __init early_parse_mem(char *p) 82 { 83 if (!p) 84 return 1; 85 86 memory_limit = PAGE_ALIGN(memparse(p, &p)); 87 DBG("memory limit = 0x%llx\n", memory_limit); 88 89 return 0; 90 } 91 early_param("mem", early_parse_mem); 92 93 /* 94 * overlaps_initrd - check for overlap with page aligned extension of 95 * initrd. 96 */ 97 static inline int overlaps_initrd(unsigned long start, unsigned long size) 98 { 99 #ifdef CONFIG_BLK_DEV_INITRD 100 if (!initrd_start) 101 return 0; 102 103 return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) && 104 start <= _ALIGN_UP(initrd_end, PAGE_SIZE); 105 #else 106 return 0; 107 #endif 108 } 109 110 /** 111 * move_device_tree - move tree to an unused area, if needed. 112 * 113 * The device tree may be allocated beyond our memory limit, or inside the 114 * crash kernel region for kdump, or within the page aligned range of initrd. 115 * If so, move it out of the way. 116 */ 117 static void __init move_device_tree(void) 118 { 119 unsigned long start, size; 120 void *p; 121 122 DBG("-> move_device_tree\n"); 123 124 start = __pa(initial_boot_params); 125 size = fdt_totalsize(initial_boot_params); 126 127 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 128 overlaps_crashkernel(start, size) || 129 overlaps_initrd(start, size)) { 130 p = __va(memblock_alloc(size, PAGE_SIZE)); 131 memcpy(p, initial_boot_params, size); 132 initial_boot_params = p; 133 DBG("Moved device tree to 0x%p\n", p); 134 } 135 136 DBG("<- move_device_tree\n"); 137 } 138 139 /* 140 * ibm,pa-features is a per-cpu property that contains a string of 141 * attribute descriptors, each of which has a 2 byte header plus up 142 * to 254 bytes worth of processor attribute bits. First header 143 * byte specifies the number of bytes following the header. 144 * Second header byte is an "attribute-specifier" type, of which 145 * zero is the only currently-defined value. 146 * Implementation: Pass in the byte and bit offset for the feature 147 * that we are interested in. The function will return -1 if the 148 * pa-features property is missing, or a 1/0 to indicate if the feature 149 * is supported/not supported. Note that the bit numbers are 150 * big-endian to match the definition in PAPR. 151 */ 152 static struct ibm_pa_feature { 153 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 154 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 155 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 156 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ 157 unsigned char pabyte; /* byte number in ibm,pa-features */ 158 unsigned char pabit; /* bit number (big-endian) */ 159 unsigned char invert; /* if 1, pa bit set => clear feature */ 160 } ibm_pa_features[] __initdata = { 161 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, 162 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, 163 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, 164 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, 165 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, 166 #ifdef CONFIG_PPC_RADIX_MMU 167 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX }, 168 #endif 169 { .pabyte = 1, .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN }, 170 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, 171 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, 172 /* 173 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), 174 * we don't want to turn on TM here, so we use the *_COMP versions 175 * which are 0 if the kernel doesn't support TM. 176 */ 177 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, 178 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, 179 }; 180 181 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 182 unsigned long tablelen, 183 struct ibm_pa_feature *fp, 184 unsigned long ft_size) 185 { 186 unsigned long i, len, bit; 187 188 /* find descriptor with type == 0 */ 189 for (;;) { 190 if (tablelen < 3) 191 return; 192 len = 2 + ftrs[0]; 193 if (tablelen < len) 194 return; /* descriptor 0 not found */ 195 if (ftrs[1] == 0) 196 