1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 */ 11 12 #undef DEBUG 13 14 #include <stdarg.h> 15 #include <linux/kernel.h> 16 #include <linux/string.h> 17 #include <linux/init.h> 18 #include <linux/threads.h> 19 #include <linux/spinlock.h> 20 #include <linux/types.h> 21 #include <linux/pci.h> 22 #include <linux/delay.h> 23 #include <linux/initrd.h> 24 #include <linux/bitops.h> 25 #include <linux/export.h> 26 #include <linux/kexec.h> 27 #include <linux/irq.h> 28 #include <linux/memblock.h> 29 #include <linux/of.h> 30 #include <linux/of_fdt.h> 31 #include <linux/libfdt.h> 32 #include <linux/cpu.h> 33 #include <linux/pgtable.h> 34 35 #include <asm/prom.h> 36 #include <asm/rtas.h> 37 #include <asm/page.h> 38 #include <asm/processor.h> 39 #include <asm/irq.h> 40 #include <asm/io.h> 41 #include <asm/kdump.h> 42 #include <asm/smp.h> 43 #include <asm/mmu.h> 44 #include <asm/paca.h> 45 #include <asm/powernv.h> 46 #include <asm/iommu.h> 47 #include <asm/btext.h> 48 #include <asm/sections.h> 49 #include <asm/machdep.h> 50 #include <asm/pci-bridge.h> 51 #include <asm/kexec.h> 52 #include <asm/opal.h> 53 #include <asm/fadump.h> 54 #include <asm/epapr_hcalls.h> 55 #include <asm/firmware.h> 56 #include <asm/dt_cpu_ftrs.h> 57 #include <asm/drmem.h> 58 #include <asm/ultravisor.h> 59 60 #include <mm/mmu_decl.h> 61 62 #ifdef DEBUG 63 #define DBG(fmt...) printk(KERN_ERR fmt) 64 #else 65 #define DBG(fmt...) 66 #endif 67 68 #ifdef CONFIG_PPC64 69 int __initdata iommu_is_off; 70 int __initdata iommu_force_on; 71 unsigned long tce_alloc_start, tce_alloc_end; 72 u64 ppc64_rma_size; 73 #endif 74 static phys_addr_t first_memblock_size; 75 static int __initdata boot_cpu_count; 76 77 static int __init early_parse_mem(char *p) 78 { 79 if (!p) 80 return 1; 81 82 memory_limit = PAGE_ALIGN(memparse(p, &p)); 83 DBG("memory limit = 0x%llx\n", memory_limit); 84 85 return 0; 86 } 87 early_param("mem", early_parse_mem); 88 89 /* 90 * overlaps_initrd - check for overlap with page aligned extension of 91 * initrd. 92 */ 93 static inline int overlaps_initrd(unsigned long start, unsigned long size) 94 { 95 #ifdef CONFIG_BLK_DEV_INITRD 96 if (!initrd_start) 97 return 0; 98 99 return (start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) && 100 start <= ALIGN(initrd_end, PAGE_SIZE); 101 #else 102 return 0; 103 #endif 104 } 105 106 /** 107 * move_device_tree - move tree to an unused area, if needed. 108 * 109 * The device tree may be allocated beyond our memory limit, or inside the 110 * crash kernel region for kdump, or within the page aligned range of initrd. 111 * If so, move it out of the way. 112 */ 113 static void __init move_device_tree(void) 114 { 115 unsigned long start, size; 116 void *p; 117 118 DBG("-> move_device_tree\n"); 119 120 start = __pa(initial_boot_params); 121 size = fdt_totalsize(initial_boot_params); 122 123 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 124 !memblock_is_memory(start + size - 1) || 125 overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) { 126 p = memblock_alloc_raw(size, PAGE_SIZE); 127 if (!p) 128 panic("Failed to allocate %lu bytes to move device tree\n", 129 size); 130 memcpy(p, initial_boot_params, size); 131 initial_boot_params = p; 132 DBG("Moved device tree to 0x%px\n", p); 133 } 134 135 DBG("<- move_device_tree\n"); 136 } 137 138 /* 139 * ibm,pa-features is a per-cpu property that contains a string of 140 * attribute descriptors, each of which has a 2 byte header plus up 141 * to 254 bytes worth of processor attribute bits. First header 142 * byte specifies the number of bytes following the header. 143 * Second header byte is an "attribute-specifier" type, of which 144 * zero is the only currently-defined value. 