xref: /openbmc/linux/arch/powerpc/kernel/prom.c (revision b68239ee)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 #undef DEBUG
17 
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
33 
34 #include <asm/prom.h>
35 #include <asm/rtas.h>
36 #include <asm/lmb.h>
37 #include <asm/page.h>
38 #include <asm/processor.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/smp.h>
43 #include <asm/system.h>
44 #include <asm/mmu.h>
45 #include <asm/pgtable.h>
46 #include <asm/pci.h>
47 #include <asm/iommu.h>
48 #include <asm/btext.h>
49 #include <asm/sections.h>
50 #include <asm/machdep.h>
51 #include <asm/pSeries_reconfig.h>
52 #include <asm/pci-bridge.h>
53 
54 #ifdef DEBUG
55 #define DBG(fmt...) printk(KERN_ERR fmt)
56 #else
57 #define DBG(fmt...)
58 #endif
59 
60 
61 static int __initdata dt_root_addr_cells;
62 static int __initdata dt_root_size_cells;
63 
64 #ifdef CONFIG_PPC64
65 static int __initdata iommu_is_off;
66 int __initdata iommu_force_on;
67 unsigned long tce_alloc_start, tce_alloc_end;
68 #endif
69 
70 typedef u32 cell_t;
71 
72 #if 0
73 static struct boot_param_header *initial_boot_params __initdata;
74 #else
75 struct boot_param_header *initial_boot_params;
76 #endif
77 
78 static struct device_node *allnodes = NULL;
79 
80 /* use when traversing tree through the allnext, child, sibling,
81  * or parent members of struct device_node.
82  */
83 static DEFINE_RWLOCK(devtree_lock);
84 
85 /* export that to outside world */
86 struct device_node *of_chosen;
87 
88 struct device_node *dflt_interrupt_controller;
89 int num_interrupt_controllers;
90 
91 /*
92  * Wrapper for allocating memory for various data that needs to be
93  * attached to device nodes as they are processed at boot or when
94  * added to the device tree later (e.g. DLPAR).  At boot there is
95  * already a region reserved so we just increment *mem_start by size;
96  * otherwise we call kmalloc.
97  */
98 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
99 {
100 	unsigned long tmp;
101 
102 	if (!mem_start)
103 		return kmalloc(size, GFP_KERNEL);
104 
105 	tmp = *mem_start;
106 	*mem_start += size;
107 	return (void *)tmp;
108 }
109 
110 /*
111  * Find the device_node with a given phandle.
112  */
113 static struct device_node * find_phandle(phandle ph)
114 {
115 	struct device_node *np;
116 
117 	for (np = allnodes; np != 0; np = np->allnext)
118 		if (np->linux_phandle == ph)
119 			return np;
120 	return NULL;
121 }
122 
123 /*
124  * Find the interrupt parent of a node.
125  */
126 static struct device_node * __devinit intr_parent(struct device_node *p)
127 {
128 	phandle *parp;
129 
130 	parp = (phandle *) get_property(p, "interrupt-parent", NULL);
131 	if (parp == NULL)
132 		return p->parent;
133 	p = find_phandle(*parp);
134 	if (p != NULL)
135 		return p;
136 	/*
137 	 * On a powermac booted with BootX, we don't get to know the
138 	 * phandles for any nodes, so find_phandle will return NULL.
139 	 * Fortunately these machines only have one interrupt controller
140 	 * so there isn't in fact any ambiguity.  -- paulus
141 	 */
142 	if (num_interrupt_controllers == 1)
143 		p = dflt_interrupt_controller;
144 	return p;
145 }
146 
147 /*
148  * Find out the size of each entry of the interrupts property
149  * for a node.
150  */
151 int __devinit prom_n_intr_cells(struct device_node *np)
152 {
153 	struct device_node *p;
154 	unsigned int *icp;
155 
156 	for (p = np; (p = intr_parent(p)) != NULL; ) {
157 		icp = (unsigned int *)
158 			get_property(p, "#interrupt-cells", NULL);
159 		if (icp != NULL)
160 			return *icp;
161 		if (get_property(p, "interrupt-controller", NULL) != NULL
162 		    || get_property(p, "interrupt-map", NULL) != NULL) {
163 			printk("oops, node %s doesn't have #interrupt-cells\n",
164 			       p->full_name);
165 			return 1;
166 		}
167 	}
168 #ifdef DEBUG_IRQ
169 	printk("prom_n_intr_cells failed for %s\n", np->full_name);
170 #endif
171 	return 1;
172 }
173 
174 /*
175  * Map an interrupt from a device up to the platform interrupt
176  * descriptor.
177  */
178 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
179 				   struct device_node *np, unsigned int *ints,
180 				   int nintrc)
181 {
182 	struct device_node *p, *ipar;
183 	unsigned int *imap, *imask, *ip;
184 	int i, imaplen, match;
185 	int newintrc = 0, newaddrc = 0;
186 	unsigned int *reg;
187 	int naddrc;
188 
189 	reg = (unsigned int *) get_property(np, "reg", NULL);
190 	naddrc = prom_n_addr_cells(np);
191 	p = intr_parent(np);
192 	while (p != NULL) {
193 		if (get_property(p, "interrupt-controller", NULL) != NULL)
194 			/* this node is an interrupt controller, stop here */
195 			break;
196 		imap = (unsigned int *)
197 			get_property(p, "interrupt-map", &imaplen);
198 		if (imap == NULL) {
199 			p = intr_parent(p);
200 			continue;
201 		}
202 		imask = (unsigned int *)
203 			get_property(p, "interrupt-map-mask", NULL);
204 		if (imask == NULL) {
205 			printk("oops, %s has interrupt-map but no mask\n",
206 			       p->full_name);
207 			return 0;
208 		}
209 		imaplen /= sizeof(unsigned int);
210 		match = 0;
211 		ipar = NULL;
212 		while (imaplen > 0 && !match) {
213 			/* check the child-interrupt field */
214 			match = 1;
215 			for (i = 0; i < naddrc && match; ++i)
216 				match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
217 			for (; i < naddrc + nintrc && match; ++i)
218 				match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
219 			imap += naddrc + nintrc;
220 			imaplen -= naddrc + nintrc;
221 			/* grab the interrupt parent */
222 			ipar = find_phandle((phandle) *imap++);
223 			--imaplen;
224 			if (ipar == NULL && num_interrupt_controllers == 1)
225 				/* cope with BootX not giving us phandles */
226 				ipar = dflt_interrupt_controller;
227 			if (ipar == NULL) {
228 				printk("oops, no int parent %x in map of %s\n",
229 				       imap[-1], p->full_name);
230 				return 0;
231 			}
232 			/* find the parent's # addr and intr cells */
233 			ip = (unsigned int *)
234 				get_property(ipar, "#interrupt-cells", NULL);
235 			if (ip == NULL) {
236 				printk("oops, no #interrupt-cells on %s\n",
237 				       ipar->full_name);
238 				return 0;
239 			}
240 			newintrc = *ip;
241 			ip = (unsigned int *)
242 				get_property(ipar, "#address-cells", NULL);
243 			newaddrc = (ip == NULL)? 0: *ip;
244 			imap += newaddrc + newintrc;
245 			imaplen -= newaddrc + newintrc;
246 		}
247 		if (imaplen < 0) {
248 			printk("oops, error decoding int-map on %s, len=%d\n",
249 			       p->full_name, imaplen);
250 			return 0;
251 		}
252 		if (!match) {
253 #ifdef DEBUG_IRQ
254 			printk("oops, no match in %s int-map for %s\n",
255 			       p->full_name, np->full_name);
256 #endif
257 			return 0;
258 		}
259 		p = ipar;
260 		naddrc = newaddrc;
261 		nintrc = newintrc;
262 		ints = imap - nintrc;
263 		reg = ints - naddrc;
264 	}
265 	if (p == NULL) {
266 #ifdef DEBUG_IRQ
267 		printk("hmmm, int tree for %s doesn't have ctrler\n",
268 		       np->full_name);
269 #endif
270 		return 0;
271 	}
272 	*irq = ints;
273 	*ictrler = p;
274 	return nintrc;
275 }
276 
277 static unsigned char map_isa_senses[4] = {
278 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
279 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
280 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
281 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
282 };
283 
284 static unsigned char map_mpic_senses[4] = {
285 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
286 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
287 	/* 2 seems to be used for the 8259 cascade... */
288 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
289 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
290 };
291 
292 static int __devinit finish_node_interrupts(struct device_node *np,
293 					    unsigned long *mem_start,
294 					    int measure_only)
295 {
296 	unsigned int *ints;
297 	int intlen, intrcells, intrcount;
298 	int i, j, n, sense;
299 	unsigned int *irq, virq;
300 	struct device_node *ic;
301 	int trace = 0;
302 
303 	//#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
304 #define TRACE(fmt...)
