xref: /openbmc/linux/arch/powerpc/kernel/prom.c (revision cbbcf340)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 #undef DEBUG
17 
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
33 
34 #include <asm/prom.h>
35 #include <asm/rtas.h>
36 #include <asm/lmb.h>
37 #include <asm/page.h>
38 #include <asm/processor.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/smp.h>
43 #include <asm/system.h>
44 #include <asm/mmu.h>
45 #include <asm/pgtable.h>
46 #include <asm/pci.h>
47 #include <asm/iommu.h>
48 #include <asm/btext.h>
49 #include <asm/sections.h>
50 #include <asm/machdep.h>
51 #include <asm/pSeries_reconfig.h>
52 #include <asm/pci-bridge.h>
53 
54 #ifdef DEBUG
55 #define DBG(fmt...) printk(KERN_ERR fmt)
56 #else
57 #define DBG(fmt...)
58 #endif
59 
60 
61 static int __initdata dt_root_addr_cells;
62 static int __initdata dt_root_size_cells;
63 
64 #ifdef CONFIG_PPC64
65 static int __initdata iommu_is_off;
66 int __initdata iommu_force_on;
67 unsigned long tce_alloc_start, tce_alloc_end;
68 #endif
69 
70 typedef u32 cell_t;
71 
72 #if 0
73 static struct boot_param_header *initial_boot_params __initdata;
74 #else
75 struct boot_param_header *initial_boot_params;
76 #endif
77 
78 static struct device_node *allnodes = NULL;
79 
80 /* use when traversing tree through the allnext, child, sibling,
81  * or parent members of struct device_node.
82  */
83 static DEFINE_RWLOCK(devtree_lock);
84 
85 /* export that to outside world */
86 struct device_node *of_chosen;
87 
88 struct device_node *dflt_interrupt_controller;
89 int num_interrupt_controllers;
90 
91 /*
92  * Wrapper for allocating memory for various data that needs to be
93  * attached to device nodes as they are processed at boot or when
94  * added to the device tree later (e.g. DLPAR).  At boot there is
95  * already a region reserved so we just increment *mem_start by size;
96  * otherwise we call kmalloc.
97  */
98 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
99 {
100 	unsigned long tmp;
101 
102 	if (!mem_start)
103 		return kmalloc(size, GFP_KERNEL);
104 
105 	tmp = *mem_start;
106 	*mem_start += size;
107 	return (void *)tmp;
108 }
109 
110 /*
111  * Find the device_node with a given phandle.
112  */
113 static struct device_node * find_phandle(phandle ph)
114 {
115 	struct device_node *np;
116 
117 	for (np = allnodes; np != 0; np = np->allnext)
118 		if (np->linux_phandle == ph)
119 			return np;
120 	return NULL;
121 }
122 
123 /*
124  * Find the interrupt parent of a node.
125  */
126 static struct device_node * __devinit intr_parent(struct device_node *p)
127 {
128 	phandle *parp;
129 
130 	parp = (phandle *) get_property(p, "interrupt-parent", NULL);
131 	if (parp == NULL)
132 		return p->parent;
133 	p = find_phandle(*parp);
134 	if (p != NULL)
135 		return p;
136 	/*
137 	 * On a powermac booted with BootX, we don't get to know the
138 	 * phandles for any nodes, so find_phandle will return NULL.
139 	 * Fortunately these machines only have one interrupt controller
140 	 * so there isn't in fact any ambiguity.  -- paulus
141 	 */
142 	if (num_interrupt_controllers == 1)
143 		p = dflt_interrupt_controller;
144 	return p;
145 }
146 
147 /*
148  * Find out the size of each entry of the interrupts property
149  * for a node.
150  */
151 int __devinit prom_n_intr_cells(struct device_node *np)
152 {
153 	struct device_node *p;
154 	unsigned int *icp;
155 
156 	for (p = np; (p = intr_parent(p)) != NULL; ) {
157 		icp = (unsigned int *)
158 			get_property(p, "#interrupt-cells", NULL);
159 		if (icp != NULL)
160 			return *icp;
161 		if (get_property(p, "interrupt-controller", NULL) != NULL
162 		    || get_property(p, "interrupt-map", NULL) != NULL) {
163 			printk("oops, node %s doesn't have #interrupt-cells\n",
164 			       p->full_name);
165 			return 1;
166 		}
167 	}
168 #ifdef DEBUG_IRQ
169 	printk("prom_n_intr_cells failed for %s\n", np->full_name);
170 #endif
171 	return 1;
172 }
173 
174 /*
175  * Map an interrupt from a device up to the platform interrupt
176  * descriptor.
177  */
178 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
179 				   struct device_node *np, unsigned int *ints,
180 				   int nintrc)
181 {
182 	struct device_node *p, *ipar;
183 	unsigned int *imap, *imask, *ip;
184 	int i, imaplen, match;
185 	int newintrc = 0, newaddrc = 0;
186 	unsigned int *reg;
187 	int naddrc;
188 
189 	reg = (unsigned int *) get_property(np, "reg", NULL);
190 	naddrc = prom_n_addr_cells(np);
191 	p = intr_parent(np);
192 	while (p != NULL) {
193 		if (get_property(p, "interrupt-controller", NULL) != NULL)
194 			/* this node is an interrupt controller, stop here */
195 			break;
196 		imap = (unsigned int *)
197 			get_property(p, "interrupt-map", &imaplen);
198 		if (imap == NULL) {
199 			p = intr_parent(p);
200 			continue;
201 		}
202 		imask = (unsigned int *)
203 			get_property(p, "interrupt-map-mask", NULL);
204 		if (imask == NULL) {
205 			printk("oops, %s has interrupt-map but no mask\n",
206 			       p->full_name);
207 			return 0;
208 		}
209 		imaplen /= sizeof(unsigned int);
210 		match = 0;
211 		ipar = NULL;
212 		while (imaplen > 0 && !match) {
213 			/* check the child-interrupt field */
214 			match = 1;
215 			for (i = 0; i < naddrc && match; ++i)
216 				match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
217 			for (; i < naddrc + nintrc && match; ++i)
218 				match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
219 			imap += naddrc + nintrc;
220 			imaplen -= naddrc + nintrc;
221 			/* grab the interrupt parent */
222 			ipar = find_phandle((phandle) *imap++);
223 			--imaplen;
224 			if (ipar == NULL && num_interrupt_controllers == 1)
225 				/* cope with BootX not giving us phandles */
226 				ipar = dflt_interrupt_controller;
227 			if (ipar == NULL) {
228 				printk("oops, no int parent %x in map of %s\n",
229 				       imap[-1], p->full_name);
230 				return 0;
231 			}
232 			/* find the parent's # addr and intr cells */
233 			ip = (unsigned int *)
234 				get_property(ipar, "#interrupt-cells", NULL);
235 			if (ip == NULL) {
236 				printk("oops, no #interrupt-cells on %s\n",
237 				       ipar->full_name);
238 				return 0;
239 			}
240 			newintrc = *ip;
241 			ip = (unsigned int *)
242 				get_property(ipar, "#address-cells", NULL);
243 			newaddrc = (ip == NULL)? 0: *ip;
244 			imap += newaddrc + newintrc;
245 			imaplen -= newaddrc + newintrc;
246 		}
247 		if (imaplen < 0) {
248 			printk("oops, error decoding int-map on %s, len=%d\n",
249 			       p->full_name, imaplen);
250 			return 0;
251 		}
252 		if (!match) {
253 #ifdef DEBUG_IRQ
254 			printk("oops, no match in %s int-map for %s\n",
255 			       p->full_name, np->full_name);
256 #endif
257 			return 0;
258 		}
259 		p = ipar;
260 		naddrc = newaddrc;
261 		nintrc = newintrc;
262 		ints = imap - nintrc;
263 		reg = ints - naddrc;
264 	}
265 	if (p == NULL) {
266 #ifdef DEBUG_IRQ
267 		printk("hmmm, int tree for %s doesn't have ctrler\n",
268 		       np->full_name);
269 #endif
270 		return 0;
271 	}
272 	*irq = ints;
273 	*ictrler = p;
274 	return nintrc;
275 }
276 
277 static unsigned char map_isa_senses[4] = {
278 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
279 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
280 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
281 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
282 };
283 
284 static unsigned char map_mpic_senses[4] = {
285 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
286 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
287 	/* 2 seems to be used for the 8259 cascade... */
288 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
289 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
290 };
291 
292 static int __devinit finish_node_interrupts(struct device_node *np,
293 					    unsigned long *mem_start,
294 					    int measure_only)
295 {
296 	unsigned int *ints;
297 	int intlen, intrcells, intrcount;
298 	int i, j, n, sense;
299 	unsigned int *irq, virq;
300 	struct device_node *ic;
301 	int trace = 0;
302 
303 	//#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
304 #define TRACE(fmt...)