145 * Implementation: Pass in the byte and bit offset for the feature 146 * that we are interested in. The function will return -1 if the 147 * pa-features property is missing, or a 1/0 to indicate if the feature 148 * is supported/not supported. Note that the bit numbers are 149 * big-endian to match the definition in PAPR. 150 */ 151 static struct ibm_pa_feature { 152 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 153 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 154 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 155 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ 156 unsigned char pabyte; /* byte number in ibm,pa-features */ 157 unsigned char pabit; /* bit number (big-endian) */ 158 unsigned char invert; /* if 1, pa bit set => clear feature */ 159 } ibm_pa_features[] __initdata = { 160 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, 161 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, 162 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, 163 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, 164 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, 165 #ifdef CONFIG_PPC_RADIX_MMU 166 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE }, 167 #endif 168 { .pabyte = 1, .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN }, 169 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, 170 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, 171 /* 172 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), 173 * we don't want to turn on TM here, so we use the *_COMP versions 174 * which are 0 if the kernel doesn't support TM. 175 */ 176 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, 177 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, 178 }; 179 180 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 181 unsigned long tablelen, 182 struct ibm_pa_feature *fp, 183 unsigned long ft_size) 184 { 185 unsigned long i, len, bit; 186 187 /* find descriptor with type == 0 */ 188 for (;;) { 189 if (tablelen < 3) 190 return; 191 len = 2 + ftrs[0]; 192 if (tablelen < len) 193 return; /* descriptor 0 not found */ 194 if (ftrs[1] == 0) 195 break; 196 tablelen -= len; 197 ftrs += len; 198 } 199 200 /* loop over bits we know about */ 201 for (i = 0; i < ft_size; ++i, ++fp) { 202 if (fp->pabyte >= ftrs[0]) 203 continue; 204 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 205 if (bit ^ fp->invert) { 206 cur_cpu_spec->cpu_features |= fp->cpu_features; 207 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 208 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; 209 cur_cpu_spec->mmu_features |= fp->mmu_features; 210 } else { 211 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 212 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 213 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; 214 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 215 } 216 } 217 } 218 219 static void __init check_cpu_pa_features(unsigned long node) 220 { 221 const unsigned char *pa_ftrs; 222 int tablelen; 223 224 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); 225 if (pa_ftrs == NULL) 226 return; 227 228 scan_features(node, pa_ftrs, tablelen, 229 ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); 230 } 231 232 #ifdef CONFIG_PPC_BOOK3S_64 233 static void __init init_mmu_slb_size(unsigned long node) 234 { 235 const __be32 *slb_size_ptr; 236 237 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 238 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 239 240 if (slb_size_ptr) 241 mmu_slb_size = be32_to_cpup(slb_size_ptr); 242 } 243 #else 244 #define init_mmu_slb_size(node) do { } while(0) 245 #endif 246 247 static struct feature_property { 248 const char *name; 249 u32 min_value; 250 unsigned long cpu_feature; 251 unsigned long cpu_user_ftr; 252 } feature_properties[] __initdata = { 253 #ifdef CONFIG_ALTIVEC 254 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 255 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 256 #endif /* CONFIG_ALTIVEC */ 257 #ifdef CONFIG_VSX 