305 
306 	if (!strcmp(np->name, "smu-doorbell"))
307 		trace = 1;
308 
309 	TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
310 	      num_interrupt_controllers);
311 
312 	if (num_interrupt_controllers == 0) {
313 		/*
314 		 * Old machines just have a list of interrupt numbers
315 		 * and no interrupt-controller nodes.
316 		 */
317 		ints = (unsigned int *) get_property(np, "AAPL,interrupts",
318 						     &intlen);
319 		/* XXX old interpret_pci_props looked in parent too */
320 		/* XXX old interpret_macio_props looked for interrupts
321 		   before AAPL,interrupts */
322 		if (ints == NULL)
323 			ints = (unsigned int *) get_property(np, "interrupts",
324 							     &intlen);
325 		if (ints == NULL)
326 			return 0;
327 
328 		np->n_intrs = intlen / sizeof(unsigned int);
329 		np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
330 				       mem_start);
331 		if (!np->intrs)
332 			return -ENOMEM;
333 		if (measure_only)
334 			return 0;
335 
336 		for (i = 0; i < np->n_intrs; ++i) {
337 			np->intrs[i].line = *ints++;
338 			np->intrs[i].sense = IRQ_SENSE_LEVEL
339 				| IRQ_POLARITY_NEGATIVE;
340 		}
341 		return 0;
342 	}
343 
344 	ints = (unsigned int *) get_property(np, "interrupts", &intlen);
345 	TRACE("ints=%p, intlen=%d\n", ints, intlen);
346 	if (ints == NULL)
347 		return 0;
348 	intrcells = prom_n_intr_cells(np);
349 	intlen /= intrcells * sizeof(unsigned int);
350 	TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
351 	np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
352 	if (!np->intrs)
353 		return -ENOMEM;
354 
355 	if (measure_only)
356 		return 0;
357 
358 	intrcount = 0;
359 	for (i = 0; i < intlen; ++i, ints += intrcells) {
360 		n = map_interrupt(&irq, &ic, np, ints, intrcells);
361 		TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
362 		if (n <= 0)
363 			continue;
364 
365 		/* don't map IRQ numbers under a cascaded 8259 controller */
366 		if (ic && device_is_compatible(ic, "chrp,iic")) {
367 			np->intrs[intrcount].line = irq[0];
368 			sense = (n > 1)? (irq[1] & 3): 3;
369 			np->intrs[intrcount].sense = map_isa_senses[sense];
370 		} else {
371 			virq = virt_irq_create_mapping(irq[0]);
372 			TRACE("virq=%d\n", virq);
373 #ifdef CONFIG_PPC64
374 			if (virq == NO_IRQ) {
375 				printk(KERN_CRIT "Could not allocate interrupt"
376 				       " number for %s\n", np->full_name);
377 				continue;
378 			}
379 #endif
380 			np->intrs[intrcount].line = irq_offset_up(virq);
381 			sense = (n > 1)? (irq[1] & 3): 1;
382 
383 			/* Apple uses bits in there in a different way, let's
384 			 * only keep the real sense bit on macs
385 			 */
386 			if (_machine == PLATFORM_POWERMAC)
387 				sense &= 0x1;
388 			np->intrs[intrcount].sense = map_mpic_senses[sense];
389 		}
390 
391 #ifdef CONFIG_PPC64
392 		/* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
393 		if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
394 			char *name = get_property(ic->parent, "name", NULL);
395 			if (name && !strcmp(name, "u3"))
396 				np->intrs[intrcount].line += 128;
397 			else if (!(name && (!strcmp(name, "mac-io") ||
398 					    !strcmp(name, "u4"))))
399 				/* ignore other cascaded controllers, such as
400 				   the k2-sata-root */
401 				break;
402 		}
403 #endif /* CONFIG_PPC64 */
404 		if (n > 2) {
405 			printk("hmmm, got %d intr cells for %s:", n,
406 			       np->full_name);
407 			for (j = 0; j < n; ++j)
408 				printk(" %d", irq[j]);
409 			printk("\n");
410 		}
411 		++intrcount;
412 	}
413 	np->n_intrs = intrcount;
414 
415 	return 0;
416 }
417 
418 static int __devinit finish_node(struct device_node *np,
419 				 unsigned long *mem_start,
420 				 int measure_only)
421 {
422 	struct device_node *child;
423 	int rc = 0;
424 
425 	rc = finish_node_interrupts(np, mem_start, measure_only);
426 	if (rc)
427 		goto out;
428 
429 	for (child = np->child; child != NULL; child = child->sibling) {
430 		rc = finish_node(child, mem_start, measure_only);
431 		if (rc)
432 			goto out;
433 	}
434 out:
435 	return rc;
436 }
437 
438 static void __init scan_interrupt_controllers(void)
439 {
440 	struct device_node *np;
441 	int n = 0;
442 	char *name, *ic;
443 	int iclen;
444 
445 	for (np = allnodes; np != NULL; np = np->allnext) {
446 		ic = get_property(np, "interrupt-controller", &iclen);
447 		name = get_property(np, "name", NULL);
448 		/* checking iclen makes sure we don't get a false
449 		   match on /chosen.interrupt_controller */
450 		if ((name != NULL
451 		     && strcmp(name, "interrupt-controller") == 0)
452 		    || (ic != NULL && iclen == 0
453 			&& strcmp(name, "AppleKiwi"))) {
454 			if (n == 0)
455 				dflt_interrupt_controller = np;
456 			++n;
457 		}
458 	}
459 	num_interrupt_controllers = n;
460 }
461 
462 /**
463  * finish_device_tree is called once things are running normally
464  * (i.e. with text and data mapped to the address they were linked at).