305 
306 	if (!strcmp(np->name, "smu-doorbell"))
307 		trace = 1;
308 
309 	TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
310 	      num_interrupt_controllers);
311 
312 	if (num_interrupt_controllers == 0) {
313 		/*
314 		 * Old machines just have a list of interrupt numbers
315 		 * and no interrupt-controller nodes.
316 		 */
317 		ints = (unsigned int *) get_property(np, "AAPL,interrupts",
318 						     &intlen);
319 		/* XXX old interpret_pci_props looked in parent too */
320 		/* XXX old interpret_macio_props looked for interrupts
321 		   before AAPL,interrupts */
322 		if (ints == NULL)
323 			ints = (unsigned int *) get_property(np, "interrupts",
324 							     &intlen);
325 		if (ints == NULL)
326 			return 0;
327 
328 		np->n_intrs = intlen / sizeof(unsigned int);
329 		np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
330 				       mem_start);
331 		if (!np->intrs)
332 			return -ENOMEM;
333 		if (measure_only)
334 			return 0;
335 
336 		for (i = 0; i < np->n_intrs; ++i) {
337 			np->intrs[i].line = *ints++;
338 			np->intrs[i].sense = IRQ_SENSE_LEVEL
339 				| IRQ_POLARITY_NEGATIVE;
340 		}
341 		return 0;
342 	}
343 
344 	ints = (unsigned int *) get_property(np, "interrupts", &intlen);
345 	TRACE("ints=%p, intlen=%d\n", ints, intlen);
346 	if (ints == NULL)
347 		return 0;
348 	intrcells = prom_n_intr_cells(np);
349 	intlen /= intrcells * sizeof(unsigned int);
350 	TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
351 	np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
352 	if (!np->intrs)
353 		return -ENOMEM;
354 
355 	if (measure_only)
356 		return 0;
357 
358 	intrcount = 0;
359 	for (i = 0; i < intlen; ++i, ints += intrcells) {
360 		n = map_interrupt(&irq, &ic, np, ints, intrcells);
361 		TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
362 		if (n <= 0)
363 			continue;
364 
365 		/* don't map IRQ numbers under a cascaded 8259 controller */
366 		if (ic && device_is_compatible(ic, "chrp,iic")) {
367 			np->intrs[intrcount].line = irq[0];
368 			sense = (n > 1)? (irq[1] & 3): 3;
369 			np->intrs[intrcount].sense = map_isa_senses[sense];
370 		} else {
371 			virq = virt_irq_create_mapping(irq[0]);
372 			TRACE("virq=%d\n", virq);
373 #ifdef CONFIG_PPC64
374 			if (virq == NO_IRQ) {
375 				printk(KERN_CRIT "Could not allocate interrupt"
376 				       " number for %s\n", np->full_name);
377 				continue;
378 			}
379 #endif
380 			np->intrs[intrcount].line = irq_offset_up(virq);
381 			sense = (n > 1)? (irq[1] & 3): 1;
382 
383 			/* Apple uses bits in there in a different way, let's
384 			 * only keep the real sense bit on macs
385 			 */
386 			if (_machine == PLATFORM_POWERMAC)
387 				sense &= 0x1;
388 			np->intrs[intrcount].sense = map_mpic_senses[sense];
389 		}
390 
391 #ifdef CONFIG_PPC64
392 		/* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
393 		if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
394 			char *name = get_property(ic->parent, "name", NULL);
395 			if (name && !strcmp(name, "u3"))
396 				np->intrs[intrcount].line += 128;
397 			else if (!(name && (!strcmp(name, "mac-io") ||
398 					    !strcmp(name, "u4"))))
399 				/* ignore other cascaded controllers, such as
400 				   the k2-sata-root */
401 				break;
402 		}
403 #endif /* CONFIG_PPC64 */
404 		if (n > 2) {
405 			printk("hmmm, got %d intr cells for %s:", n,
406 			       np->full_name);
407 			for (j = 0; j < n; ++j)
408 				printk(" %d", irq[j]);
409 			printk("\n");
410 		}
411 		++intrcount;
412 	}
413 	np->n_intrs = intrcount;
414 
415 	return 0;
416 }
417 
418 static int __devinit finish_node(struct device_node *np,
419 				 unsigned long *mem_start,
420 				 int measure_only)
421 {
422 	struct device_node *child;
423 	int rc = 0;
424 
425 	rc = finish_node_interrupts(np, mem_start, measure_only);
426 	if (rc)
427 		goto out;
428 
429 	for (child = np->child; child != NULL; child = child->sibling) {
430 		rc = finish_node(child, mem_start, measure_only);
431 		if (rc)
432 			goto out;
433 	}
434 out:
435 	return rc;
436 }
437 
438 static void __init scan_interrupt_controllers(void)
439 {
440 	struct device_node *np;
441 	int n = 0;
442 	char *name, *ic;
443 	int iclen;
444 
445 	for (np = allnodes; np != NULL; np = np->allnext) {
446 		ic = get_property(np, "interrupt-controller", &iclen);
447 		name = get_property(np, "name", NULL);
448 		/* checking iclen makes sure we don't get a false
449 		   match on /chosen.interrupt_controller */
450 		if ((name != NULL
451 		     && strcmp(name, "interrupt-controller") == 0)
452 		    || (ic != NULL && iclen == 0
453 			&& strcmp(name, "AppleKiwi"))) {
454 			if (n == 0)
455 				dflt_interrupt_controller = np;
456 			++n;
457 		}
458 	}
459 	num_interrupt_controllers = n;
460 }
461 
462 /**
463  * finish_device_tree is called once things are running normally
464  * (i.e. with text and data mapped to the address they were linked at).