258 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 259 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 260 #endif /* CONFIG_VSX */ 261 #ifdef CONFIG_PPC64 262 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 263 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 264 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 265 #endif /* CONFIG_PPC64 */ 266 }; 267 268 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 269 static inline void identical_pvr_fixup(unsigned long node) 270 { 271 unsigned int pvr; 272 const char *model = of_get_flat_dt_prop(node, "model", NULL); 273 274 /* 275 * Since 440GR(x)/440EP(x) processors have the same pvr, 276 * we check the node path and set bit 28 in the cur_cpu_spec 277 * pvr for EP(x) processor version. This bit is always 0 in 278 * the "real" pvr. Then we call identify_cpu again with 279 * the new logical pvr to enable FPU support. 280 */ 281 if (model && strstr(model, "440EP")) { 282 pvr = cur_cpu_spec->pvr_value | 0x8; 283 identify_cpu(0, pvr); 284 DBG("Using logical pvr %x for %s\n", pvr, model); 285 } 286 } 287 #else 288 #define identical_pvr_fixup(node) do { } while(0) 289 #endif 290 291 static void __init check_cpu_feature_properties(unsigned long node) 292 { 293 int i; 294 struct feature_property *fp = feature_properties; 295 const __be32 *prop; 296 297 for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) { 298 prop = of_get_flat_dt_prop(node, fp->name, NULL); 299 if (prop && be32_to_cpup(prop) >= fp->min_value) { 300 cur_cpu_spec->cpu_features |= fp->cpu_feature; 301 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 302 } 303 } 304 } 305 306 static int __init early_init_dt_scan_cpus(unsigned long node, 307 const char *uname, int depth, 308 void *data) 309 { 310 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 311 const __be32 *prop; 312 const __be32 *intserv; 313 int i, nthreads; 314 int len; 315 int found = -1; 316 int found_thread = 0; 317 318 /* We are scanning "cpu" nodes only */ 319 if (type == NULL || strcmp(type, "cpu") != 0) 320 return 0; 321 322 /* Get physical cpuid */ 323 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 324 if (!intserv) 325 intserv = of_get_flat_dt_prop(node, "reg", &len); 326 327 nthreads = len / sizeof(int); 328 329 /* 330 * Now see if any of these threads match our boot cpu. 331 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 332 */ 333 for (i = 0; i < nthreads; i++) { 334 if (be32_to_cpu(intserv[i]) == 335 fdt_boot_cpuid_phys(initial_boot_params)) { 336 found = boot_cpu_count; 337 found_thread = i; 338 } 339 #ifdef CONFIG_SMP 340 /* logical cpu id is always 0 on UP kernels */ 341 boot_cpu_count++; 342 #endif 343 } 344 345 /* Not the boot CPU */ 346 if (found < 0) 347 return 0; 348 349 DBG("boot cpu: logical %d physical %d\n", found, 350 be32_to_cpu(intserv[found_thread])); 351 boot_cpuid = found; 352 353 /* 354 * PAPR defines "logical" PVR values for cpus that 355 * meet various levels of the architecture: 356 * 0x0f000001 Architecture version 2.04 357 * 0x0f000002 Architecture version 2.05 358 * If the cpu-version property in the cpu node contains 359 * such a value, we call identify_cpu again with the 360 * logical PVR value in order to use the cpu feature 361 * bits appropriate for the architecture level. 362 * 363 * A POWER6 partition in "POWER6 architected" mode 364 * uses the 0x0f000002 PVR value; in POWER5+ mode 365 * it uses 0x0f000001. 366 * 367 * If we're using device tree CPU feature discovery then we don't 368 * support the cpu-version property, and it's the responsibility of the 369 * firmware/hypervisor to provide the correct feature set for the 370 * architecture level via the ibm,powerpc-cpu-features binding. 