465  * It traverses the device tree and fills in some of the additional,
466  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
467  * mapping is also initialized at this point.
468  */
469 void __init finish_device_tree(void)
470 {
471 	unsigned long start, end, size = 0;
472 
473 	DBG(" -> finish_device_tree\n");
474 
475 #ifdef CONFIG_PPC64
476 	/* Initialize virtual IRQ map */
477 	virt_irq_init();
478 #endif
479 	scan_interrupt_controllers();
480 
481 	/*
482 	 * Finish device-tree (pre-parsing some properties etc...)
483 	 * We do this in 2 passes. One with "measure_only" set, which
484 	 * will only measure the amount of memory needed, then we can
485 	 * allocate that memory, and call finish_node again. However,
486 	 * we must be careful as most routines will fail nowadays when
487 	 * prom_alloc() returns 0, so we must make sure our first pass
488 	 * doesn't start at 0. We pre-initialize size to 16 for that
489 	 * reason and then remove those additional 16 bytes
490 	 */
491 	size = 16;
492 	finish_node(allnodes, &size, 1);
493 	size -= 16;
494 
495 	if (0 == size)
496 		end = start = 0;
497 	else
498 		end = start = (unsigned long)__va(lmb_alloc(size, 128));
499 
500 	finish_node(allnodes, &end, 0);
501 	BUG_ON(end != start + size);
502 
503 	DBG(" <- finish_device_tree\n");
504 }
505 
506 static inline char *find_flat_dt_string(u32 offset)
507 {
508 	return ((char *)initial_boot_params) +
509 		initial_boot_params->off_dt_strings + offset;
510 }
511 
512 /**
513  * This function is used to scan the flattened device-tree, it is
514  * used to extract the memory informations at boot before we can
515  * unflatten the tree
516  */
517 int __init of_scan_flat_dt(int (*it)(unsigned long node,
518 				     const char *uname, int depth,
519 				     void *data),
520 			   void *data)
521 {
522 	unsigned long p = ((unsigned long)initial_boot_params) +
523 		initial_boot_params->off_dt_struct;
524 	int rc = 0;
525 	int depth = -1;
526 
527 	do {
528 		u32 tag = *((u32 *)p);
529 		char *pathp;
530 
531 		p += 4;
532 		if (tag == OF_DT_END_NODE) {
533 			depth --;
534 			continue;
535 		}
536 		if (tag == OF_DT_NOP)
537 			continue;
538 		if (tag == OF_DT_END)
539 			break;
540 		if (tag == OF_DT_PROP) {
541 			u32 sz = *((u32 *)p);
542 			p += 8;
543 			if (initial_boot_params->version < 0x10)
544 				p = _ALIGN(p, sz >= 8 ? 8 : 4);
545 			p += sz;
546 			p = _ALIGN(p, 4);
547 			continue;
548 		}
549 		if (tag != OF_DT_BEGIN_NODE) {
550 			printk(KERN_WARNING "Invalid tag %x scanning flattened"
551 			       " device tree !\n", tag);
552 			return -EINVAL;
553 		}
554 		depth++;
555 		pathp = (char *)p;
556 		p = _ALIGN(p + strlen(pathp) + 1, 4);
557 		if ((*pathp) == '/') {
558 			char *lp, *np;
559 			for (lp = NULL, np = pathp; *np; np++)
560 				if ((*np) == '/')
561 					lp = np+1;
562 			if (lp != NULL)
563 				pathp = lp;
564 		}
565 		rc = it(p, pathp, depth, data);
566 		if (rc != 0)
567 			break;
568 	} while(1);
569 
570 	return rc;
571 }
572 
573 /**
574  * This  function can be used within scan_flattened_dt callback to get
575  * access to properties
576  */
577 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
578 				 unsigned long *size)
579 {
580 	unsigned long p = node;
581 
582 	do {
583 		u32 tag = *((u32 *)p);
584 		u32 sz, noff;
585 		const char *nstr;
586 
587 		p += 4;
588 		if (tag == OF_DT_NOP)
589 			continue;
590 		if (tag != OF_DT_PROP)
591 			return NULL;
592 
593 		sz = *((u32 *)p);
594 		noff = *((u32 *)(p + 4));
595 		p += 8;
596 		if (initial_boot_params->version < 0x10)
597 			p = _ALIGN(p, sz >= 8 ? 8 : 4);
598 
599 		nstr = find_flat_dt_string(noff);
600 		if (nstr == NULL) {
601 			printk(KERN_WARNING "Can't find property index"
602 			       " name !\n");
603 			return NULL;
604 		}
605 		if (strcmp(name, nstr) == 0) {
606 			if (size)
607 				*size = sz;
608 			return (void *)p;
609 		}
610 		p += sz;
611 		p = _ALIGN(p, 4);
612 	} while(1);
613 }
614 
615 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
616 				       unsigned long align)
617 {
618 	void *res;
619 
620 	*mem = _ALIGN(*mem, align);
621 	res = (void *)*mem;
622 	*mem += size;
623 
624 	return res;
625 }
626 
627 static unsigned long __init unflatten_dt_node(unsigned long mem,
628 					      unsigned long *p,
629 					      struct device_node *dad,
630 					      struct device_node ***allnextpp,
631 					      unsigned long fpsize)
632 {
633 	struct device_node *np;
634 	struct property *pp, **prev_pp = NULL;
635 	char *pathp;
636 	u32 tag;
637 	unsigned int l, allocl;
638 	int has_name = 0;
639 	int new_format = 0;
640 
641 	tag = *((u32 *)(*p));
642 	if (tag != OF_DT_BEGIN_NODE) {
643 		printk("Weird tag at start of node: %x\n", tag);
644 		return mem;
645 	}
646 	*p += 4;
647 	pathp = (char *)*p;
648 	l = allocl = strlen(pathp) + 1;
649 	*p = _ALIGN(*p + l, 4);
650 
651 	/* version 0x10 has a more compact unit name here instead of the full
652 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
653 	 * it later. We detect this because the first character of the name is
654 	 * not '/'.