465  * It traverses the device tree and fills in some of the additional,
466  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
467  * mapping is also initialized at this point.
468  */
469 void __init finish_device_tree(void)
470 {
471 	unsigned long start, end, size = 0;
472 
473 	DBG(" -> finish_device_tree\n");
474 
475 #ifdef CONFIG_PPC64
476 	/* Initialize virtual IRQ map */
477 	virt_irq_init();
478 #endif
479 	scan_interrupt_controllers();
480 
481 	/*
482 	 * Finish device-tree (pre-parsing some properties etc...)
483 	 * We do this in 2 passes. One with "measure_only" set, which
484 	 * will only measure the amount of memory needed, then we can
485 	 * allocate that memory, and call finish_node again. However,
486 	 * we must be careful as most routines will fail nowadays when
487 	 * prom_alloc() returns 0, so we must make sure our first pass
488 	 * doesn't start at 0. We pre-initialize size to 16 for that
489 	 * reason and then remove those additional 16 bytes
490 	 */
491 	size = 16;
492 	finish_node(allnodes, &size, 1);
493 	size -= 16;
494 	end = start = (unsigned long) __va(lmb_alloc(size, 128));
495 	finish_node(allnodes, &end, 0);
496 	BUG_ON(end != start + size);
497 
498 	DBG(" <- finish_device_tree\n");
499 }
500 
501 static inline char *find_flat_dt_string(u32 offset)
502 {
503 	return ((char *)initial_boot_params) +
504 		initial_boot_params->off_dt_strings + offset;
505 }
506 
507 /**
508  * This function is used to scan the flattened device-tree, it is
509  * used to extract the memory informations at boot before we can
510  * unflatten the tree
511  */
512 int __init of_scan_flat_dt(int (*it)(unsigned long node,
513 				     const char *uname, int depth,
514 				     void *data),
515 			   void *data)
516 {
517 	unsigned long p = ((unsigned long)initial_boot_params) +
518 		initial_boot_params->off_dt_struct;
519 	int rc = 0;
520 	int depth = -1;
521 
522 	do {
523 		u32 tag = *((u32 *)p);
524 		char *pathp;
525 
526 		p += 4;
527 		if (tag == OF_DT_END_NODE) {
528 			depth --;
529 			continue;
530 		}
531 		if (tag == OF_DT_NOP)
532 			continue;
533 		if (tag == OF_DT_END)
534 			break;
535 		if (tag == OF_DT_PROP) {
536 			u32 sz = *((u32 *)p);
537 			p += 8;
538 			if (initial_boot_params->version < 0x10)
539 				p = _ALIGN(p, sz >= 8 ? 8 : 4);
540 			p += sz;
541 			p = _ALIGN(p, 4);
542 			continue;
543 		}
544 		if (tag != OF_DT_BEGIN_NODE) {
545 			printk(KERN_WARNING "Invalid tag %x scanning flattened"
546 			       " device tree !\n", tag);
547 			return -EINVAL;
548 		}
549 		depth++;
550 		pathp = (char *)p;
551 		p = _ALIGN(p + strlen(pathp) + 1, 4);
552 		if ((*pathp) == '/') {
553 			char *lp, *np;
554 			for (lp = NULL, np = pathp; *np; np++)
555 				if ((*np) == '/')
556 					lp = np+1;
557 			if (lp != NULL)
558 				pathp = lp;
559 		}
560 		rc = it(p, pathp, depth, data);
561 		if (rc != 0)
562 			break;
563 	} while(1);
564 
565 	return rc;
566 }
567 
568 /**
569  * This  function can be used within scan_flattened_dt callback to get
570  * access to properties
571  */
572 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
573 				 unsigned long *size)
574 {
575 	unsigned long p = node;
576 
577 	do {
578 		u32 tag = *((u32 *)p);
579 		u32 sz, noff;
580 		const char *nstr;
581 
582 		p += 4;
583 		if (tag == OF_DT_NOP)
584 			continue;
585 		if (tag != OF_DT_PROP)
586 			return NULL;
587 
588 		sz = *((u32 *)p);
589 		noff = *((u32 *)(p + 4));
590 		p += 8;
591 		if (initial_boot_params->version < 0x10)
592 			p = _ALIGN(p, sz >= 8 ? 8 : 4);
593 
594 		nstr = find_flat_dt_string(noff);
595 		if (nstr == NULL) {
596 			printk(KERN_WARNING "Can't find property index"
597 			       " name !\n");
598 			return NULL;
599 		}
600 		if (strcmp(name, nstr) == 0) {
601 			if (size)
602 				*size = sz;
603 			return (void *)p;
604 		}
605 		p += sz;
606 		p = _ALIGN(p, 4);
607 	} while(1);
608 }
609 
610 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
611 				       unsigned long align)
612 {
613 	void *res;
614 
615 	*mem = _ALIGN(*mem, align);
616 	res = (void *)*mem;
617 	*mem += size;
618 
619 	return res;
620 }
621 
622 static unsigned long __init unflatten_dt_node(unsigned long mem,
623 					      unsigned long *p,
624 					      struct device_node *dad,
625 					      struct device_node ***allnextpp,
626 					      unsigned long fpsize)
627 {
628 	struct device_node *np;
629 	struct property *pp, **prev_pp = NULL;
630 	char *pathp;
631 	u32 tag;
632 	unsigned int l, allocl;
633 	int has_name = 0;
634 	int new_format = 0;
635 
636 	tag = *((u32 *)(*p));
637 	if (tag != OF_DT_BEGIN_NODE) {
638 		printk("Weird tag at start of node: %x\n", tag);
639 		return mem;
640 	}
641 	*p += 4;
642 	pathp = (char *)*p;
643 	l = allocl = strlen(pathp) + 1;
644 	*p = _ALIGN(*p + l, 4);
645 
646 	/* version 0x10 has a more compact unit name here instead of the full
647 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
648 	 * it later. We detect this because the first character of the name is
649 	 * not '/'.