371 */ 372 if (!dt_cpu_ftrs_in_use()) { 373 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 374 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) 375 identify_cpu(0, be32_to_cpup(prop)); 376 377 check_cpu_feature_properties(node); 378 check_cpu_pa_features(node); 379 } 380 381 identical_pvr_fixup(node); 382 init_mmu_slb_size(node); 383 384 #ifdef CONFIG_PPC64 385 if (nthreads == 1) 386 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 387 else if (!dt_cpu_ftrs_in_use()) 388 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 389 allocate_paca(boot_cpuid); 390 #endif 391 set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread])); 392 393 return 0; 394 } 395 396 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 397 const char *uname, 398 int depth, void *data) 399 { 400 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 401 402 /* Use common scan routine to determine if this is the chosen node */ 403 if (early_init_dt_scan_chosen(node, uname, depth, data) == 0) 404 return 0; 405 406 #ifdef CONFIG_PPC64 407 /* check if iommu is forced on or off */ 408 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 409 iommu_is_off = 1; 410 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 411 iommu_force_on = 1; 412 #endif 413 414 /* mem=x on the command line is the preferred mechanism */ 415 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 416 if (lprop) 417 memory_limit = *lprop; 418 419 #ifdef CONFIG_PPC64 420 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 421 if (lprop) 422 tce_alloc_start = *lprop; 423 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 424 if (lprop) 425 tce_alloc_end = *lprop; 426 #endif 427 428 #ifdef CONFIG_KEXEC_CORE 429 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 430 if (lprop) 431 crashk_res.start = *lprop; 432 433 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 434 if (lprop) 435 crashk_res.end = crashk_res.start + *lprop - 1; 436 #endif 437 438 /* break now */ 439 return 1; 440 } 441 442 /* 443 * Compare the range against max mem limit and update 444 * size if it cross the limit. 445 */ 446 447 #ifdef CONFIG_SPARSEMEM 448 static bool validate_mem_limit(u64 base, u64 *size) 449 { 450 u64 max_mem = 1UL << (MAX_PHYSMEM_BITS); 451 452 if (base >= max_mem) 453 return false; 454 if ((base + *size) > max_mem) 455 *size = max_mem - base; 456 return true; 457 } 458 #else 459 static bool validate_mem_limit(u64 base, u64 *size) 460 { 461 return true; 462 } 463 #endif 464 465 #ifdef CONFIG_PPC_PSERIES 466 /* 467 * Interpret the ibm dynamic reconfiguration memory LMBs. 468 * This contains a list of memory blocks along with NUMA affinity 469 * information. 470 */ 471 static void __init early_init_drmem_lmb(struct drmem_lmb *lmb, 472 const __be32 **usm) 473 { 474 u64 base, size; 475 int is_kexec_kdump = 0, rngs; 476 477 base = lmb->base_addr; 478 size = drmem_lmb_size(); 479 rngs = 1; 480 481 /* 482 * Skip this block if the reserved bit is set in flags 483 * or if the block is not assigned to this partition. 484 */ 485 if ((lmb->flags & DRCONF_MEM_RESERVED) || 486 !(lmb->flags & DRCONF_MEM_ASSIGNED)) 487 return; 488 489 if (*usm) 490 is_kexec_kdump = 1; 491 492 if (is_kexec_kdump) { 493 /* 494 * For each memblock in ibm,dynamic-memory, a 495 * corresponding entry in linux,drconf-usable-memory 496 * property contains a counter 'p' followed by 'p' 497 * (base, size) duple. Now read the counter from 498 * linux,drconf-usable-memory property 499 */ 500 rngs = dt_mem_next_cell(dt_root_size_cells, usm); 501 if (!rngs) /* there are no (base, size) duple */ 502 return; 503 } 504 505 do { 506 if (is_kexec_kdump) { 507 base = dt_mem_next_cell(dt_root_addr_cells, usm); 508 size = dt_mem_next_cell(dt_root_size_cells, usm); 509 } 510 511 if (iommu_is_off) { 512 if (base >= 0x80000000ul) 513 continue; 514 if ((base + size) > 0x80000000ul) 515 size = 0x80000000ul - base; 516 } 517 518 if (!validate_mem_limit(base, &size)) 519 continue; 520 521 DBG("Adding: %llx -> %llx\n", base, size); 522 