break; 197 tablelen -= len; 198 ftrs += len; 199 } 200 201 /* loop over bits we know about */ 202 for (i = 0; i < ft_size; ++i, ++fp) { 203 if (fp->pabyte >= ftrs[0]) 204 continue; 205 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 206 if (bit ^ fp->invert) { 207 cur_cpu_spec->cpu_features |= fp->cpu_features; 208 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 209 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; 210 cur_cpu_spec->mmu_features |= fp->mmu_features; 211 } else { 212 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 213 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 214 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; 215 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 216 } 217 } 218 } 219 220 static void __init check_cpu_pa_features(unsigned long node) 221 { 222 const unsigned char *pa_ftrs; 223 int tablelen; 224 225 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); 226 if (pa_ftrs == NULL) 227 return; 228 229 scan_features(node, pa_ftrs, tablelen, 230 ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); 231 } 232 233 #ifdef CONFIG_PPC_BOOK3S_64 234 static void __init init_mmu_slb_size(unsigned long node) 235 { 236 const __be32 *slb_size_ptr; 237 238 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 239 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 240 241 if (slb_size_ptr) 242 mmu_slb_size = be32_to_cpup(slb_size_ptr); 243 } 244 #else 245 #define init_mmu_slb_size(node) do { } while(0) 246 #endif 247 248 static struct feature_property { 249 const char *name; 250 u32 min_value; 251 unsigned long cpu_feature; 252 unsigned long cpu_user_ftr; 253 } feature_properties[] __initdata = { 254 #ifdef CONFIG_ALTIVEC 255 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 256 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 257 #endif /* CONFIG_ALTIVEC */ 258 #ifdef CONFIG_VSX 259 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 260 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 261 #endif /* CONFIG_VSX */ 262 #ifdef CONFIG_PPC64 263 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 264 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 265 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 266 #endif /* CONFIG_PPC64 */ 267 }; 268 269 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 270 static inline void identical_pvr_fixup(unsigned long node) 271 { 272 unsigned int pvr; 273 const char *model = of_get_flat_dt_prop(node, "model", NULL); 274 275 /* 276 * Since 440GR(x)/440EP(x) processors have the same pvr, 277 * we check the node path and set bit 28 in the cur_cpu_spec 278 * pvr for EP(x) processor version. This bit is always 0 in 279 * the "real" pvr. Then we call identify_cpu again with 280 * the new logical pvr to enable FPU support. 281 */ 282 if (model && strstr(model, "440EP")) { 283 pvr = cur_cpu_spec->pvr_value | 0x8; 284 identify_cpu(0, pvr); 285 DBG("Using logical pvr %x for %s\n", pvr, model); 286 } 287 } 288 #else 289 #define identical_pvr_fixup(node) do { } while(0) 290 #endif 291 292 static void __init check_cpu_feature_properties(unsigned long node) 293 { 294 int i; 295 struct feature_property *fp = feature_properties; 296 const __be32 *prop; 297 298 for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) { 299 prop = of_get_flat_dt_prop(node, fp->name, NULL); 300 if (prop && be32_to_cpup(prop) >= fp->min_value) { 301 cur_cpu_spec->cpu_features |= fp->cpu_feature; 302 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 303 } 304 } 305 } 306 307 static int __init early_init_dt_scan_cpus(unsigned long node, 308 const char *uname, int depth, 309 void *data) 310 { 311 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 312 const __be32 *prop; 313 const __be32 *intserv; 314 int i, nthreads; 315 int len; 316 int found = -1; 317 int found_thread = 0; 318 319 /* We are scanning "cpu" nodes only */ 320 if (type == NULL || strcmp(type, "cpu") != 0) 321 return 0; 322 323 /* Get physical cpuid */ 324 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 