1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 */ 15 16 #undef DEBUG 17 18 #include <stdarg.h> 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/init.h> 22 #include <linux/threads.h> 23 #include <linux/spinlock.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/stringify.h> 27 #include <linux/delay.h> 28 #include <linux/initrd.h> 29 #include <linux/bitops.h> 30 #include <linux/export.h> 31 #include <linux/kexec.h> 32 #include <linux/irq.h> 33 #include <linux/memblock.h> 34 #include <linux/of.h> 35 #include <linux/of_fdt.h> 36 #include <linux/libfdt.h> 37 #include <linux/cpu.h> 38 39 #include <asm/prom.h> 40 #include <asm/rtas.h> 41 #include <asm/page.h> 42 #include <asm/processor.h> 43 #include <asm/irq.h> 44 #include <asm/io.h> 45 #include <asm/kdump.h> 46 #include <asm/smp.h> 47 #include <asm/mmu.h> 48 #include <asm/paca.h> 49 #include <asm/pgtable.h> 50 #include <asm/iommu.h> 51 #include <asm/btext.h> 52 #include <asm/sections.h> 53 #include <asm/machdep.h> 54 #include <asm/pci-bridge.h> 55 #include <asm/kexec.h> 56 #include <asm/opal.h> 57 #include <asm/fadump.h> 58 #include <asm/epapr_hcalls.h> 59 #include <asm/firmware.h> 60 #include <asm/dt_cpu_ftrs.h> 61 62 #include <mm/mmu_decl.h> 63 64 #ifdef DEBUG 65 #define DBG(fmt...) printk(KERN_ERR fmt) 66 #else 67 #define DBG(fmt...) 68 #endif 69 70 #ifdef CONFIG_PPC64 71 int __initdata iommu_is_off; 72 int __initdata iommu_force_on; 73 unsigned long tce_alloc_start, tce_alloc_end; 74 u64 ppc64_rma_size; 75 #endif 76 static phys_addr_t first_memblock_size; 77 static int __initdata boot_cpu_count; 78 79 static int __init early_parse_mem(char *p) 80 { 81 if (!p) 82 return 1; 83 84 memory_limit = PAGE_ALIGN(memparse(p, &p)); 85 DBG("memory limit = 0x%llx\n", memory_limit); 86 87 return 0; 88 } 89 early_param("mem", early_parse_mem); 90 91 /* 92 * overlaps_initrd - check for overlap with page aligned extension of 93 * initrd. 94 */ 95 static inline int overlaps_initrd(unsigned long start, unsigned long size) 96 { 97 #ifdef CONFIG_BLK_DEV_INITRD 98 if (!initrd_start) 99 return 0; 100 101 return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) && 102 start <= _ALIGN_UP(initrd_end, PAGE_SIZE); 103 #else 104 return 0; 105 #endif 106 } 107 108 /** 109 * move_device_tree - move tree to an unused area, if needed. 110 * 111 * The device tree may be allocated beyond our memory limit, or inside the 112 * crash kernel region for kdump, or within the page aligned range of initrd. 113 * If so, move it out of the way. 114 */ 115 static void __init move_device_tree(void) 116 { 117 unsigned long start, size; 118 void *p; 119 120 DBG("-> move_device_tree\n"); 121 122 start = __pa(initial_boot_params); 123 size = fdt_totalsize(initial_boot_params); 124 125 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 126 overlaps_crashkernel(start, size) || 127 overlaps_initrd(start, size)) { 128 p = __va(memblock_alloc(size, PAGE_SIZE)); 129 memcpy(p, initial_boot_params, size); 130 initial_boot_params = p; 131 DBG("Moved device tree to 0x%p\n", p); 132 } 133 134 DBG("<- move_device_tree\n"); 135 } 136 137 /* 138 * ibm,pa-features is a per-cpu property that contains a string of 139 * attribute descriptors, each of which has a 2 byte header plus up 140 * to 254 bytes worth of processor attribute bits. First header 141 * byte specifies the number of bytes following the header. 142 * Second header byte is an "attribute-specifier" type, of which 143 * zero is the only currently-defined value. 144 * Implementation: Pass in the byte and bit offset for the feature 145 * that we are interested in. The function will return -1 if the 146 * pa-features property is missing, or a 1/0 to indicate if the feature 147 * is supported/not supported. Note that the bit numbers are 148 * big-endian to match the definition in PAPR. 149 */ 150 static struct ibm_pa_feature { 151 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 152 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 153 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 154 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ 155 unsigned char pabyte; /* byte number in ibm,pa-features */ 156 unsigned char pabit; /* bit number (big-endian) */ 157 unsigned char invert; /* if 1, pa bit set => clear feature */ 158 } ibm_pa_features[] __initdata = { 159 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, 160 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, 161 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, 162 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, 163 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, 164 #ifdef CONFIG_PPC_RADIX_MMU 165 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX }, 166 #endif 167 { .pabyte = 1, .