655 	 */
656 	if ((*pathp) != '/') {
657 		new_format = 1;
658 		if (fpsize == 0) {
659 			/* root node: special case. fpsize accounts for path
660 			 * plus terminating zero. root node only has '/', so
661 			 * fpsize should be 2, but we want to avoid the first
662 			 * level nodes to have two '/' so we use fpsize 1 here
663 			 */
664 			fpsize = 1;
665 			allocl = 2;
666 		} else {
667 			/* account for '/' and path size minus terminal 0
668 			 * already in 'l'
669 			 */
670 			fpsize += l;
671 			allocl = fpsize;
672 		}
673 	}
674 
675 
676 	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
677 				__alignof__(struct device_node));
678 	if (allnextpp) {
679 		memset(np, 0, sizeof(*np));
680 		np->full_name = ((char*)np) + sizeof(struct device_node);
681 		if (new_format) {
682 			char *p = np->full_name;
683 			/* rebuild full path for new format */
684 			if (dad && dad->parent) {
685 				strcpy(p, dad->full_name);
686 #ifdef DEBUG
687 				if ((strlen(p) + l + 1) != allocl) {
688 					DBG("%s: p: %d, l: %d, a: %d\n",
689 					    pathp, strlen(p), l, allocl);
690 				}
691 #endif
692 				p += strlen(p);
693 			}
694 			*(p++) = '/';
695 			memcpy(p, pathp, l);
696 		} else
697 			memcpy(np->full_name, pathp, l);
698 		prev_pp = &np->properties;
699 		**allnextpp = np;
700 		*allnextpp = &np->allnext;
701 		if (dad != NULL) {
702 			np->parent = dad;
703 			/* we temporarily use the next field as `last_child'*/
704 			if (dad->next == 0)
705 				dad->child = np;
706 			else
707 				dad->next->sibling = np;
708 			dad->next = np;
709 		}
710 		kref_init(&np->kref);
711 	}
712 	while(1) {
713 		u32 sz, noff;
714 		char *pname;
715 
716 		tag = *((u32 *)(*p));
717 		if (tag == OF_DT_NOP) {
718 			*p += 4;
719 			continue;
720 		}
721 		if (tag != OF_DT_PROP)
722 			break;
723 		*p += 4;
724 		sz = *((u32 *)(*p));
725 		noff = *((u32 *)((*p) + 4));
726 		*p += 8;
727 		if (initial_boot_params->version < 0x10)
728 			*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
729 
730 		pname = find_flat_dt_string(noff);
731 		if (pname == NULL) {
732 			printk("Can't find property name in list !\n");
733 			break;
734 		}
735 		if (strcmp(pname, "name") == 0)
736 			has_name = 1;
737 		l = strlen(pname) + 1;
738 		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
739 					__alignof__(struct property));
740 		if (allnextpp) {
741 			if (strcmp(pname, "linux,phandle") == 0) {
742 				np->node = *((u32 *)*p);
743 				if (np->linux_phandle == 0)
744 					np->linux_phandle = np->node;
745 			}
746 			if (strcmp(pname, "ibm,phandle") == 0)
747 				np->linux_phandle = *((u32 *)*p);
748 			pp->name = pname;
749 			pp->length = sz;
750 			pp->value = (void *)*p;
751 			*prev_pp = pp;
752 			prev_pp = &pp->next;
753 		}
754 		*p = _ALIGN((*p) + sz, 4);
755 	}
756 	/* with version 0x10 we may not have the name property, recreate
757 	 * it here from the unit name if absent
758 	 */
759 	if (!has_name) {
760 		char *p = pathp, *ps = pathp, *pa = NULL;
761 		int sz;
762 
763 		while (*p) {
764 			if ((*p) == '@')
765 				pa = p;
766 			if ((*p) == '/')
767 				ps = p + 1;
768 			p++;
769 		}
770 		if (pa < ps)
771 			pa = p;
772 		sz = (pa - ps) + 1;
773 		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
774 					__alignof__(struct property));
775 		if (allnextpp) {
776 			pp->name = "name";
777 			pp->length = sz;
778 			pp->value = (unsigned char *)(pp + 1);
779 			*prev_pp = pp;
780 			prev_pp = &pp->next;
781 			memcpy(pp->value, ps, sz - 1);
782 			((char *)pp->value)[sz - 1] = 0;
783 			DBG("fixed up name for %s -> %s\n", pathp, pp->value);
784 		}
785 	}
786 	if (allnextpp) {
787 		*prev_pp = NULL;
788 		np->name = get_property(np, "name", NULL);
789 		np->type = get_property(np, "device_type", NULL);
790 
791 		if (!np->name)
792 			np->name = "<NULL>";
793 		if (!np->type)
794 			np->type = "<NULL>";
795 	}
796 	while (tag == OF_DT_BEGIN_NODE) {
797 		mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
798 		tag = *((u32 *)(*p));
799 	}
800 	if (tag != OF_DT_END_NODE) {
801 		printk("Weird tag at end of node: %x\n", tag);
802 		return mem;
803 	}
804 	*p += 4;
805 	return mem;
806 }
807 
808 
809 /**
810  * unflattens the device-tree passed by the firmware, creating the
811  * tree of struct device_node. It also fills the "name" and "type"
812  * pointers of the nodes so the normal device-tree walking functions
813  * can be used (this used to be done by finish_device_tree)
814  */
815 void __init unflatten_device_tree(void)
816 {
817 	unsigned long start, mem, size;
818 	struct device_node **allnextp = &allnodes;
819 	char *p = NULL;
820 	int l = 0;
821 
822 	DBG(" -> unflatten_device_tree()\n");
823 
824 	/* First pass, scan for size */
825 	start = ((unsigned long)initial_boot_params) +
826 		initial_boot_params->off_dt_struct;
827 	size = unflatten_dt_node(0, &start, NULL, NULL, 0);
828 	size = (size | 3) + 1;
829 
830 	DBG("  size is %lx, allocating...\n", size);
831 
832 	/* Allocate memory for the expanded device tree */
833 	mem = lmb_alloc(size + 4, __alignof__(struct device_node));
834 	if (!mem) {
835 		DBG("Couldn't allocate memory with lmb_alloc()!\n");
836 		panic("Couldn't allocate memory with lmb_alloc()!\n");
837 	}
838 	mem = (unsigned long) __va(mem);
839 
840 	((u32 *)mem)[size / 4] = 0xdeadbeef;
841 
842 	DBG("  unflattening %lx...\n", mem);
843 
844 	/* Second pass, do actual unflattening */
845 	start = ((unsigned long)initial_boot_params) +
846 		initial_boot_params->off_dt_struct;
847 	unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
848 	if (*((u32 *)start) != OF_DT_END)
849 		printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
850 	if (((u32 *)mem)[size / 4] != 0xdeadbeef)
851 		printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
852 		       ((u32 *)mem)[size / 4] );
853 	*allnextp = NULL;
854 
855 	/* Get pointer to OF "/chosen" node for use everywhere */
856 	of_chosen = of_find_node_by_path("/chosen");
857 	if (of_chosen == NULL)
858 		of_chosen = of_find_node_by_path("/chosen@0");
859 
860 	/* Retreive command line */
861 	if (of_chosen != NULL) {
862 		p = (char *)get_property(of_chosen, "bootargs", &l);
863 		if (p != NULL && l > 0)
864 			strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
865 	}
866 #ifdef CONFIG_CMDLINE
867 	if (l == 0 || (l == 1 && (*p) == 0))
868 		strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
869 #endif /* CONFIG_CMDLINE */
870 
871 	DBG("Command line is: %s\n", cmd_line);
872 
873 	DBG(" <- unflatten_device_tree()\n");
874 }
875 
876 
877 static int __init early_init_dt_scan_cpus(unsigned long node,
878 					  const char *uname, int depth, void *data)
879 {
880 	u32 *prop;
881 	unsigned long size;
882 	char *type = of_get_flat_dt_prop(node, "device_type", &size);
883 
884 	/* We are scanning "cpu" nodes only */
885 	if (type == NULL || strcmp(type, "cpu") != 0)
886 		return 0;
887 
888 	boot_cpuid = 0;
889 	boot_cpuid_phys = 0;
890 	if (initial_boot_params && initial_boot_params->version >= 2) {
891 		/* version 2 of the kexec param format adds the phys cpuid
892 		 * of booted proc.