325 if (!intserv) 326 intserv = of_get_flat_dt_prop(node, "reg", &len); 327 328 nthreads = len / sizeof(int); 329 330 /* 331 * Now see if any of these threads match our boot cpu. 332 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 333 */ 334 for (i = 0; i < nthreads; i++) { 335 /* 336 * version 2 of the kexec param format adds the phys cpuid of 337 * booted proc. 338 */ 339 if (fdt_version(initial_boot_params) >= 2) { 340 if (be32_to_cpu(intserv[i]) == 341 fdt_boot_cpuid_phys(initial_boot_params)) { 342 found = boot_cpu_count; 343 found_thread = i; 344 } 345 } else { 346 /* 347 * Check if it's the boot-cpu, set it's hw index now, 348 * unfortunately this format did not support booting 349 * off secondary threads. 350 */ 351 if (of_get_flat_dt_prop(node, 352 "linux,boot-cpu", NULL) != NULL) 353 found = boot_cpu_count; 354 } 355 #ifdef CONFIG_SMP 356 /* logical cpu id is always 0 on UP kernels */ 357 boot_cpu_count++; 358 #endif 359 } 360 361 /* Not the boot CPU */ 362 if (found < 0) 363 return 0; 364 365 DBG("boot cpu: logical %d physical %d\n", found, 366 be32_to_cpu(intserv[found_thread])); 367 boot_cpuid = found; 368 369 /* 370 * PAPR defines "logical" PVR values for cpus that 371 * meet various levels of the architecture: 372 * 0x0f000001 Architecture version 2.04 373 * 0x0f000002 Architecture version 2.05 374 * If the cpu-version property in the cpu node contains 375 * such a value, we call identify_cpu again with the 376 * logical PVR value in order to use the cpu feature 377 * bits appropriate for the architecture level. 378 * 379 * A POWER6 partition in "POWER6 architected" mode 380 * uses the 0x0f000002 PVR value; in POWER5+ mode 381 * it uses 0x0f000001. 382 * 383 * If we're using device tree CPU feature discovery then we don't 384 * support the cpu-version property, and it's the responsibility of the 385 * firmware/hypervisor to provide the correct feature set for the 386 * architecture level via the ibm,powerpc-cpu-features binding. 387 */ 388 if (!dt_cpu_ftrs_in_use()) { 389 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 390 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) 391 identify_cpu(0, be32_to_cpup(prop)); 392 393 check_cpu_feature_properties(node); 394 check_cpu_pa_features(node); 395 } 396 397 identical_pvr_fixup(node); 398 init_mmu_slb_size(node); 399 400 #ifdef CONFIG_PPC64 401 if (nthreads == 1) 402 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 403 else if (!dt_cpu_ftrs_in_use()) 404 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 405 allocate_paca(boot_cpuid); 406 #endif 407 set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread])); 408 409 return 0; 410 } 411 412 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 413 const char *uname, 414 int depth, void *data) 415 { 416 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 417 418 /* Use common scan routine to determine if this is the chosen node */ 419 if (early_init_dt_scan_chosen(node, uname, depth, data) == 0) 420 return 0; 421 422 #ifdef CONFIG_PPC64 423 /* check if iommu is forced on or off */ 424 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 425 iommu_is_off = 1; 426 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 427 iommu_force_on = 1; 428 #endif 429 430 /* mem=x on the command line is the preferred mechanism */ 431 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 432 if (lprop) 433 memory_limit = *lprop; 434 435 #ifdef CONFIG_PPC64 436 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 437 if (lprop) 438 tce_alloc_start = *lprop; 439 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 440 if (lprop) 441 tce_alloc_end = *lprop; 442 #endif 443 444 #ifdef CONFIG_KEXEC_CORE 445 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 446 if (lprop) 447 crashk_res.start = *lprop; 448 449 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 450 if (lprop) 451 crashk_res.end = crashk_res.start + *lprop - 1; 452 #endif 453 454 /* break now */ 455 return 1; 456 } 457 458 #ifdef CONFIG_PPC_PSERIES 459 /* 460 * Interpret the ibm dynamic reconfiguration memory LMBs. 461 * This contains a list of memory blocks along with NUMA affinity 462 * information. 