memblock_add(base, size); 523 524 if (lmb->flags & DRCONF_MEM_HOTREMOVABLE) 525 memblock_mark_hotplug(base, size); 526 } while (--rngs); 527 } 528 #endif /* CONFIG_PPC_PSERIES */ 529 530 static int __init early_init_dt_scan_memory_ppc(unsigned long node, 531 const char *uname, 532 int depth, void *data) 533 { 534 #ifdef CONFIG_PPC_PSERIES 535 if (depth == 1 && 536 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) { 537 walk_drmem_lmbs_early(node, early_init_drmem_lmb); 538 return 0; 539 } 540 #endif 541 542 return early_init_dt_scan_memory(node, uname, depth, data); 543 } 544 545 /* 546 * For a relocatable kernel, we need to get the memstart_addr first, 547 * then use it to calculate the virtual kernel start address. This has 548 * to happen at a very early stage (before machine_init). In this case, 549 * we just want to get the memstart_address and would not like to mess the 550 * memblock at this stage. So introduce a variable to skip the memblock_add() 551 * for this reason. 552 */ 553 #ifdef CONFIG_RELOCATABLE 554 static int add_mem_to_memblock = 1; 555 #else 556 #define add_mem_to_memblock 1 557 #endif 558 559 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 560 { 561 #ifdef CONFIG_PPC64 562 if (iommu_is_off) { 563 if (base >= 0x80000000ul) 564 return; 565 if ((base + size) > 0x80000000ul) 566 size = 0x80000000ul - base; 567 } 568 #endif 569 /* Keep track of the beginning of memory -and- the size of 570 * the very first block in the device-tree as it represents 571 * the RMA on ppc64 server 572 */ 573 if (base < memstart_addr) { 574 memstart_addr = base; 575 first_memblock_size = size; 576 } 577 578 /* Add the chunk to the MEMBLOCK list */ 579 if (add_mem_to_memblock) { 580 if (validate_mem_limit(base, &size)) 581 memblock_add(base, size); 582 } 583 } 584 585 static void __init early_reserve_mem_dt(void) 586 { 587 unsigned long i, dt_root; 588 int len; 589 const __be32 *prop; 590 591 early_init_fdt_reserve_self(); 592 early_init_fdt_scan_reserved_mem(); 593 594 dt_root = of_get_flat_dt_root(); 595 596 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 597 598 if (!prop) 599 return; 600 601 DBG("Found new-style reserved-ranges\n"); 602 603 /* Each reserved range is an (address,size) pair, 2 cells each, 604 * totalling 4 cells per range. */ 605 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 606 u64 base, size; 607 608 base = of_read_number(prop + (i * 4) + 0, 2); 609 size = of_read_number(prop + (i * 4) + 2, 2); 610 611 if (size) { 612 DBG("reserving: %llx -> %llx\n", base, size); 613 memblock_reserve(base, size); 614 } 615 } 616 } 617 618 static void __init early_reserve_mem(void) 619 { 620 __be64 *reserve_map; 621 622 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 623 fdt_off_mem_rsvmap(initial_boot_params)); 624 625 /* Look for the new "reserved-regions" property in the DT */ 626 early_reserve_mem_dt(); 627 628 #ifdef CONFIG_BLK_DEV_INITRD 629 /* Then reserve the initrd, if any */ 630 if (initrd_start && (initrd_end > initrd_start)) { 631 memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 632 ALIGN(initrd_end, PAGE_SIZE) - 633 ALIGN_DOWN(initrd_start, PAGE_SIZE)); 634 } 635 #endif /* CONFIG_BLK_DEV_INITRD */ 636 637 #ifdef CONFIG_PPC32 638 /* 639 * Handle the case where we might be booting from an old kexec 640 * image that setup the mem_rsvmap as pairs of 32-bit values 641 */ 642 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 643 u32 base_32, size_32; 644 __be32 *reserve_map_32 = (__be32 *)reserve_map; 645 646 DBG("Found old 32-bit reserve map\n"); 647 648 while (1) { 649 base_32 = be32_to_cpup(reserve_map_32++); 650 size_32 = be32_to_cpup(reserve_map_32++); 651 if (size_32 == 0) 652 break; 653 DBG("reserving: %x -> %x\n", base_32, size_32); 654 memblock_reserve(base_32, size_32); 655 } 656 return; 657 } 658 #endif 659 } 660 661 