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN }, 168 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, 169 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, 170 /* 171 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), 172 * we don't want to turn on TM here, so we use the *_COMP versions 173 * which are 0 if the kernel doesn't support TM. 174 */ 175 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, 176 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, 177 }; 178 179 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 180 unsigned long tablelen, 181 struct ibm_pa_feature *fp, 182 unsigned long ft_size) 183 { 184 unsigned long i, len, bit; 185 186 /* find descriptor with type == 0 */ 187 for (;;) { 188 if (tablelen < 3) 189 return; 190 len = 2 + ftrs[0]; 191 if (tablelen < len) 192 return; /* descriptor 0 not found */ 193 if (ftrs[1] == 0) 194 break; 195 tablelen -= len; 196 ftrs += len; 197 } 198 199 /* loop over bits we know about */ 200 for (i = 0; i < ft_size; ++i, ++fp) { 201 if (fp->pabyte >= ftrs[0]) 202 continue; 203 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 204 if (bit ^ fp->invert) { 205 cur_cpu_spec->cpu_features |= fp->cpu_features; 206 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 207 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; 208 cur_cpu_spec->mmu_features |= fp->mmu_features; 209 } else { 210 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 211 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 212 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; 213 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 214 } 215 } 216 } 217 218 static void __init check_cpu_pa_features(unsigned long node) 219 { 220 const unsigned char *pa_ftrs; 221 int tablelen; 222 223 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); 224 if (pa_ftrs == NULL) 225 return; 226 227 scan_features(node, pa_ftrs, tablelen, 228 ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); 229 } 230 231 #ifdef CONFIG_PPC_STD_MMU_64 232 static void __init init_mmu_slb_size(unsigned long node) 233 { 234 const __be32 *slb_size_ptr; 235 236 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 237 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 238 239 if (slb_size_ptr) 240 mmu_slb_size = be32_to_cpup(slb_size_ptr); 241 } 242 #else 243 #define init_mmu_slb_size(node) do { } while(0) 244 #endif 245 246 static struct feature_property { 247 const char *name; 248 u32 min_value; 249 unsigned long cpu_feature; 250 unsigned long cpu_user_ftr; 251 } feature_properties[] __initdata = { 252 #ifdef CONFIG_ALTIVEC 253 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 254 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 255 #endif /* CONFIG_ALTIVEC */ 256 #ifdef CONFIG_VSX 257 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 258 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 259 #endif /* CONFIG_VSX */ 260 #ifdef CONFIG_PPC64 261 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 262 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 263 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 264 #endif /* CONFIG_PPC64 */ 265 }; 266 267 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 268 static inline void identical_pvr_fixup(unsigned long node) 269 { 270 unsigned int pvr; 271 const char *model = of_get_flat_dt_prop(node, "model", NULL); 272 273 /* 274 * Since 440GR(x)/440EP(x) processors have the same pvr, 275 * we check the node path and set bit 28 in the cur_cpu_spec 276 * pvr for EP(x) processor version. This bit is always 0 in 277 * the "real" pvr. Then we call identify_cpu again with 278 * the new logical pvr to enable FPU support. 