463 */ 464 static void __init early_init_drmem_lmb(struct drmem_lmb *lmb, 465 const __be32 **usm) 466 { 467 u64 base, size; 468 int is_kexec_kdump = 0, rngs; 469 470 base = lmb->base_addr; 471 size = drmem_lmb_size(); 472 rngs = 1; 473 474 /* 475 * Skip this block if the reserved bit is set in flags 476 * or if the block is not assigned to this partition. 477 */ 478 if ((lmb->flags & DRCONF_MEM_RESERVED) || 479 !(lmb->flags & DRCONF_MEM_ASSIGNED)) 480 return; 481 482 if (*usm) 483 is_kexec_kdump = 1; 484 485 if (is_kexec_kdump) { 486 /* 487 * For each memblock in ibm,dynamic-memory, a 488 * corresponding entry in linux,drconf-usable-memory 489 * property contains a counter 'p' followed by 'p' 490 * (base, size) duple. Now read the counter from 491 * linux,drconf-usable-memory property 492 */ 493 rngs = dt_mem_next_cell(dt_root_size_cells, usm); 494 if (!rngs) /* there are no (base, size) duple */ 495 return; 496 } 497 498 do { 499 if (is_kexec_kdump) { 500 base = dt_mem_next_cell(dt_root_addr_cells, usm); 501 size = dt_mem_next_cell(dt_root_size_cells, usm); 502 } 503 504 if (iommu_is_off) { 505 if (base >= 0x80000000ul) 506 continue; 507 if ((base + size) > 0x80000000ul) 508 size = 0x80000000ul - base; 509 } 510 511 DBG("Adding: %llx -> %llx\n", base, size); 512 memblock_add(base, size); 513 } while (--rngs); 514 } 515 #endif /* CONFIG_PPC_PSERIES */ 516 517 static int __init early_init_dt_scan_memory_ppc(unsigned long node, 518 const char *uname, 519 int depth, void *data) 520 { 521 #ifdef CONFIG_PPC_PSERIES 522 if (depth == 1 && 523 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) { 524 walk_drmem_lmbs_early(node, early_init_drmem_lmb); 525 return 0; 526 } 527 #endif 528 529 return early_init_dt_scan_memory(node, uname, depth, data); 530 } 531 532 /* 533 * For a relocatable kernel, we need to get the memstart_addr first, 534 * then use it to calculate the virtual kernel start address. This has 535 * to happen at a very early stage (before machine_init). In this case, 536 * we just want to get the memstart_address and would not like to mess the 537 * memblock at this stage. So introduce a variable to skip the memblock_add() 538 * for this reason. 539 */ 540 #ifdef CONFIG_RELOCATABLE 541 static int add_mem_to_memblock = 1; 542 #else 543 #define add_mem_to_memblock 1 544 #endif 545 546 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 547 { 548 #ifdef CONFIG_PPC64 549 if (iommu_is_off) { 550 if (base >= 0x80000000ul) 551 return; 552 if ((base + size) > 0x80000000ul) 553 size = 0x80000000ul - base; 554 } 555 #endif 556 /* Keep track of the beginning of memory -and- the size of 557 * the very first block in the device-tree as it represents 558 * the RMA on ppc64 server 559 */ 560 if (base < memstart_addr) { 561 memstart_addr = base; 562 first_memblock_size = size; 563 } 564 565 /* Add the chunk to the MEMBLOCK list */ 566 if (add_mem_to_memblock) 567 memblock_add(base, size); 568 } 569 570 static void __init early_reserve_mem_dt(void) 571 { 572 unsigned long i, dt_root; 573 int len; 574 const __be32 *prop; 575 576 early_init_fdt_reserve_self(); 577 early_init_fdt_scan_reserved_mem(); 578 579 dt_root = of_get_flat_dt_root(); 580 581 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 582 583 if (!prop) 584 return; 585 586 DBG("Found new-style reserved-ranges\n"); 587 588 /* Each reserved range is an (address,size) pair, 2 cells each, 589 * totalling 4 cells per range. */ 590 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 591 u64 base, size; 592 593 base = of_read_number(prop + (i * 4) + 0, 2); 594 size = of_read_number(prop + (i * 4) + 2, 2); 595 596 if (size) { 597 DBG("reserving: %llx -> %llx\n", base, size); 598 memblock_reserve(base, size); 599 } 600 } 601 } 602 603 static void __init early_reserve_mem(void) 604 { 605 __be64 *reserve_map; 606 607 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 