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 662 static bool tm_disabled __initdata; 663 664 static int __init parse_ppc_tm(char *str) 665 { 666 bool res; 667 668 if (kstrtobool(str, &res)) 669 return -EINVAL; 670 671 tm_disabled = !res; 672 673 return 0; 674 } 675 early_param("ppc_tm", parse_ppc_tm); 676 677 static void __init tm_init(void) 678 { 679 if (tm_disabled) { 680 pr_info("Disabling hardware transactional memory (HTM)\n"); 681 cur_cpu_spec->cpu_user_features2 &= 682 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM); 683 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM; 684 return; 685 } 686 687 pnv_tm_init(); 688 } 689 #else 690 static void tm_init(void) { } 691 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 692 693 #ifdef CONFIG_PPC64 694 static void __init save_fscr_to_task(void) 695 { 696 /* 697 * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we 698 * have configured via the device tree features or via __init_FSCR(). 699 * That value will then be propagated to pid 1 (init) and all future 700 * processes. 701 */ 702 if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) 703 init_task.thread.fscr = mfspr(SPRN_FSCR); 704 } 705 #else 706 static inline void save_fscr_to_task(void) {}; 707 #endif 708 709 710 void __init early_init_devtree(void *params) 711 { 712 phys_addr_t limit; 713 714 DBG(" -> early_init_devtree(%px)\n", params); 715 716 /* Too early to BUG_ON(), do it by hand */ 717 if (!early_init_dt_verify(params)) 718 panic("BUG: Failed verifying flat device tree, bad version?"); 719 720 #ifdef CONFIG_PPC_RTAS 721 /* Some machines might need RTAS info for debugging, grab it now. */ 722 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 723 #endif 724 725 #ifdef CONFIG_PPC_POWERNV 726 /* Some machines might need OPAL info for debugging, grab it now. */ 727 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 728 729 /* Scan tree for ultravisor feature */ 730 of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL); 731 #endif 732 733 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) 734 /* scan tree to see if dump is active during last boot */ 735 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 736 #endif 737 738 /* Retrieve various informations from the /chosen node of the 739 * device-tree, including the platform type, initrd location and 740 * size, TCE reserve, and more ... 741 */ 742 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 743 744 /* Scan memory nodes and rebuild MEMBLOCKs */ 745 of_scan_flat_dt(early_init_dt_scan_root, NULL); 746 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 747 748 parse_early_param(); 749 750 /* make sure we've parsed cmdline for mem= before this */ 751 if (memory_limit) 752 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 753 setup_initial_memory_limit(memstart_addr, first_memblock_size); 754 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 755 memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); 756 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 757 if (PHYSICAL_START > MEMORY_START) 758 memblock_reserve(MEMORY_START, 0x8000); 759 reserve_kdump_trampoline(); 760 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) 761 /* 762 * If we fail to reserve memory for firmware-assisted dump then 763 * fallback to kexec based kdump. 764 */ 765 if (fadump_reserve_mem() == 0) 766 #endif 767 reserve_crashkernel(); 768 early_reserve_mem(); 769 770 /* Ensure that total memory size is page-aligned. */ 771 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); 772 memblock_enforce_memory_limit(limit); 773 774 memblock_allow_resize(); 775 memblock_dump_all(); 776 777 DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size()); 778 779 /* We may need to relocate the flat tree, do it now. 780 * FIXME .. and the initrd too? */ 781 move_device_tree(); 782 783 allocate_paca_ptrs(); 784 785 DBG("Scanning CPUs ...