893 		 */
894 		boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
895 	} else {
896 		/* Check if it's the boot-cpu, set it's hw index now */
897 		if (of_get_flat_dt_prop(node,
898 					"linux,boot-cpu", NULL) != NULL) {
899 			prop = of_get_flat_dt_prop(node, "reg", NULL);
900 			if (prop != NULL)
901 				boot_cpuid_phys = *prop;
902 		}
903 	}
904 	set_hard_smp_processor_id(0, boot_cpuid_phys);
905 
906 #ifdef CONFIG_ALTIVEC
907 	/* Check if we have a VMX and eventually update CPU features */
908 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
909 	if (prop && (*prop) > 0) {
910 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
911 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
912 	}
913 
914 	/* Same goes for Apple's "altivec" property */
915 	prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
916 	if (prop) {
917 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
918 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
919 	}
920 #endif /* CONFIG_ALTIVEC */
921 
922 #ifdef CONFIG_PPC_PSERIES
923 	/*
924 	 * Check for an SMT capable CPU and set the CPU feature. We do
925 	 * this by looking at the size of the ibm,ppc-interrupt-server#s
926 	 * property
927 	 */
928 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
929 				       &size);
930 	cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
931 	if (prop && ((size / sizeof(u32)) > 1))
932 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
933 #endif
934 
935 	return 0;
936 }
937 
938 static int __init early_init_dt_scan_chosen(unsigned long node,
939 					    const char *uname, int depth, void *data)
940 {
941 	u32 *prop;
942 	unsigned long *lprop;
943 
944 	DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
945 
946 	if (depth != 1 ||
947 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
948 		return 0;
949 
950 	/* get platform type */
951 	prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
952 	if (prop == NULL)
953 		return 0;
954 #ifdef CONFIG_PPC_MULTIPLATFORM
955 	_machine = *prop;
956 #endif
957 
958 #ifdef CONFIG_PPC64
959 	/* check if iommu is forced on or off */
960 	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
961 		iommu_is_off = 1;
962 	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
963 		iommu_force_on = 1;
964 #endif
965 
966  	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
967  	if (lprop)
968  		memory_limit = *lprop;
969 
970 #ifdef CONFIG_PPC64
971  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
972  	if (lprop)
973  		tce_alloc_start = *lprop;
974  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
975  	if (lprop)
976  		tce_alloc_end = *lprop;
977 #endif
978 
979 #ifdef CONFIG_PPC_RTAS
980 	/* To help early debugging via the front panel, we retrieve a minimal
981 	 * set of RTAS infos now if available
982 	 */
983 	{
984 		u64 *basep, *entryp;
985 
986 		basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
987 		entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
988 		prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
989 		if (basep && entryp && prop) {
990 			rtas.base = *basep;
991 			rtas.entry = *entryp;
992 			rtas.size = *prop;
993 		}
994 	}
995 #endif /* CONFIG_PPC_RTAS */
996 
997 #ifdef CONFIG_KEXEC
998        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
999        if (lprop)
1000                crashk_res.start = *lprop;
1001 
1002        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
1003        if (lprop)
1004                crashk_res.end = crashk_res.start + *lprop - 1;
1005 #endif
1006 
1007 	/* break now */
1008 	return 1;
1009 }
1010 
1011 static int __init early_init_dt_scan_root(unsigned long node,
1012 					  const char *uname, int depth, void *data)
1013 {
1014 	u32 *prop;
1015 
1016 	if (depth != 0)
1017 		return 0;
1018 
1019 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1020 	dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1021 	DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1022 
1023 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1024 	dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1025 	DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1026 
1027 	/* break now */
1028 	return 1;
1029 }
1030 
1031 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1032 {
1033 	cell_t *p = *cellp;
1034 	unsigned long r;
1035 
1036 	/* Ignore more than 2 cells */
1037 	while (s > sizeof(unsigned long) / 4) {
1038 		p++;
1039 		s--;
1040 	}
1041 	r = *p++;
1042 #ifdef CONFIG_PPC64
1043 	if (s > 1) {
1044 		r <<= 32;
1045 		r |= *(p++);
1046 		s--;
1047 	}
1048 #endif
1049 
1050 	*cellp = p;
1051 	return r;
1052 }
1053 
1054 
1055 static int __init early_init_dt_scan_memory(unsigned long node,
1056 					    const char *uname, int depth, void *data)
1057 {
1058 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1059 	cell_t *reg, *endp;
1060 	unsigned long l;
1061 
1062 	/* We are scanning "memory" nodes only */
1063 	if (type == NULL) {
1064 		/*
1065 		 * The longtrail doesn't have a device_type on the
1066 		 * /memory node, so look for the node called /memory@0.
1067 		 */
1068 		if (depth != 1 || strcmp(uname, "memory@0") != 0)
1069 			return 0;
1070 	} else if (strcmp(type, "memory") != 0)
1071 		return 0;
1072 
1073 	reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1074 	if (reg == NULL)
1075 		reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1076 	if (reg == NULL)
1077 		return 0;
1078 
1079 	endp = reg + (l / sizeof(cell_t));
1080 
1081 	DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1082 	    uname, l, reg[0], reg[1], reg[2], reg[3]);
1083 
1084 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1085 		unsigned long base, size;
1086 
1087 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1088 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1089 
1090 		if (size == 0)
1091 			continue;
1092 		DBG(" - %lx ,  %lx\n", base, size);
1093 #ifdef CONFIG_PPC64
1094 		if (iommu_is_off) {
1095 			if (base >= 0x80000000ul)
1096 				continue;
1097 			if ((base + size) > 0x80000000ul)
1098 				size = 0x80000000ul - base;
1099 		}
1100 #endif
1101 		lmb_add(base, size);
1102 	}
1103 	return 0;
1104 }
1105 
1106 static void __init early_reserve_mem(void)
1107 {
1108 	u64 base, size;
1109 	u64 *reserve_map;
1110 
1111 	reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1112 					initial_boot_params->off_mem_rsvmap);
1113 #ifdef CONFIG_PPC32
1114 	/*
1115 	 * Handle the case where we might be booting from an old kexec
1116 	 * image that setup the mem_rsvmap as pairs of 32-bit values
1117 	 */
1118 	if (*reserve_map > 0xffffffffull) {
1119 		u32 base_32, size_32;
1120 		u32 *reserve_map_32 = (u32 *)reserve_map;
1121 
1122 		while (1) {
1123 			base_32 = *(reserve_map_32++);
1124 			size_32 = *(reserve_map_32++);
1125 			if (size_32 == 0)
1126 				break;
1127 			DBG("reserving: %lx -> %lx\n", base_32, size_32);
1128 			lmb_reserve(base_32, size_32);
1129 		}
1130 		return;
1131 	}
1132 #endif
1133 	while (1) {
1134 		base = *(reserve_map++);
1135 		size = *(reserve_map++);
1136 		if (size == 0)
1137 			break;
1138 		DBG("reserving: %llx -> %llx\n", base, size);
1139 		lmb_reserve(base, size);
1140 	}
1141 
1142 #if 0
1143 	DBG("memory reserved, lmbs :\n");
1144       	lmb_dump_all();
1145 #endif
1146 }
1147 
1148 void __init early_init_devtree(void *params)
1149 {
1150 	DBG(" -> early_init_devtree()\n");
1151 
1152 	/* Setup flat device-tree pointer */
1153 	initial_boot_params = params;
1154 
1155 	/* Retrieve various informations from the /chosen node of the
1156 	 * device-tree, including the platform type, initrd location and
1157 	 * size, TCE reserve, and more ...