279 */ 280 if (model && strstr(model, "440EP")) { 281 pvr = cur_cpu_spec->pvr_value | 0x8; 282 identify_cpu(0, pvr); 283 DBG("Using logical pvr %x for %s\n", pvr, model); 284 } 285 } 286 #else 287 #define identical_pvr_fixup(node) do { } while(0) 288 #endif 289 290 static void __init check_cpu_feature_properties(unsigned long node) 291 { 292 unsigned long i; 293 struct feature_property *fp = feature_properties; 294 const __be32 *prop; 295 296 for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) { 297 prop = of_get_flat_dt_prop(node, fp->name, NULL); 298 if (prop && be32_to_cpup(prop) >= fp->min_value) { 299 cur_cpu_spec->cpu_features |= fp->cpu_feature; 300 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 301 } 302 } 303 } 304 305 static int __init early_init_dt_scan_cpus(unsigned long node, 306 const char *uname, int depth, 307 void *data) 308 { 309 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 310 const __be32 *prop; 311 const __be32 *intserv; 312 int i, nthreads; 313 int len; 314 int found = -1; 315 int found_thread = 0; 316 317 /* We are scanning "cpu" nodes only */ 318 if (type == NULL || strcmp(type, "cpu") != 0) 319 return 0; 320 321 /* Get physical cpuid */ 322 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 323 if (!intserv) 324 intserv = of_get_flat_dt_prop(node, "reg", &len); 325 326 nthreads = len / sizeof(int); 327 328 /* 329 * Now see if any of these threads match our boot cpu. 330 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 331 */ 332 for (i = 0; i < nthreads; i++) { 333 /* 334 * version 2 of the kexec param format adds the phys cpuid of 335 * booted proc. 336 */ 337 if (fdt_version(initial_boot_params) >= 2) { 338 if (be32_to_cpu(intserv[i]) == 339 fdt_boot_cpuid_phys(initial_boot_params)) { 340 found = boot_cpu_count; 341 found_thread = i; 342 } 343 } else { 344 /* 345 * Check if it's the boot-cpu, set it's hw index now, 346 * unfortunately this format did not support booting 347 * off secondary threads. 348 */ 349 if (of_get_flat_dt_prop(node, 350 "linux,boot-cpu", NULL) != NULL) 351 found = boot_cpu_count; 352 } 353 #ifdef CONFIG_SMP 354 /* logical cpu id is always 0 on UP kernels */ 355 boot_cpu_count++; 356 #endif 357 } 358 359 /* Not the boot CPU */ 360 if (found < 0) 361 return 0; 362 363 DBG("boot cpu: logical %d physical %d\n", found, 364 be32_to_cpu(intserv[found_thread])); 365 boot_cpuid = found; 366 set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread])); 367 368 /* 369 * PAPR defines "logical" PVR values for cpus that 370 * meet various levels of the architecture: 371 * 0x0f000001 Architecture version 2.04 372 * 0x0f000002 Architecture version 2.05 373 * If the cpu-version property in the cpu node contains 374 * such a value, we call identify_cpu again with the 375 * logical PVR value in order to use the cpu feature 376 * bits appropriate for the architecture level. 377 * 378 * A POWER6 partition in "POWER6 architected" mode 379 * uses the 0x0f000002 PVR value; in POWER5+ mode 380 * it uses 0x0f000001. 381 * 382 * If we're using device tree CPU feature discovery then we don't 383 * support the cpu-version property, and it's the responsibility of the 384 * firmware/hypervisor to provide the correct feature set for the 385 * architecture level via the ibm,powerpc-cpu-features binding. 386 */ 387 if (!dt_cpu_ftrs_in_use()) { 388 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 389 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) 390 identify_cpu(0, be32_to_cpup(prop)); 391 392 check_cpu_feature_properties(node); 393 check_cpu_pa_features(node); 394 } 395 396 identical_pvr_fixup(node); 397 init_mmu_slb_size(node); 398 399 #ifdef CONFIG_PPC64 400 if (nthreads == 1) 401 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 402 else if (!dt_cpu_ftrs_in_use()) 403 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 404 #endif 405 406 return 0; 407 } 408 409 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 410 const char *uname, 411 int depth, void *data) 412 { 413 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 414 415 /* Use common scan routine to determine if this is the chosen node */ 416 if (early_init_dt_scan_chosen(node, uname, depth, data) == 0) 417 return 0; 418 419 #ifdef CONFIG_PPC64 420 /* check if iommu is forced on or off */ 421 