650 	 */
651 	if ((*pathp) != '/') {
652 		new_format = 1;
653 		if (fpsize == 0) {
654 			/* root node: special case. fpsize accounts for path
655 			 * plus terminating zero. root node only has '/', so
656 			 * fpsize should be 2, but we want to avoid the first
657 			 * level nodes to have two '/' so we use fpsize 1 here
658 			 */
659 			fpsize = 1;
660 			allocl = 2;
661 		} else {
662 			/* account for '/' and path size minus terminal 0
663 			 * already in 'l'
664 			 */
665 			fpsize += l;
666 			allocl = fpsize;
667 		}
668 	}
669 
670 
671 	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
672 				__alignof__(struct device_node));
673 	if (allnextpp) {
674 		memset(np, 0, sizeof(*np));
675 		np->full_name = ((char*)np) + sizeof(struct device_node);
676 		if (new_format) {
677 			char *p = np->full_name;
678 			/* rebuild full path for new format */
679 			if (dad && dad->parent) {
680 				strcpy(p, dad->full_name);
681 #ifdef DEBUG
682 				if ((strlen(p) + l + 1) != allocl) {
683 					DBG("%s: p: %d, l: %d, a: %d\n",
684 					    pathp, strlen(p), l, allocl);
685 				}
686 #endif
687 				p += strlen(p);
688 			}
689 			*(p++) = '/';
690 			memcpy(p, pathp, l);
691 		} else
692 			memcpy(np->full_name, pathp, l);
693 		prev_pp = &np->properties;
694 		**allnextpp = np;
695 		*allnextpp = &np->allnext;
696 		if (dad != NULL) {
697 			np->parent = dad;
698 			/* we temporarily use the next field as `last_child'*/
699 			if (dad->next == 0)
700 				dad->child = np;
701 			else
702 				dad->next->sibling = np;
703 			dad->next = np;
704 		}
705 		kref_init(&np->kref);
706 	}
707 	while(1) {
708 		u32 sz, noff;
709 		char *pname;
710 
711 		tag = *((u32 *)(*p));
712 		if (tag == OF_DT_NOP) {
713 			*p += 4;
714 			continue;
715 		}
716 		if (tag != OF_DT_PROP)
717 			break;
718 		*p += 4;
719 		sz = *((u32 *)(*p));
720 		noff = *((u32 *)((*p) + 4));
721 		*p += 8;
722 		if (initial_boot_params->version < 0x10)
723 			*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
724 
725 		pname = find_flat_dt_string(noff);
726 		if (pname == NULL) {
727 			printk("Can't find property name in list !\n");
728 			break;
729 		}
730 		if (strcmp(pname, "name") == 0)
731 			has_name = 1;
732 		l = strlen(pname) + 1;
733 		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
734 					__alignof__(struct property));
735 		if (allnextpp) {
736 			if (strcmp(pname, "linux,phandle") == 0) {
737 				np->node = *((u32 *)*p);
738 				if (np->linux_phandle == 0)
739 					np->linux_phandle = np->node;
740 			}
741 			if (strcmp(pname, "ibm,phandle") == 0)
742 				np->linux_phandle = *((u32 *)*p);
743 			pp->name = pname;
744 			pp->length = sz;
745 			pp->value = (void *)*p;
746 			*prev_pp = pp;
747 			prev_pp = &pp->next;
748 		}
749 		*p = _ALIGN((*p) + sz, 4);
750 	}
751 	/* with version 0x10 we may not have the name property, recreate
752 	 * it here from the unit name if absent
753 	 */
754 	if (!has_name) {
755 		char *p = pathp, *ps = pathp, *pa = NULL;
756 		int sz;
757 
758 		while (*p) {
759 			if ((*p) == '@')
760 				pa = p;
761 			if ((*p) == '/')
762 				ps = p + 1;
763 			p++;
764 		}
765 		if (pa < ps)
766 			pa = p;
767 		sz = (pa - ps) + 1;
768 		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
769 					__alignof__(struct property));
770 		if (allnextpp) {
771 			pp->name = "name";
772 			pp->length = sz;
773 			pp->value = (unsigned char *)(pp + 1);
774 			*prev_pp = pp;
775 			prev_pp = &pp->next;
776 			memcpy(pp->value, ps, sz - 1);
777 			((char *)pp->value)[sz - 1] = 0;
778 			DBG("fixed up name for %s -> %s\n", pathp, pp->value);
779 		}
780 	}
781 	if (allnextpp) {
782 		*prev_pp = NULL;
783 		np->name = get_property(np, "name", NULL);
784 		np->type = get_property(np, "device_type", NULL);
785 
786 		if (!np->name)
787 			np->name = "<NULL>";
788 		if (!np->type)
789 			np->type = "<NULL>";
790 	}
791 	while (tag == OF_DT_BEGIN_NODE) {
792 		mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
793 		tag = *((u32 *)(*p));
794 	}
795 	if (tag != OF_DT_END_NODE) {
796 		printk("Weird tag at end of node: %x\n", tag);
797 		return mem;
798 	}
799 	*p += 4;
800 	return mem;
801 }
802 
803 
804 /**
805  * unflattens the device-tree passed by the firmware, creating the
806  * tree of struct device_node. It also fills the "name" and "type"
807  * pointers of the nodes so the normal device-tree walking functions
808  * can be used (this used to be done by finish_device_tree)
809  */
810 void __init unflatten_device_tree(void)
811 {
812 	unsigned long start, mem, size;
813 	struct device_node **allnextp = &allnodes;
814 	char *p = NULL;
815 	int l = 0;
816 
817 	DBG(" -> unflatten_device_tree()\n");
818 
819 	/* First pass, scan for size */
820 	start = ((unsigned long)initial_boot_params) +
821 		initial_boot_params->off_dt_struct;
822 	size = unflatten_dt_node(0, &start, NULL, NULL, 0);
823 	size = (size | 3) + 1;
824 
825 	DBG("  size is %lx, allocating...\n", size);
826 
827 	/* Allocate memory for the expanded device tree */
828 	mem = lmb_alloc(size + 4, __alignof__(struct device_node));
829 	if (!mem) {
830 		DBG("Couldn't allocate memory with lmb_alloc()!\n");
831 		panic("Couldn't allocate memory with lmb_alloc()!\n");
832 	}
833 	mem = (unsigned long) __va(mem);
834 
835 	((u32 *)mem)[size / 4] = 0xdeadbeef;
836 
837 	DBG("  unflattening %lx...\n", mem);
838 
839 	/* Second pass, do actual unflattening */
840 	start = ((unsigned long)initial_boot_params) +
841 		initial_boot_params->off_dt_struct;
842 	unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
843 	if (*((u32 *)start) != OF_DT_END)
844 		printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
845 	if (((u32 *)mem)[size / 4] != 0xdeadbeef)
846 		printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
847 		       ((u32 *)mem)[size / 4] );
848 	*allnextp = NULL;
849 
850 	/* Get pointer to OF "/chosen" node for use everywhere */
851 	of_chosen = of_find_node_by_path("/chosen");
852 	if (of_chosen == NULL)
853 		of_chosen = of_find_node_by_path("/chosen@0");
854 
855 	/* Retreive command line */
856 	if (of_chosen != NULL) {
857 		p = (char *)get_property(of_chosen, "bootargs", &l);
858 		if (p != NULL && l > 0)
859 			strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
860 	}
861 #ifdef CONFIG_CMDLINE
862 	if (l == 0 || (l == 1 && (*p) == 0))
863 		strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
864 #endif /* CONFIG_CMDLINE */
865 
866 	DBG("Command line is: %s\n", cmd_line);
867 
868 	DBG(" <- unflatten_device_tree()\n");
869 }
870 
871 
872 static int __init early_init_dt_scan_cpus(unsigned long node,
873 					  const char *uname, int depth, void *data)
874 {
875 	u32 *prop;
876 	unsigned long size;
877 	char *type = of_get_flat_dt_prop(node, "device_type", &size);
878 
879 	/* We are scanning "cpu" nodes only */
880 	if (type == NULL || strcmp(type, "cpu") != 0)
881 		return 0;
882 
883 	boot_cpuid = 0;
884 	boot_cpuid_phys = 0;
885 	if (initial_boot_params && initial_boot_params->version >= 2) {
886 		/* version 2 of the kexec param format adds the phys cpuid
887 		 * of booted proc.