1158 	 */
1159 	of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1160 
1161 	/* Scan memory nodes and rebuild LMBs */
1162 	lmb_init();
1163 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1164 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1165 	lmb_enforce_memory_limit(memory_limit);
1166 	lmb_analyze();
1167 
1168 	DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1169 
1170 	/* Reserve LMB regions used by kernel, initrd, dt, etc... */
1171 	lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1172 #ifdef CONFIG_CRASH_DUMP
1173 	lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1174 #endif
1175 	early_reserve_mem();
1176 
1177 	DBG("Scanning CPUs ...\n");
1178 
1179 	/* Retreive CPU related informations from the flat tree
1180 	 * (altivec support, boot CPU ID, ...)
1181 	 */
1182 	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1183 
1184 	DBG(" <- early_init_devtree()\n");
1185 }
1186 
1187 #undef printk
1188 
1189 int
1190 prom_n_addr_cells(struct device_node* np)
1191 {
1192 	int* ip;
1193 	do {
1194 		if (np->parent)
1195 			np = np->parent;
1196 		ip = (int *) get_property(np, "#address-cells", NULL);
1197 		if (ip != NULL)
1198 			return *ip;
1199 	} while (np->parent);
1200 	/* No #address-cells property for the root node, default to 1 */
1201 	return 1;
1202 }
1203 EXPORT_SYMBOL(prom_n_addr_cells);
1204 
1205 int
1206 prom_n_size_cells(struct device_node* np)
1207 {
1208 	int* ip;
1209 	do {
1210 		if (np->parent)
1211 			np = np->parent;
1212 		ip = (int *) get_property(np, "#size-cells", NULL);
1213 		if (ip != NULL)
1214 			return *ip;
1215 	} while (np->parent);
1216 	/* No #size-cells property for the root node, default to 1 */
1217 	return 1;
1218 }
1219 EXPORT_SYMBOL(prom_n_size_cells);
1220 
1221 /**
1222  * Work out the sense (active-low level / active-high edge)
1223  * of each interrupt from the device tree.
1224  */
1225 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1226 {
1227 	struct device_node *np;
1228 	int i, j;
1229 
1230 	/* default to level-triggered */
1231 	memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1232 
1233 	for (np = allnodes; np != 0; np = np->allnext) {
1234 		for (j = 0; j < np->n_intrs; j++) {
1235 			i = np->intrs[j].line;
1236 			if (i >= off && i < max)
1237 				senses[i-off] = np->intrs[j].sense;
1238 		}
1239 	}
1240 }
1241 
1242 /**
1243  * Construct and return a list of the device_nodes with a given name.
1244  */
1245 struct device_node *find_devices(const char *name)
1246 {
1247 	struct device_node *head, **prevp, *np;
1248 
1249 	prevp = &head;
1250 	for (np = allnodes; np != 0; np = np->allnext) {
1251 		if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1252 			*prevp = np;
1253 			prevp = &np->next;
1254 		}
1255 	}
1256 	*prevp = NULL;
1257 	return head;
1258 }
1259 EXPORT_SYMBOL(find_devices);
1260 
1261 /**
1262  * Construct and return a list of the device_nodes with a given type.
1263  */
1264 struct device_node *find_type_devices(const char *type)
1265 {
1266 	struct device_node *head, **prevp, *np;
1267 
1268 	prevp = &head;
1269 	for (np = allnodes; np != 0; np = np->allnext) {
1270 		if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1271 			*prevp = np;
1272 			prevp = &np->next;
1273 		}
1274 	}
1275 	*prevp = NULL;
1276 	return head;
1277 }
1278 EXPORT_SYMBOL(find_type_devices);
1279 
1280 /**
1281  * Returns all nodes linked together
1282  */
1283 struct device_node *find_all_nodes(void)
1284 {
1285 	struct device_node *head, **prevp, *np;
1286 
1287 	prevp = &head;
1288 	for (np = allnodes; np != 0; np = np->allnext) {
1289 		*prevp = np;
1290 		prevp = &np->next;
1291 	}
1292 	*prevp = NULL;
1293 	return head;
1294 }
1295 EXPORT_SYMBOL(find_all_nodes);
1296 
1297 /** Checks if the given "compat" string matches one of the strings in
1298  * the device's "compatible" property
1299  */
1300 int device_is_compatible(struct device_node *device, const char *compat)
1301 {
1302 	const char* cp;
1303 	int cplen, l;
1304 
1305 	cp = (char *) get_property(device, "compatible", &cplen);
1306 	if (cp == NULL)
1307 		return 0;
1308 	while (cplen > 0) {
1309 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
1310 			return 1;
1311 		l = strlen(cp) + 1;
1312 		cp += l;
1313 		cplen -= l;
1314 	}
1315 
1316 	return 0;
1317 }
1318 EXPORT_SYMBOL(device_is_compatible);
1319 
1320 
1321 /**
1322  * Indicates whether the root node has a given value in its
1323  * compatible property.
1324  */
1325 int machine_is_compatible(const char *compat)
1326 {
1327 	struct device_node *root;
1328 	int rc = 0;
1329 
1330 	root = of_find_node_by_path("/");
1331 	if (root) {
1332 		rc = device_is_compatible(root, compat);
1333 		of_node_put(root);
1334 	}
1335 	return rc;
1336 }
1337 EXPORT_SYMBOL(machine_is_compatible);
1338 
1339 /**
1340  * Construct and return a list of the device_nodes with a given type
1341  * and compatible property.
1342  */
1343 struct device_node *find_compatible_devices(const char *type,
1344 					    const char *compat)
1345 {
1346 	struct device_node *head, **prevp, *np;
1347 
1348 	prevp = &head;
1349 	for (np = allnodes; np != 0; np = np->allnext) {
1350 		if (type != NULL
1351 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1352 			continue;
1353 		if (device_is_compatible(np, compat)) {
1354 			*prevp = np;
1355 			prevp = &np->next;
1356 		}
1357 	}
1358 	*prevp = NULL;
1359 	return head;
1360 }
1361 EXPORT_SYMBOL(find_compatible_devices);
1362 
1363 /**
1364  * Find the device_node with a given full_name.