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 422 iommu_is_off = 1; 423 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 424 iommu_force_on = 1; 425 #endif 426 427 /* mem=x on the command line is the preferred mechanism */ 428 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 429 if (lprop) 430 memory_limit = *lprop; 431 432 #ifdef CONFIG_PPC64 433 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 434 if (lprop) 435 tce_alloc_start = *lprop; 436 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 437 if (lprop) 438 tce_alloc_end = *lprop; 439 #endif 440 441 #ifdef CONFIG_KEXEC_CORE 442 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 443 if (lprop) 444 crashk_res.start = *lprop; 445 446 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 447 if (lprop) 448 crashk_res.end = crashk_res.start + *lprop - 1; 449 #endif 450 451 /* break now */ 452 return 1; 453 } 454 455 #ifdef CONFIG_PPC_PSERIES 456 /* 457 * Interpret the ibm,dynamic-memory property in the 458 * /ibm,dynamic-reconfiguration-memory node. 459 * This contains a list of memory blocks along with NUMA affinity 460 * information. 461 */ 462 static int __init early_init_dt_scan_drconf_memory(unsigned long node) 463 { 464 const __be32 *dm, *ls, *usm; 465 int l; 466 unsigned long n, flags; 467 u64 base, size, memblock_size; 468 unsigned int is_kexec_kdump = 0, rngs; 469 470 ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l); 471 if (ls == NULL || l < dt_root_size_cells * sizeof(__be32)) 472 return 0; 473 memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls); 474 475 dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l); 476 if (dm == NULL || l < sizeof(__be32)) 477 return 0; 478 479 n = of_read_number(dm++, 1); /* number of entries */ 480 if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32)) 481 return 0; 482 483 /* check if this is a kexec/kdump kernel. */ 484 usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory", 485 &l); 486 if (usm != NULL) 487 is_kexec_kdump = 1; 488 489 for (; n != 0; --n) { 490 base = dt_mem_next_cell(dt_root_addr_cells, &dm); 491 flags = of_read_number(&dm[3], 1); 492 /* skip DRC index, pad, assoc. list index, flags */ 493 dm += 4; 494 /* skip this block if the reserved bit is set in flags 495 or if the block is not assigned to this partition */ 496 if ((flags & DRCONF_MEM_RESERVED) || 497 !(flags & DRCONF_MEM_ASSIGNED)) 498 continue; 499 size = memblock_size; 500 rngs = 1; 501 if (is_kexec_kdump) { 502 /* 503 * For each memblock in ibm,dynamic-memory, a corresponding 504 * entry in linux,drconf-usable-memory property contains 505 * a counter 'p' followed by 'p' (base, size) duple. 506 * Now read the counter from 507 * linux,drconf-usable-memory property 508 */ 509 rngs = dt_mem_next_cell(dt_root_size_cells, &usm); 510 if (!rngs) /* there are no (base, size) duple */ 511 continue; 512 } 513 do { 514 if (is_kexec_kdump) { 515 base = dt_mem_next_cell(dt_root_addr_cells, 516 &usm); 517 size = dt_mem_next_cell(dt_root_size_cells, 518 &usm); 519 } 520 if (iommu_is_off) { 521 if (base >= 0x80000000ul) 522 continue; 523 if ((base + size) > 0x80000000ul) 524 size = 0x80000000ul - base; 525 } 526 memblock_add(base, size); 527 } while (--rngs); 528 } 529 memblock_dump_all(); 530 return 0; 531 } 532 #else 533 #define early_init_dt_scan_drconf_memory(node) 0 534 #endif /* CONFIG_PPC_PSERIES */ 535 536 static int __init early_init_dt_scan_memory_ppc(unsigned long node, 537 const char *uname, 538 int depth, void *data) 539 { 540 if (depth == 1 && 541 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) 542 return early_init_dt_scan_drconf_memory(node); 543 544 return early_init_dt_scan_memory(node, uname, depth, data); 545 } 546 547 /* 548 * For a relocatable kernel, we need to get the memstart_addr first, 549 * then use it to calculate the virtual kernel start address. This has 550 * to happen at a very early stage (before machine_init). In this case, 551 * we just want to get the memstart_address and would not like to mess the 552 * memblock at this stage. So introduce a variable to skip the memblock_add() 553 * for this reason. 