888 		 */
889 		boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
890 	} else {
891 		/* Check if it's the boot-cpu, set it's hw index now */
892 		if (of_get_flat_dt_prop(node,
893 					"linux,boot-cpu", NULL) != NULL) {
894 			prop = of_get_flat_dt_prop(node, "reg", NULL);
895 			if (prop != NULL)
896 				boot_cpuid_phys = *prop;
897 		}
898 	}
899 	set_hard_smp_processor_id(0, boot_cpuid_phys);
900 
901 #ifdef CONFIG_ALTIVEC
902 	/* Check if we have a VMX and eventually update CPU features */
903 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
904 	if (prop && (*prop) > 0) {
905 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
906 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
907 	}
908 
909 	/* Same goes for Apple's "altivec" property */
910 	prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
911 	if (prop) {
912 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
913 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
914 	}
915 #endif /* CONFIG_ALTIVEC */
916 
917 #ifdef CONFIG_PPC_PSERIES
918 	/*
919 	 * Check for an SMT capable CPU and set the CPU feature. We do
920 	 * this by looking at the size of the ibm,ppc-interrupt-server#s
921 	 * property
922 	 */
923 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
924 				       &size);
925 	cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
926 	if (prop && ((size / sizeof(u32)) > 1))
927 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
928 #endif
929 
930 	return 0;
931 }
932 
933 static int __init early_init_dt_scan_chosen(unsigned long node,
934 					    const char *uname, int depth, void *data)
935 {
936 	u32 *prop;
937 	unsigned long *lprop;
938 
939 	DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
940 
941 	if (depth != 1 ||
942 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
943 		return 0;
944 
945 	/* get platform type */
946 	prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
947 	if (prop == NULL)
948 		return 0;
949 #ifdef CONFIG_PPC_MULTIPLATFORM
950 	_machine = *prop;
951 #endif
952 
953 #ifdef CONFIG_PPC64
954 	/* check if iommu is forced on or off */
955 	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
956 		iommu_is_off = 1;
957 	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
958 		iommu_force_on = 1;
959 #endif
960 
961  	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
962  	if (lprop)
963  		memory_limit = *lprop;
964 
965 #ifdef CONFIG_PPC64
966  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
967  	if (lprop)
968  		tce_alloc_start = *lprop;
969  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
970  	if (lprop)
971  		tce_alloc_end = *lprop;
972 #endif
973 
974 #ifdef CONFIG_PPC_RTAS
975 	/* To help early debugging via the front panel, we retrieve a minimal
976 	 * set of RTAS infos now if available
977 	 */
978 	{
979 		u64 *basep, *entryp;
980 
981 		basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
982 		entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
983 		prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
984 		if (basep && entryp && prop) {
985 			rtas.base = *basep;
986 			rtas.entry = *entryp;
987 			rtas.size = *prop;
988 		}
989 	}
990 #endif /* CONFIG_PPC_RTAS */
991 
992 #ifdef CONFIG_KEXEC
993        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
994        if (lprop)
995                crashk_res.start = *lprop;
996 
997        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
998        if (lprop)
999                crashk_res.end = crashk_res.start + *lprop - 1;
1000 #endif
1001 
1002 	/* break now */
1003 	return 1;
1004 }
1005 
1006 static int __init early_init_dt_scan_root(unsigned long node,
1007 					  const char *uname, int depth, void *data)
1008 {
1009 	u32 *prop;
1010 
1011 	if (depth != 0)
1012 		return 0;
1013 
1014 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1015 	dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1016 	DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1017 
1018 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1019 	dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1020 	DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1021 
1022 	/* break now */
1023 	return 1;
1024 }
1025 
1026 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1027 {
1028 	cell_t *p = *cellp;
1029 	unsigned long r;
1030 
1031 	/* Ignore more than 2 cells */
1032 	while (s > sizeof(unsigned long) / 4) {
1033 		p++;
1034 		s--;
1035 	}
1036 	r = *p++;
1037 #ifdef CONFIG_PPC64
1038 	if (s > 1) {
1039 		r <<= 32;
1040 		r |= *(p++);
1041 		s--;
1042 	}
1043 #endif
1044 
1045 	*cellp = p;
1046 	return r;
1047 }
1048 
1049 
1050 static int __init early_init_dt_scan_memory(unsigned long node,
1051 					    const char *uname, int depth, void *data)
1052 {
1053 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1054 	cell_t *reg, *endp;
1055 	unsigned long l;
1056 
1057 	/* We are scanning "memory" nodes only */
1058 	if (type == NULL) {
1059 		/*
1060 		 * The longtrail doesn't have a device_type on the
1061 		 * /memory node, so look for the node called /memory@0.
1062 		 */
1063 		if (depth != 1 || strcmp(uname, "memory@0") != 0)
1064 			return 0;
1065 	} else if (strcmp(type, "memory") != 0)
1066 		return 0;
1067 
1068 	reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1069 	if (reg == NULL)
1070 		reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1071 	if (reg == NULL)
1072 		return 0;
1073 
1074 	endp = reg + (l / sizeof(cell_t));
1075 
1076 	DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1077 	    uname, l, reg[0], reg[1], reg[2], reg[3]);
1078 
1079 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1080 		unsigned long base, size;
1081 
1082 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1083 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1084 
1085 		if (size == 0)
1086 			continue;
1087 		DBG(" - %lx ,  %lx\n", base, size);
1088 #ifdef CONFIG_PPC64
1089 		if (iommu_is_off) {
1090 			if (base >= 0x80000000ul)
1091 				continue;
1092 			if ((base + size) > 0x80000000ul)
1093 				size = 0x80000000ul - base;
1094 		}
1095 #endif
1096 		lmb_add(base, size);
1097 	}
1098 	return 0;
1099 }
1100 
1101 static void __init early_reserve_mem(void)
1102 {
1103 	u64 base, size;
1104 	u64 *reserve_map;
1105 
1106 	reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1107 					initial_boot_params->off_mem_rsvmap);
1108 #ifdef CONFIG_PPC32
1109 	/*
1110 	 * Handle the case where we might be booting from an old kexec
1111 	 * image that setup the mem_rsvmap as pairs of 32-bit values
1112 	 */
1113 	if (*reserve_map > 0xffffffffull) {
1114 		u32 base_32, size_32;
1115 		u32 *reserve_map_32 = (u32 *)reserve_map;
1116 
1117 		while (1) {
1118 			base_32 = *(reserve_map_32++);
1119 			size_32 = *(reserve_map_32++);
1120 			if (size_32 == 0)
1121 				break;
1122 			DBG("reserving: %lx -> %lx\n", base_32, size_32);
1123 			lmb_reserve(base_32, size_32);
1124 		}
1125 		return;
1126 	}
1127 #endif
1128 	while (1) {
1129 		base = *(reserve_map++);
1130 		size = *(reserve_map++);
1131 		if (size == 0)
1132 			break;
1133 		DBG("reserving: %llx -> %llx\n", base, size);
1134 		lmb_reserve(base, size);
1135 	}
1136 
1137 #if 0
1138 	DBG("memory reserved, lmbs :\n");
1139       	lmb_dump_all();
1140 #endif
1141 }
1142 
1143 void __init early_init_devtree(void *params)
1144 {
1145 	DBG(" -> early_init_devtree()\n");
1146 
1147 	/* Setup flat device-tree pointer */
1148 	initial_boot_params = params;
1149 
1150 	/* Retrieve various informations from the /chosen node of the
1151 	 * device-tree, including the platform type, initrd location and
1152 	 * size, TCE reserve, and more ...