608 fdt_off_mem_rsvmap(initial_boot_params)); 609 610 /* Look for the new "reserved-regions" property in the DT */ 611 early_reserve_mem_dt(); 612 613 #ifdef CONFIG_BLK_DEV_INITRD 614 /* Then reserve the initrd, if any */ 615 if (initrd_start && (initrd_end > initrd_start)) { 616 memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 617 _ALIGN_UP(initrd_end, PAGE_SIZE) - 618 _ALIGN_DOWN(initrd_start, PAGE_SIZE)); 619 } 620 #endif /* CONFIG_BLK_DEV_INITRD */ 621 622 #ifdef CONFIG_PPC32 623 /* 624 * Handle the case where we might be booting from an old kexec 625 * image that setup the mem_rsvmap as pairs of 32-bit values 626 */ 627 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 628 u32 base_32, size_32; 629 __be32 *reserve_map_32 = (__be32 *)reserve_map; 630 631 DBG("Found old 32-bit reserve map\n"); 632 633 while (1) { 634 base_32 = be32_to_cpup(reserve_map_32++); 635 size_32 = be32_to_cpup(reserve_map_32++); 636 if (size_32 == 0) 637 break; 638 DBG("reserving: %x -> %x\n", base_32, size_32); 639 memblock_reserve(base_32, size_32); 640 } 641 return; 642 } 643 #endif 644 } 645 646 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 647 static bool tm_disabled __initdata; 648 649 static int __init parse_ppc_tm(char *str) 650 { 651 bool res; 652 653 if (kstrtobool(str, &res)) 654 return -EINVAL; 655 656 tm_disabled = !res; 657 658 return 0; 659 } 660 early_param("ppc_tm", parse_ppc_tm); 661 662 static void __init tm_init(void) 663 { 664 if (tm_disabled) { 665 pr_info("Disabling hardware transactional memory (HTM)\n"); 666 cur_cpu_spec->cpu_user_features2 &= 667 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM); 668 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM; 669 return; 670 } 671 672 pnv_tm_init(); 673 } 674 #else 675 static void tm_init(void) { } 676 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 677 678 void __init early_init_devtree(void *params) 679 { 680 phys_addr_t limit; 681 682 DBG(" -> early_init_devtree(%p)\n", params); 683 684 /* Too early to BUG_ON(), do it by hand */ 685 if (!early_init_dt_verify(params)) 686 panic("BUG: Failed verifying flat device tree, bad version?"); 687 688 #ifdef CONFIG_PPC_RTAS 689 /* Some machines might need RTAS info for debugging, grab it now. */ 690 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 691 #endif 692 693 #ifdef CONFIG_PPC_POWERNV 694 /* Some machines might need OPAL info for debugging, grab it now. */ 695 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 696 #endif 697 698 #ifdef CONFIG_FA_DUMP 699 /* scan tree to see if dump is active during last boot */ 700 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 701 #endif 702 703 /* Retrieve various informations from the /chosen node of the 704 * device-tree, including the platform type, initrd location and 705 * size, TCE reserve, and more ... 706 */ 707 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 708 709 /* Scan memory nodes and rebuild MEMBLOCKs */ 710 of_scan_flat_dt(early_init_dt_scan_root, NULL); 711 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 712 713 parse_early_param(); 714 715 /* make sure we've parsed cmdline for mem= before this */ 716 if (memory_limit) 717 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 718 setup_initial_memory_limit(memstart_addr, first_memblock_size); 719 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 720 memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); 721 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 722 if (PHYSICAL_START > MEMORY_START) 723 memblock_reserve(MEMORY_START, 0x8000); 724 reserve_kdump_trampoline(); 725 #ifdef CONFIG_FA_DUMP 726 /* 727 * If we fail to reserve memory for firmware-assisted dump then 728 * fallback to kexec based kdump. 