1365  */
1366 struct device_node *find_path_device(const char *path)
1367 {
1368 	struct device_node *np;
1369 
1370 	for (np = allnodes; np != 0; np = np->allnext)
1371 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1372 			return np;
1373 	return NULL;
1374 }
1375 EXPORT_SYMBOL(find_path_device);
1376 
1377 /*******
1378  *
1379  * New implementation of the OF "find" APIs, return a refcounted
1380  * object, call of_node_put() when done.  The device tree and list
1381  * are protected by a rw_lock.
1382  *
1383  * Note that property management will need some locking as well,
1384  * this isn't dealt with yet.
1385  *
1386  *******/
1387 
1388 /**
1389  *	of_find_node_by_name - Find a node by its "name" property
1390  *	@from:	The node to start searching from or NULL, the node
1391  *		you pass will not be searched, only the next one
1392  *		will; typically, you pass what the previous call
1393  *		returned. of_node_put() will be called on it
1394  *	@name:	The name string to match against
1395  *
1396  *	Returns a node pointer with refcount incremented, use
1397  *	of_node_put() on it when done.
1398  */
1399 struct device_node *of_find_node_by_name(struct device_node *from,
1400 	const char *name)
1401 {
1402 	struct device_node *np;
1403 
1404 	read_lock(&devtree_lock);
1405 	np = from ? from->allnext : allnodes;
1406 	for (; np != 0; np = np->allnext)
1407 		if (np->name != 0 && strcasecmp(np->name, name) == 0
1408 		    && of_node_get(np))
1409 			break;
1410 	if (from)
1411 		of_node_put(from);
1412 	read_unlock(&devtree_lock);
1413 	return np;
1414 }
1415 EXPORT_SYMBOL(of_find_node_by_name);
1416 
1417 /**
1418  *	of_find_node_by_type - Find a node by its "device_type" property
1419  *	@from:	The node to start searching from or NULL, the node
1420  *		you pass will not be searched, only the next one
1421  *		will; typically, you pass what the previous call
1422  *		returned. of_node_put() will be called on it
1423  *	@name:	The type string to match against
1424  *
1425  *	Returns a node pointer with refcount incremented, use
1426  *	of_node_put() on it when done.
1427  */
1428 struct device_node *of_find_node_by_type(struct device_node *from,
1429 	const char *type)
1430 {
1431 	struct device_node *np;
1432 
1433 	read_lock(&devtree_lock);
1434 	np = from ? from->allnext : allnodes;
1435 	for (; np != 0; np = np->allnext)
1436 		if (np->type != 0 && strcasecmp(np->type, type) == 0
1437 		    && of_node_get(np))
1438 			break;
1439 	if (from)
1440 		of_node_put(from);
1441 	read_unlock(&devtree_lock);
1442 	return np;
1443 }
1444 EXPORT_SYMBOL(of_find_node_by_type);
1445 
1446 /**
1447  *	of_find_compatible_node - Find a node based on type and one of the
1448  *                                tokens in its "compatible" property
1449  *	@from:		The node to start searching from or NULL, the node
1450  *			you pass will not be searched, only the next one
1451  *			will; typically, you pass what the previous call
1452  *			returned. of_node_put() will be called on it
1453  *	@type:		The type string to match "device_type" or NULL to ignore
1454  *	@compatible:	The string to match to one of the tokens in the device
1455  *			"compatible" list.
1456  *
1457  *	Returns a node pointer with refcount incremented, use
1458  *	of_node_put() on it when done.
1459  */
1460 struct device_node *of_find_compatible_node(struct device_node *from,
1461 	const char *type, const char *compatible)
1462 {
1463 	struct device_node *np;
1464 
1465 	read_lock(&devtree_lock);
1466 	np = from ? from->allnext : allnodes;
1467 	for (; np != 0; np = np->allnext) {
1468 		if (type != NULL
1469 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1470 			continue;
1471 		if (device_is_compatible(np, compatible) && of_node_get(np))
1472 			break;
1473 	}
1474 	if (from)
1475 		of_node_put(from);
1476 	read_unlock(&devtree_lock);
1477 	return np;
1478 }
1479 EXPORT_SYMBOL(of_find_compatible_node);
1480 
1481 /**
1482  *	of_find_node_by_path - Find a node matching a full OF path
1483  *	@path:	The full path to match
1484  *
1485  *	Returns a node pointer with refcount incremented, use
1486  *	of_node_put() on it when done.
1487  */
1488 struct device_node *of_find_node_by_path(const char *path)
1489 {
1490 	struct device_node *np = allnodes;
1491 
1492 	read_lock(&devtree_lock);
1493 	for (; np != 0; np = np->allnext) {
1494 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1495 		    && of_node_get(np))
1496 			break;
1497 	}
1498 	read_unlock(&devtree_lock);
1499 	return np;
1500 }
1501 EXPORT_SYMBOL(of_find_node_by_path);
1502 
1503 /**
1504  *	of_find_node_by_phandle - Find a node given a phandle
1505  *	@handle:	phandle of the node to find
1506  *
1507  *	Returns a node pointer with refcount incremented, use
1508  *	of_node_put() on it when done.
1509  */
1510 struct device_node *of_find_node_by_phandle(phandle handle)
1511 {
1512 	struct device_node *np;
1513 
1514 	read_lock(&devtree_lock);
1515 	for (np = allnodes; np != 0; np = np->allnext)
1516 		if (np->linux_phandle == handle)
1517 			break;
1518 	if (np)
1519 		of_node_get(np);
1520 	read_unlock(&devtree_lock);
1521 	return np;
1522 }
1523 EXPORT_SYMBOL(of_find_node_by_phandle);
1524 
1525 /**
1526  *	of_find_all_nodes - Get next node in global list
1527  *	@prev:	Previous node or NULL to start iteration
1528  *		of_node_put() will be called on it
1529  *
1530  *	Returns a node pointer with refcount incremented, use
1531  *	of_node_put() on it when done.
1532  */
1533 struct device_node *of_find_all_nodes(struct device_node *prev)
1534 {
1535 	struct device_node *np;
1536 
1537 	read_lock(&devtree_lock);
1538 	np = prev ? prev->allnext : allnodes;
1539 	for (; np != 0; np = np->allnext)
1540 		if (of_node_get(np))
1541 			break;
1542 	if (prev)
1543 		of_node_put(prev);
1544 	read_unlock(&devtree_lock);
1545 	return np;
1546 }
1547 EXPORT_SYMBOL(of_find_all_nodes);
1548 
1549 /**
1550  *	of_get_parent - Get a node's parent if any
1551  *	@node:	Node to get parent
1552  *
1553  *	Returns a node pointer with refcount incremented, use
1554  *	of_node_put() on it when done.