1153 	 */
1154 	of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1155 
1156 	/* Scan memory nodes and rebuild LMBs */
1157 	lmb_init();
1158 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1159 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1160 	lmb_enforce_memory_limit(memory_limit);
1161 	lmb_analyze();
1162 
1163 	DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1164 
1165 	/* Reserve LMB regions used by kernel, initrd, dt, etc... */
1166 	lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1167 #ifdef CONFIG_CRASH_DUMP
1168 	lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1169 #endif
1170 	early_reserve_mem();
1171 
1172 	DBG("Scanning CPUs ...\n");
1173 
1174 	/* Retreive CPU related informations from the flat tree
1175 	 * (altivec support, boot CPU ID, ...)
1176 	 */
1177 	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1178 
1179 	DBG(" <- early_init_devtree()\n");
1180 }
1181 
1182 #undef printk
1183 
1184 int
1185 prom_n_addr_cells(struct device_node* np)
1186 {
1187 	int* ip;
1188 	do {
1189 		if (np->parent)
1190 			np = np->parent;
1191 		ip = (int *) get_property(np, "#address-cells", NULL);
1192 		if (ip != NULL)
1193 			return *ip;
1194 	} while (np->parent);
1195 	/* No #address-cells property for the root node, default to 1 */
1196 	return 1;
1197 }
1198 EXPORT_SYMBOL(prom_n_addr_cells);
1199 
1200 int
1201 prom_n_size_cells(struct device_node* np)
1202 {
1203 	int* ip;
1204 	do {
1205 		if (np->parent)
1206 			np = np->parent;
1207 		ip = (int *) get_property(np, "#size-cells", NULL);
1208 		if (ip != NULL)
1209 			return *ip;
1210 	} while (np->parent);
1211 	/* No #size-cells property for the root node, default to 1 */
1212 	return 1;
1213 }
1214 EXPORT_SYMBOL(prom_n_size_cells);
1215 
1216 /**
1217  * Work out the sense (active-low level / active-high edge)
1218  * of each interrupt from the device tree.
1219  */
1220 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1221 {
1222 	struct device_node *np;
1223 	int i, j;
1224 
1225 	/* default to level-triggered */
1226 	memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1227 
1228 	for (np = allnodes; np != 0; np = np->allnext) {
1229 		for (j = 0; j < np->n_intrs; j++) {
1230 			i = np->intrs[j].line;
1231 			if (i >= off && i < max)
1232 				senses[i-off] = np->intrs[j].sense;
1233 		}
1234 	}
1235 }
1236 
1237 /**
1238  * Construct and return a list of the device_nodes with a given name.
1239  */
1240 struct device_node *find_devices(const char *name)
1241 {
1242 	struct device_node *head, **prevp, *np;
1243 
1244 	prevp = &head;
1245 	for (np = allnodes; np != 0; np = np->allnext) {
1246 		if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1247 			*prevp = np;
1248 			prevp = &np->next;
1249 		}
1250 	}
1251 	*prevp = NULL;
1252 	return head;
1253 }
1254 EXPORT_SYMBOL(find_devices);
1255 
1256 /**
1257  * Construct and return a list of the device_nodes with a given type.
1258  */
1259 struct device_node *find_type_devices(const char *type)
1260 {
1261 	struct device_node *head, **prevp, *np;
1262 
1263 	prevp = &head;
1264 	for (np = allnodes; np != 0; np = np->allnext) {
1265 		if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1266 			*prevp = np;
1267 			prevp = &np->next;
1268 		}
1269 	}
1270 	*prevp = NULL;
1271 	return head;
1272 }
1273 EXPORT_SYMBOL(find_type_devices);
1274 
1275 /**
1276  * Returns all nodes linked together
1277  */
1278 struct device_node *find_all_nodes(void)
1279 {
1280 	struct device_node *head, **prevp, *np;
1281 
1282 	prevp = &head;
1283 	for (np = allnodes; np != 0; np = np->allnext) {
1284 		*prevp = np;
1285 		prevp = &np->next;
1286 	}
1287 	*prevp = NULL;
1288 	return head;
1289 }
1290 EXPORT_SYMBOL(find_all_nodes);
1291 
1292 /** Checks if the given "compat" string matches one of the strings in
1293  * the device's "compatible" property
1294  */
1295 int device_is_compatible(struct device_node *device, const char *compat)
1296 {
1297 	const char* cp;
1298 	int cplen, l;
1299 
1300 	cp = (char *) get_property(device, "compatible", &cplen);
1301 	if (cp == NULL)
1302 		return 0;
1303 	while (cplen > 0) {
1304 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
1305 			return 1;
1306 		l = strlen(cp) + 1;
1307 		cp += l;
1308 		cplen -= l;
1309 	}
1310 
1311 	return 0;
1312 }
1313 EXPORT_SYMBOL(device_is_compatible);
1314 
1315 
1316 /**
1317  * Indicates whether the root node has a given value in its
1318  * compatible property.
1319  */
1320 int machine_is_compatible(const char *compat)
1321 {
1322 	struct device_node *root;
1323 	int rc = 0;
1324 
1325 	root = of_find_node_by_path("/");
1326 	if (root) {
1327 		rc = device_is_compatible(root, compat);
1328 		of_node_put(root);
1329 	}
1330 	return rc;
1331 }
1332 EXPORT_SYMBOL(machine_is_compatible);
1333 
1334 /**
1335  * Construct and return a list of the device_nodes with a given type
1336  * and compatible property.
1337  */
1338 struct device_node *find_compatible_devices(const char *type,
1339 					    const char *compat)
1340 {
1341 	struct device_node *head, **prevp, *np;
1342 
1343 	prevp = &head;
1344 	for (np = allnodes; np != 0; np = np->allnext) {
1345 		if (type != NULL
1346 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1347 			continue;
1348 		if (device_is_compatible(np, compat)) {
1349 			*prevp = np;
1350 			prevp = &np->next;
1351 		}
1352 	}
1353 	*prevp = NULL;
1354 	return head;
1355 }
1356 EXPORT_SYMBOL(find_compatible_devices);
1357 
1358 /**
1359  * Find the device_node with a given full_name.
1360  */
1361 struct device_node *find_path_device(const char *path)
1362 {
1363 	struct device_node *np;
1364 
1365 	for (np = allnodes; np != 0; np = np->allnext)
1366 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1367 			return np;
1368 	return NULL;
1369 }
1370 EXPORT_SYMBOL(find_path_device);
1371 
1372 /*******
1373  *
1374  * New implementation of the OF "find" APIs, return a refcounted
1375  * object, call of_node_put() when done.  The device tree and list
1376  * are protected by a rw_lock.
1377  *
1378  * Note that property management will need some locking as well,
1379  * this isn't dealt with yet.
1380  *
1381  *******/
1382 
1383 /**
1384  *	of_find_node_by_name - Find a node by its "name" property
1385  *	@from:	The node to start searching from or NULL, the node
1386  *		you pass will not be searched, only the next one
1387  *		will; typically, you pass what the previous call
1388  *		returned. of_node_put() will be called on it
1389  *	@name:	The name string to match against
1390  *
1391  *	Returns a node pointer with refcount incremented, use
1392  *	of_node_put() on it when done.