\n"); 786 787 dt_cpu_ftrs_scan(); 788 789 /* Retrieve CPU related informations from the flat tree 790 * (altivec support, boot CPU ID, ...) 791 */ 792 of_scan_flat_dt(early_init_dt_scan_cpus, NULL); 793 if (boot_cpuid < 0) { 794 printk("Failed to identify boot CPU !\n"); 795 BUG(); 796 } 797 798 save_fscr_to_task(); 799 800 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 801 /* We'll later wait for secondaries to check in; there are 802 * NCPUS-1 non-boot CPUs :-) 803 */ 804 spinning_secondaries = boot_cpu_count - 1; 805 #endif 806 807 mmu_early_init_devtree(); 808 809 #ifdef CONFIG_PPC_POWERNV 810 /* Scan and build the list of machine check recoverable ranges */ 811 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 812 #endif 813 epapr_paravirt_early_init(); 814 815 /* Now try to figure out if we are running on LPAR and so on */ 816 pseries_probe_fw_features(); 817 818 /* 819 * Initialize pkey features and default AMR/IAMR values 820 */ 821 pkey_early_init_devtree(); 822 823 #ifdef CONFIG_PPC_PS3 824 /* Identify PS3 firmware */ 825 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) 826 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; 827 #endif 828 829 tm_init(); 830 831 DBG(" <- early_init_devtree()\n"); 832 } 833 834 #ifdef CONFIG_RELOCATABLE 835 /* 836 * This function run before early_init_devtree, so we have to init 837 * initial_boot_params. 838 */ 839 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 840 { 841 /* Setup flat device-tree pointer */ 842 initial_boot_params = params; 843 844 /* 845 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 846 * mess the memblock. 847 */ 848 add_mem_to_memblock = 0; 849 of_scan_flat_dt(early_init_dt_scan_root, NULL); 850 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 851 add_mem_to_memblock = 1; 852 853 if (size) 854 *size = first_memblock_size; 855 } 856 #endif 857 858 /******* 859 * 860 * New implementation of the OF "find" APIs, return a refcounted 861 * object, call of_node_put() when done. The device tree and list 862 * are protected by a rw_lock. 863 * 864 * Note that property management will need some locking as well, 865 * this isn't dealt with yet. 866 * 867 *******/ 868 869 /** 870 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 871 * @np: device node of the device 872 * 873 * This looks for a property "ibm,chip-id" in the node or any 874 * of its parents and returns its content, or -1 if it cannot 875 * be found. 876 */ 877 int of_get_ibm_chip_id(struct device_node *np) 878 { 879 of_node_get(np); 880 while (np) { 881 u32 chip_id; 882 883 /* 884 * Skiboot may produce memory nodes that contain more than one 885 * cell in chip-id, we only read the first one here. 886 */ 887 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { 888 of_node_put(np); 889 return chip_id; 890 } 891 892 np = of_get_next_parent(np); 893 } 894 return -1; 895 } 896 EXPORT_SYMBOL(of_get_ibm_chip_id); 897 898 /** 899 * cpu_to_chip_id - Return the cpus chip-id 900 * @cpu: The logical cpu number. 901 * 902 * Return the value of the ibm,chip-id property corresponding to the given 903 * logical cpu number. If the chip-id can not be found, returns -1. 904 */ 905 int cpu_to_chip_id(int cpu) 906 { 907 struct device_node *np; 908 909 np = of_get_cpu_node(cpu, NULL); 910 if (!np) 911 return -1; 912 913 of_node_put(np); 914 return of_get_ibm_chip_id(np); 915 } 916 EXPORT_SYMBOL(cpu_to_chip_id); 917 918 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 919 { 920 #ifdef CONFIG_SMP 921 /* 922 * Early firmware scanning must use this rather than 923 * get_hard_smp_processor_id because we don't have pacas allocated 924 * until memory topology is discovered. 925 */ 926 if (cpu_to_phys_id != NULL) 927 return (int)phys_id == cpu_to_phys_id[cpu]; 928 #endif 929 930 return (int)phys_id == get_hard_smp_processor_id(cpu); 931 } 932