554 */ 555 #ifdef CONFIG_RELOCATABLE 556 static int add_mem_to_memblock = 1; 557 #else 558 #define add_mem_to_memblock 1 559 #endif 560 561 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 562 { 563 #ifdef CONFIG_PPC64 564 if (iommu_is_off) { 565 if (base >= 0x80000000ul) 566 return; 567 if ((base + size) > 0x80000000ul) 568 size = 0x80000000ul - base; 569 } 570 #endif 571 /* Keep track of the beginning of memory -and- the size of 572 * the very first block in the device-tree as it represents 573 * the RMA on ppc64 server 574 */ 575 if (base < memstart_addr) { 576 memstart_addr = base; 577 first_memblock_size = size; 578 } 579 580 /* Add the chunk to the MEMBLOCK list */ 581 if (add_mem_to_memblock) 582 memblock_add(base, size); 583 } 584 585 static void __init early_reserve_mem_dt(void) 586 { 587 unsigned long i, dt_root; 588 int len; 589 const __be32 *prop; 590 591 early_init_fdt_reserve_self(); 592 early_init_fdt_scan_reserved_mem(); 593 594 dt_root = of_get_flat_dt_root(); 595 596 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 597 598 if (!prop) 599 return; 600 601 DBG("Found new-style reserved-ranges\n"); 602 603 /* Each reserved range is an (address,size) pair, 2 cells each, 604 * totalling 4 cells per range. */ 605 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 606 u64 base, size; 607 608 base = of_read_number(prop + (i * 4) + 0, 2); 609 size = of_read_number(prop + (i * 4) + 2, 2); 610 611 if (size) { 612 DBG("reserving: %llx -> %llx\n", base, size); 613 memblock_reserve(base, size); 614 } 615 } 616 } 617 618 static void __init early_reserve_mem(void) 619 { 620 __be64 *reserve_map; 621 622 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 623 fdt_off_mem_rsvmap(initial_boot_params)); 624 625 /* Look for the new "reserved-regions" property in the DT */ 626 early_reserve_mem_dt(); 627 628 #ifdef CONFIG_BLK_DEV_INITRD 629 /* Then reserve the initrd, if any */ 630 if (initrd_start && (initrd_end > initrd_start)) { 631 memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 632 _ALIGN_UP(initrd_end, PAGE_SIZE) - 633 _ALIGN_DOWN(initrd_start, PAGE_SIZE)); 634 } 635 #endif /* CONFIG_BLK_DEV_INITRD */ 636 637 #ifdef CONFIG_PPC32 638 /* 639 * Handle the case where we might be booting from an old kexec 640 * image that setup the mem_rsvmap as pairs of 32-bit values 641 */ 642 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 643 u32 base_32, size_32; 644 __be32 *reserve_map_32 = (__be32 *)reserve_map; 645 646 DBG("Found old 32-bit reserve map\n"); 647 648 while (1) { 649 base_32 = be32_to_cpup(reserve_map_32++); 650 size_32 = be32_to_cpup(reserve_map_32++); 651 if (size_32 == 0) 652 break; 653 DBG("reserving: %x -> %x\n", base_32, size_32); 654 memblock_reserve(base_32, size_32); 655 } 656 return; 657 } 658 #endif 659 } 660 661 void __init early_init_devtree(void *params) 662 { 663 phys_addr_t limit; 664 665 DBG(" -> early_init_devtree(%p)\n", params); 666 667 /* Too early to BUG_ON(), do it by hand */ 668 if (!early_init_dt_verify(params)) 669 panic("BUG: Failed verifying flat device tree, bad version?"); 670 671 #ifdef CONFIG_PPC_RTAS 672 /* Some machines might need RTAS info for debugging, grab it now. */ 673 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 674 #endif 675 676 #ifdef CONFIG_PPC_POWERNV 677 /* Some machines might need OPAL info for debugging, grab it now. */ 678 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 679 #endif 680 681 #ifdef CONFIG_FA_DUMP 682 /* scan tree to see if dump is active during last boot */ 683 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 684 #endif 685 686 /* Retrieve various informations from the /chosen node of the 687 * device-tree, including the platform type, initrd location and 688 * size, TCE reserve, and more ... 689 */ 690 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 691 692 /* Scan memory nodes and rebuild MEMBLOCKs */ 693 of_scan_flat_dt(early_init_dt_scan_root, NULL); 694 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 695 696 parse_early_param(); 697 698 /* make sure we've parsed cmdline for mem= before this */ 699 if (memory_limit) 700 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 701 setup_initial_memory_limit(memstart_addr, first_memblock_size); 702 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 703 memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); 704 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 705 if (PHYSICAL_START > MEMORY_START) 706 memblock_reserve(MEMORY_START, 0x8000); 707 reserve_kdump_trampoline(); 708 #ifdef CONFIG_FA_DUMP 709 /* 710 * If we fail to reserve memory for firmware-assisted dump then 711 * fallback to kexec based kdump. 