729 */ 730 if (fadump_reserve_mem() == 0) 731 #endif 732 reserve_crashkernel(); 733 early_reserve_mem(); 734 735 /* Ensure that total memory size is page-aligned. */ 736 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); 737 memblock_enforce_memory_limit(limit); 738 739 memblock_allow_resize(); 740 memblock_dump_all(); 741 742 DBG("Phys. mem: %llx\n", memblock_phys_mem_size()); 743 744 /* We may need to relocate the flat tree, do it now. 745 * FIXME .. and the initrd too? */ 746 move_device_tree(); 747 748 allocate_paca_ptrs(); 749 750 DBG("Scanning CPUs ...\n"); 751 752 dt_cpu_ftrs_scan(); 753 754 /* Retrieve CPU related informations from the flat tree 755 * (altivec support, boot CPU ID, ...) 756 */ 757 of_scan_flat_dt(early_init_dt_scan_cpus, NULL); 758 if (boot_cpuid < 0) { 759 printk("Failed to identify boot CPU !\n"); 760 BUG(); 761 } 762 763 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 764 /* We'll later wait for secondaries to check in; there are 765 * NCPUS-1 non-boot CPUs :-) 766 */ 767 spinning_secondaries = boot_cpu_count - 1; 768 #endif 769 770 mmu_early_init_devtree(); 771 772 #ifdef CONFIG_PPC_POWERNV 773 /* Scan and build the list of machine check recoverable ranges */ 774 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 775 #endif 776 epapr_paravirt_early_init(); 777 778 /* Now try to figure out if we are running on LPAR and so on */ 779 pseries_probe_fw_features(); 780 781 #ifdef CONFIG_PPC_PS3 782 /* Identify PS3 firmware */ 783 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) 784 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; 785 #endif 786 787 tm_init(); 788 789 DBG(" <- early_init_devtree()\n"); 790 } 791 792 #ifdef CONFIG_RELOCATABLE 793 /* 794 * This function run before early_init_devtree, so we have to init 795 * initial_boot_params. 796 */ 797 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 798 { 799 /* Setup flat device-tree pointer */ 800 initial_boot_params = params; 801 802 /* 803 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 804 * mess the memblock. 805 */ 806 add_mem_to_memblock = 0; 807 of_scan_flat_dt(early_init_dt_scan_root, NULL); 808 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 809 add_mem_to_memblock = 1; 810 811 if (size) 812 *size = first_memblock_size; 813 } 814 #endif 815 816 /******* 817 * 818 * New implementation of the OF "find" APIs, return a refcounted 819 * object, call of_node_put() when done. The device tree and list 820 * are protected by a rw_lock. 821 * 822 * Note that property management will need some locking as well, 823 * this isn't dealt with yet. 824 * 825 *******/ 826 827 /** 828 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 829 * @np: device node of the device 830 * 831 * This looks for a property "ibm,chip-id" in the node or any 832 * of its parents and returns its content, or -1 if it cannot 833 * be found. 834 */ 835 int of_get_ibm_chip_id(struct device_node *np) 836 { 837 of_node_get(np); 838 while (np) { 839 u32 chip_id; 840 841 /* 842 * Skiboot may produce memory nodes that contain more than one 843 * cell in chip-id, we only read the first one here. 844 */ 845 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { 846 of_node_put(np); 847 return chip_id; 848 } 849 850 np = of_get_next_parent(np); 851 } 852 return -1; 853 } 854 EXPORT_SYMBOL(of_get_ibm_chip_id); 855 856 /** 857 * cpu_to_chip_id - Return the cpus chip-id 858 * @cpu: The logical cpu number. 859 * 860 * Return the value of the ibm,chip-id property corresponding to the given 861 * logical cpu number. If the chip-id can not be found, returns -1. 862 */ 863 int cpu_to_chip_id(int cpu) 864 { 865 struct device_node *np; 866 867 np = of_get_cpu_node(cpu, NULL); 868 if (!np) 869 return -1; 870 871 of_node_put(np); 872 return of_get_ibm_chip_id(np); 873 } 874 EXPORT_SYMBOL(cpu_to_chip_id); 875 876 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 877 { 878 #ifdef CONFIG_SMP 879 /* 880 * Early firmware scanning must use this rather than 881 * get_hard_smp_processor_id because we don't have pacas allocated 882 * until memory topology is discovered. 883 */ 884 if (cpu_to_phys_id != NULL) 885 return (int)phys_id == cpu_to_phys_id[cpu]; 886 #endif 887 888 return (int)phys_id == get_hard_smp_processor_id(cpu); 889 } 890