1393  */
1394 struct device_node *of_find_node_by_name(struct device_node *from,
1395 	const char *name)
1396 {
1397 	struct device_node *np;
1398 
1399 	read_lock(&devtree_lock);
1400 	np = from ? from->allnext : allnodes;
1401 	for (; np != 0; np = np->allnext)
1402 		if (np->name != 0 && strcasecmp(np->name, name) == 0
1403 		    && of_node_get(np))
1404 			break;
1405 	if (from)
1406 		of_node_put(from);
1407 	read_unlock(&devtree_lock);
1408 	return np;
1409 }
1410 EXPORT_SYMBOL(of_find_node_by_name);
1411 
1412 /**
1413  *	of_find_node_by_type - Find a node by its "device_type" property
1414  *	@from:	The node to start searching from or NULL, the node
1415  *		you pass will not be searched, only the next one
1416  *		will; typically, you pass what the previous call
1417  *		returned. of_node_put() will be called on it
1418  *	@name:	The type string to match against
1419  *
1420  *	Returns a node pointer with refcount incremented, use
1421  *	of_node_put() on it when done.
1422  */
1423 struct device_node *of_find_node_by_type(struct device_node *from,
1424 	const char *type)
1425 {
1426 	struct device_node *np;
1427 
1428 	read_lock(&devtree_lock);
1429 	np = from ? from->allnext : allnodes;
1430 	for (; np != 0; np = np->allnext)
1431 		if (np->type != 0 && strcasecmp(np->type, type) == 0
1432 		    && of_node_get(np))
1433 			break;
1434 	if (from)
1435 		of_node_put(from);
1436 	read_unlock(&devtree_lock);
1437 	return np;
1438 }
1439 EXPORT_SYMBOL(of_find_node_by_type);
1440 
1441 /**
1442  *	of_find_compatible_node - Find a node based on type and one of the
1443  *                                tokens in its "compatible" property
1444  *	@from:		The node to start searching from or NULL, the node
1445  *			you pass will not be searched, only the next one
1446  *			will; typically, you pass what the previous call
1447  *			returned. of_node_put() will be called on it
1448  *	@type:		The type string to match "device_type" or NULL to ignore
1449  *	@compatible:	The string to match to one of the tokens in the device
1450  *			"compatible" list.
1451  *
1452  *	Returns a node pointer with refcount incremented, use
1453  *	of_node_put() on it when done.
1454  */
1455 struct device_node *of_find_compatible_node(struct device_node *from,
1456 	const char *type, const char *compatible)
1457 {
1458 	struct device_node *np;
1459 
1460 	read_lock(&devtree_lock);
1461 	np = from ? from->allnext : allnodes;
1462 	for (; np != 0; np = np->allnext) {
1463 		if (type != NULL
1464 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1465 			continue;
1466 		if (device_is_compatible(np, compatible) && of_node_get(np))
1467 			break;
1468 	}
1469 	if (from)
1470 		of_node_put(from);
1471 	read_unlock(&devtree_lock);
1472 	return np;
1473 }
1474 EXPORT_SYMBOL(of_find_compatible_node);
1475 
1476 /**
1477  *	of_find_node_by_path - Find a node matching a full OF path
1478  *	@path:	The full path to match
1479  *
1480  *	Returns a node pointer with refcount incremented, use
1481  *	of_node_put() on it when done.
1482  */
1483 struct device_node *of_find_node_by_path(const char *path)
1484 {
1485 	struct device_node *np = allnodes;
1486 
1487 	read_lock(&devtree_lock);
1488 	for (; np != 0; np = np->allnext) {
1489 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1490 		    && of_node_get(np))
1491 			break;
1492 	}
1493 	read_unlock(&devtree_lock);
1494 	return np;
1495 }
1496 EXPORT_SYMBOL(of_find_node_by_path);
1497 
1498 /**
1499  *	of_find_node_by_phandle - Find a node given a phandle
1500  *	@handle:	phandle of the node to find
1501  *
1502  *	Returns a node pointer with refcount incremented, use
1503  *	of_node_put() on it when done.
1504  */
1505 struct device_node *of_find_node_by_phandle(phandle handle)
1506 {
1507 	struct device_node *np;
1508 
1509 	read_lock(&devtree_lock);
1510 	for (np = allnodes; np != 0; np = np->allnext)
1511 		if (np->linux_phandle == handle)
1512 			break;
1513 	if (np)
1514 		of_node_get(np);
1515 	read_unlock(&devtree_lock);
1516 	return np;
1517 }
1518 EXPORT_SYMBOL(of_find_node_by_phandle);
1519 
1520 /**
1521  *	of_find_all_nodes - Get next node in global list
1522  *	@prev:	Previous node or NULL to start iteration
1523  *		of_node_put() will be called on it
1524  *
1525  *	Returns a node pointer with refcount incremented, use
1526  *	of_node_put() on it when done.
1527  */
1528 struct device_node *of_find_all_nodes(struct device_node *prev)
1529 {
1530 	struct device_node *np;
1531 
1532 	read_lock(&devtree_lock);
1533 	np = prev ? prev->allnext : allnodes;
1534 	for (; np != 0; np = np->allnext)
1535 		if (of_node_get(np))
1536 			break;
1537 	if (prev)
1538 		of_node_put(prev);
1539 	read_unlock(&devtree_lock);
1540 	return np;
1541 }
1542 EXPORT_SYMBOL(of_find_all_nodes);
1543 
1544 /**
1545  *	of_get_parent - Get a node's parent if any
1546  *	@node:	Node to get parent
1547  *
1548  *	Returns a node pointer with refcount incremented, use
1549  *	of_node_put() on it when done.
1550  */
1551 struct device_node *of_get_parent(const struct device_node *node)
1552 {
1553 	struct device_node *np;
1554 
1555 	if (!node)
1556 		return NULL;
1557 
1558 	read_lock(&devtree_lock);
1559 	np = of_node_get(node->parent);
1560 	read_unlock(&devtree_lock);
1561 	return np;
1562 }
1563 EXPORT_SYMBOL(of_get_parent);
1564 
1565 /**
1566  *	of_get_next_child - Iterate a node childs
1567  *	@node:	parent node
1568  *	@prev:	previous child of the parent node, or NULL to get first
1569  *
1570  *	Returns a node pointer with refcount incremented, use
1571  *	of_node_put() on it when done.
1572  */
1573 struct device_node *of_get_next_child(const struct device_node *node,
1574 	struct device_node *prev)
1575 {
1576 	struct device_node *next;
1577 
1578 	read_lock(&devtree_lock);
1579 	next = prev ? prev->sibling : node->child;
1580 	for (; next != 0; next = next->sibling)
1581 		if (of_node_get(next))
1582 			break;
1583 	if (prev)
1584 		of_node_put(prev);
1585 	read_unlock(&devtree_lock);
1586 	return next;
1587 }
1588 EXPORT_SYMBOL(of_get_next_child);
1589 
1590 /**
1591  *	of_node_get - Increment refcount of a node
1592  *	@node:	Node to inc refcount, NULL is supported to
1593  *		simplify writing of callers
1594  *
1595  *	Returns node.