712 */ 713 if (fadump_reserve_mem() == 0) 714 #endif 715 reserve_crashkernel(); 716 early_reserve_mem(); 717 718 /* Ensure that total memory size is page-aligned. */ 719 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); 720 memblock_enforce_memory_limit(limit); 721 722 memblock_allow_resize(); 723 memblock_dump_all(); 724 725 DBG("Phys. mem: %llx\n", memblock_phys_mem_size()); 726 727 /* We may need to relocate the flat tree, do it now. 728 * FIXME .. and the initrd too? */ 729 move_device_tree(); 730 731 allocate_pacas(); 732 733 DBG("Scanning CPUs ...\n"); 734 735 dt_cpu_ftrs_scan(); 736 737 /* Retrieve CPU related informations from the flat tree 738 * (altivec support, boot CPU ID, ...) 739 */ 740 of_scan_flat_dt(early_init_dt_scan_cpus, NULL); 741 if (boot_cpuid < 0) { 742 printk("Failed to identify boot CPU !\n"); 743 BUG(); 744 } 745 746 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 747 /* We'll later wait for secondaries to check in; there are 748 * NCPUS-1 non-boot CPUs :-) 749 */ 750 spinning_secondaries = boot_cpu_count - 1; 751 #endif 752 753 mmu_early_init_devtree(); 754 755 #ifdef CONFIG_PPC_POWERNV 756 /* Scan and build the list of machine check recoverable ranges */ 757 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 758 #endif 759 epapr_paravirt_early_init(); 760 761 /* Now try to figure out if we are running on LPAR and so on */ 762 pseries_probe_fw_features(); 763 764 #ifdef CONFIG_PPC_PS3 765 /* Identify PS3 firmware */ 766 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) 767 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; 768 #endif 769 770 DBG(" <- early_init_devtree()\n"); 771 } 772 773 #ifdef CONFIG_RELOCATABLE 774 /* 775 * This function run before early_init_devtree, so we have to init 776 * initial_boot_params. 777 */ 778 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 779 { 780 /* Setup flat device-tree pointer */ 781 initial_boot_params = params; 782 783 /* 784 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 785 * mess the memblock. 786 */ 787 add_mem_to_memblock = 0; 788 of_scan_flat_dt(early_init_dt_scan_root, NULL); 789 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 790 add_mem_to_memblock = 1; 791 792 if (size) 793 *size = first_memblock_size; 794 } 795 #endif 796 797 /******* 798 * 799 * New implementation of the OF "find" APIs, return a refcounted 800 * object, call of_node_put() when done. The device tree and list 801 * are protected by a rw_lock. 802 * 803 * Note that property management will need some locking as well, 804 * this isn't dealt with yet. 805 * 806 *******/ 807 808 /** 809 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 810 * @np: device node of the device 811 * 812 * This looks for a property "ibm,chip-id" in the node or any 813 * of its parents and returns its content, or -1 if it cannot 814 * be found. 815 */ 816 int of_get_ibm_chip_id(struct device_node *np) 817 { 818 of_node_get(np); 819 while (np) { 820 u32 chip_id; 821 822 /* 823 * Skiboot may produce memory nodes that contain more than one 824 * cell in chip-id, we only read the first one here. 825 */ 826 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { 827 of_node_put(np); 828 return chip_id; 829 } 830 831 np = of_get_next_parent(np); 832 } 833 return -1; 834 } 835 EXPORT_SYMBOL(of_get_ibm_chip_id); 836 837 /** 838 * cpu_to_chip_id - Return the cpus chip-id 839 * @cpu: The logical cpu number. 840 * 841 * Return the value of the ibm,chip-id property corresponding to the given 842 * logical cpu number. If the chip-id can not be found, returns -1. 843 */ 844 int cpu_to_chip_id(int cpu) 845 { 846 struct device_node *np; 847 848 np = of_get_cpu_node(cpu, NULL); 849 if (!np) 850 return -1; 851 852 of_node_put(np); 853 return of_get_ibm_chip_id(np); 854 } 855 EXPORT_SYMBOL(cpu_to_chip_id); 856 857 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 858 { 859 return (int)phys_id == get_hard_smp_processor_id(cpu); 860 } 861