1596  */
1597 struct device_node *of_node_get(struct device_node *node)
1598 {
1599 	if (node)
1600 		kref_get(&node->kref);
1601 	return node;
1602 }
1603 EXPORT_SYMBOL(of_node_get);
1604 
1605 static inline struct device_node * kref_to_device_node(struct kref *kref)
1606 {
1607 	return container_of(kref, struct device_node, kref);
1608 }
1609 
1610 /**
1611  *	of_node_release - release a dynamically allocated node
1612  *	@kref:  kref element of the node to be released
1613  *
1614  *	In of_node_put() this function is passed to kref_put()
1615  *	as the destructor.
1616  */
1617 static void of_node_release(struct kref *kref)
1618 {
1619 	struct device_node *node = kref_to_device_node(kref);
1620 	struct property *prop = node->properties;
1621 
1622 	if (!OF_IS_DYNAMIC(node))
1623 		return;
1624 	while (prop) {
1625 		struct property *next = prop->next;
1626 		kfree(prop->name);
1627 		kfree(prop->value);
1628 		kfree(prop);
1629 		prop = next;
1630 	}
1631 	kfree(node->intrs);
1632 	kfree(node->full_name);
1633 	kfree(node->data);
1634 	kfree(node);
1635 }
1636 
1637 /**
1638  *	of_node_put - Decrement refcount of a node
1639  *	@node:	Node to dec refcount, NULL is supported to
1640  *		simplify writing of callers
1641  *
1642  */
1643 void of_node_put(struct device_node *node)
1644 {
1645 	if (node)
1646 		kref_put(&node->kref, of_node_release);
1647 }
1648 EXPORT_SYMBOL(of_node_put);
1649 
1650 /*
1651  * Plug a device node into the tree and global list.
1652  */
1653 void of_attach_node(struct device_node *np)
1654 {
1655 	write_lock(&devtree_lock);
1656 	np->sibling = np->parent->child;
1657 	np->allnext = allnodes;
1658 	np->parent->child = np;
1659 	allnodes = np;
1660 	write_unlock(&devtree_lock);
1661 }
1662 
1663 /*
1664  * "Unplug" a node from the device tree.  The caller must hold
1665  * a reference to the node.  The memory associated with the node
1666  * is not freed until its refcount goes to zero.
1667  */
1668 void of_detach_node(const struct device_node *np)
1669 {
1670 	struct device_node *parent;
1671 
1672 	write_lock(&devtree_lock);
1673 
1674 	parent = np->parent;
1675 
1676 	if (allnodes == np)
1677 		allnodes = np->allnext;
1678 	else {
1679 		struct device_node *prev;
1680 		for (prev = allnodes;
1681 		     prev->allnext != np;
1682 		     prev = prev->allnext)
1683 			;
1684 		prev->allnext = np->allnext;
1685 	}
1686 
1687 	if (parent->child == np)
1688 		parent->child = np->sibling;
1689 	else {
1690 		struct device_node *prevsib;
1691 		for (prevsib = np->parent->child;
1692 		     prevsib->sibling != np;
1693 		     prevsib = prevsib->sibling)
1694 			;
1695 		prevsib->sibling = np->sibling;
1696 	}
1697 
1698 	write_unlock(&devtree_lock);
1699 }
1700 
1701 #ifdef CONFIG_PPC_PSERIES
1702 /*
1703  * Fix up the uninitialized fields in a new device node:
1704  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1705  *
1706  * A lot of boot-time code is duplicated here, because functions such
1707  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1708  * slab allocator.
1709  *
1710  * This should probably be split up into smaller chunks.
1711  */
1712 
1713 static int of_finish_dynamic_node(struct device_node *node)
1714 {
1715 	struct device_node *parent = of_get_parent(node);
1716 	int err = 0;
1717 	phandle *ibm_phandle;
1718 
1719 	node->name = get_property(node, "name", NULL);
1720 	node->type = get_property(node, "device_type", NULL);
1721 
1722 	if (!parent) {
1723 		err = -ENODEV;
1724 		goto out;
1725 	}
1726 
1727 	/* We don't support that function on PowerMac, at least
1728 	 * not yet
1729 	 */
1730 	if (_machine == PLATFORM_POWERMAC)
1731 		return -ENODEV;
1732 
1733 	/* fix up new node's linux_phandle field */
1734 	if ((ibm_phandle = (unsigned int *)get_property(node,
1735 							"ibm,phandle", NULL)))
1736 		node->linux_phandle = *ibm_phandle;
1737 
1738 out:
1739 	of_node_put(parent);
1740 	return err;
1741 }
1742 
1743 static int prom_reconfig_notifier(struct notifier_block *nb,
1744 				  unsigned long action, void *node)
1745 {
1746 	int err;
1747 
1748 	switch (action) {
1749 	case PSERIES_RECONFIG_ADD:
1750 		err = of_finish_dynamic_node(node);
1751 		if (!err)
1752 			finish_node(node, NULL, 0);
1753 		if (err < 0) {
1754 			printk(KERN_ERR "finish_node returned %d\n", err);
1755 			err = NOTIFY_BAD;
1756 		}
1757 		break;
1758 	default:
1759 		err = NOTIFY_DONE;
1760 		break;
1761 	}
1762 	return err;
1763 }
1764 
1765 static struct notifier_block prom_reconfig_nb = {
1766 	.notifier_call = prom_reconfig_notifier,
1767 	.priority = 10, /* This one needs to run first */
1768 };
1769 
1770 static int __init prom_reconfig_setup(void)
1771 {
1772 	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1773 }
1774 __initcall(prom_reconfig_setup);
1775 #endif
1776 
1777 /*
1778  * Find a property with a given name for a given node
1779  * and return the value.
1780  */
1781 unsigned char *get_property(struct device_node *np, const char *name,
1782 			    int *lenp)
1783 {
1784 	struct property *pp;
1785 
1786 	for (pp = np->properties; pp != 0; pp = pp->next)
1787 		if (strcmp(pp->name, name) == 0) {
1788 			if (lenp != 0)
1789 				*lenp = pp->length;
1790 			return pp->value;
1791 		}
1792 	return NULL;
1793 }
1794 EXPORT_SYMBOL(get_property);
1795 
1796 /*
1797  * Add a property to a node
1798  */
1799 int prom_add_property(struct device_node* np, struct property* prop)
1800 {
1801 	struct property **next;
1802 
1803 	prop->next = NULL;
1804 	write_lock(&devtree_lock);
1805 	next = &np->properties;
1806 	while (*next) {
1807 		if (strcmp(prop->name, (*next)->name) == 0) {
1808 			/* duplicate ! don't insert it */
1809 			write_unlock(&devtree_lock);
1810 			return -1;
1811 		}
1812 		next = &(*next)->next;
1813 	}
1814 	*next = prop;
1815 	write_unlock(&devtree_lock);
1816 
1817 #ifdef CONFIG_PROC_DEVICETREE
1818 	/* try to add to proc as well if it was initialized */
1819 	if (np->pde)
1820 		proc_device_tree_add_prop(np->pde, prop);
1821 #endif /* CONFIG_PROC_DEVICETREE */
1822 
1823 	return 0;
1824 }
1825 
1826 
1827