1555  */
1556 struct device_node *of_get_parent(const struct device_node *node)
1557 {
1558 	struct device_node *np;
1559 
1560 	if (!node)
1561 		return NULL;
1562 
1563 	read_lock(&devtree_lock);
1564 	np = of_node_get(node->parent);
1565 	read_unlock(&devtree_lock);
1566 	return np;
1567 }
1568 EXPORT_SYMBOL(of_get_parent);
1569 
1570 /**
1571  *	of_get_next_child - Iterate a node childs
1572  *	@node:	parent node
1573  *	@prev:	previous child of the parent node, or NULL to get first
1574  *
1575  *	Returns a node pointer with refcount incremented, use
1576  *	of_node_put() on it when done.
1577  */
1578 struct device_node *of_get_next_child(const struct device_node *node,
1579 	struct device_node *prev)
1580 {
1581 	struct device_node *next;
1582 
1583 	read_lock(&devtree_lock);
1584 	next = prev ? prev->sibling : node->child;
1585 	for (; next != 0; next = next->sibling)
1586 		if (of_node_get(next))
1587 			break;
1588 	if (prev)
1589 		of_node_put(prev);
1590 	read_unlock(&devtree_lock);
1591 	return next;
1592 }
1593 EXPORT_SYMBOL(of_get_next_child);
1594 
1595 /**
1596  *	of_node_get - Increment refcount of a node
1597  *	@node:	Node to inc refcount, NULL is supported to
1598  *		simplify writing of callers
1599  *
1600  *	Returns node.
1601  */
1602 struct device_node *of_node_get(struct device_node *node)
1603 {
1604 	if (node)
1605 		kref_get(&node->kref);
1606 	return node;
1607 }
1608 EXPORT_SYMBOL(of_node_get);
1609 
1610 static inline struct device_node * kref_to_device_node(struct kref *kref)
1611 {
1612 	return container_of(kref, struct device_node, kref);
1613 }
1614 
1615 /**
1616  *	of_node_release - release a dynamically allocated node
1617  *	@kref:  kref element of the node to be released
1618  *
1619  *	In of_node_put() this function is passed to kref_put()
1620  *	as the destructor.
1621  */
1622 static void of_node_release(struct kref *kref)
1623 {
1624 	struct device_node *node = kref_to_device_node(kref);
1625 	struct property *prop = node->properties;
1626 
1627 	if (!OF_IS_DYNAMIC(node))
1628 		return;
1629 	while (prop) {
1630 		struct property *next = prop->next;
1631 		kfree(prop->name);
1632 		kfree(prop->value);
1633 		kfree(prop);
1634 		prop = next;
1635 
1636 		if (!prop) {
1637 			prop = node->deadprops;
1638 			node->deadprops = NULL;
1639 		}
1640 	}
1641 	kfree(node->intrs);
1642 	kfree(node->full_name);
1643 	kfree(node->data);
1644 	kfree(node);
1645 }
1646 
1647 /**
1648  *	of_node_put - Decrement refcount of a node
1649  *	@node:	Node to dec refcount, NULL is supported to
1650  *		simplify writing of callers
1651  *
1652  */
1653 void of_node_put(struct device_node *node)
1654 {
1655 	if (node)
1656 		kref_put(&node->kref, of_node_release);
1657 }
1658 EXPORT_SYMBOL(of_node_put);
1659 
1660 /*
1661  * Plug a device node into the tree and global list.
1662  */
1663 void of_attach_node(struct device_node *np)
1664 {
1665 	write_lock(&devtree_lock);
1666 	np->sibling = np->parent->child;
1667 	np->allnext = allnodes;
1668 	np->parent->child = np;
1669 	allnodes = np;
1670 	write_unlock(&devtree_lock);
1671 }
1672 
1673 /*
1674  * "Unplug" a node from the device tree.  The caller must hold
1675  * a reference to the node.  The memory associated with the node
1676  * is not freed until its refcount goes to zero.
1677  */
1678 void of_detach_node(const struct device_node *np)
1679 {
1680 	struct device_node *parent;
1681 
1682 	write_lock(&devtree_lock);
1683 
1684 	parent = np->parent;
1685 
1686 	if (allnodes == np)
1687 		allnodes = np->allnext;
1688 	else {
1689 		struct device_node *prev;
1690 		for (prev = allnodes;
1691 		     prev->allnext != np;
1692 		     prev = prev->allnext)
1693 			;
1694 		prev->allnext = np->allnext;
1695 	}
1696 
1697 	if (parent->child == np)
1698 		parent->child = np->sibling;
1699 	else {
1700 		struct device_node *prevsib;
1701 		for (prevsib = np->parent->child;
1702 		     prevsib->sibling != np;
1703 		     prevsib = prevsib->sibling)
1704 			;
1705 		prevsib->sibling = np->sibling;
1706 	}
1707 
1708 	write_unlock(&devtree_lock);
1709 }
1710 
1711 #ifdef CONFIG_PPC_PSERIES
1712 /*
1713  * Fix up the uninitialized fields in a new device node:
1714  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1715  *
1716  * A lot of boot-time code is duplicated here, because functions such
1717  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1718  * slab allocator.
1719  *
1720  * This should probably be split up into smaller chunks.
1721  */
1722 
1723 static int of_finish_dynamic_node(struct device_node *node)
1724 {
1725 	struct device_node *parent = of_get_parent(node);
1726 	int err = 0;
1727 	phandle *ibm_phandle;
1728 
1729 	node->name = get_property(node, "name", NULL);
1730 	node->type = get_property(node, "device_type", NULL);
1731 
1732 	if (!parent) {
1733 		err = -ENODEV;
1734 		goto out;
1735 	}
1736 
1737 	/* We don't support that function on PowerMac, at least
1738 	 * not yet
1739 	 */
1740 	if (_machine == PLATFORM_POWERMAC)
1741 		return -ENODEV;
1742 
1743 	/* fix up new node's linux_phandle field */
1744 	if ((ibm_phandle = (unsigned int *)get_property(node,
1745 							"ibm,phandle", NULL)))
1746 		node->linux_phandle = *ibm_phandle;
1747 
1748 out:
1749 	of_node_put(parent);
1750 	return err;
1751 }
1752 
1753 static int prom_reconfig_notifier(struct notifier_block *nb,
1754 				  unsigned long action, void *node)
1755 {
1756 	int err;
1757 
1758 	switch (action) {
1759 	case PSERIES_RECONFIG_ADD:
1760 		err = of_finish_dynamic_node(node);
1761 		if (!err)
1762 			finish_node(node, NULL, 0);
1763 		if (err < 0) {
1764 			printk(KERN_ERR "finish_node returned %d\n", err);
1765 			err = NOTIFY_BAD;
1766 		}
1767 		break;
1768 	default:
1769 		err = NOTIFY_DONE;
1770 		break;
1771 	}
1772 	return err;
1773 }
1774 
1775 static struct notifier_block prom_reconfig_nb = {
1776 	.notifier_call = prom_reconfig_notifier,
1777 	.priority = 10, /* This one needs to run first */
1778 };
1779 
1780 static int __init prom_reconfig_setup(void)
1781 {
1782 	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1783 }
1784 __initcall(prom_reconfig_setup);
1785 #endif
1786 
1787 struct property *of_find_property(struct device_node *np, const char *name,
1788 				  int *lenp)
1789 {
1790 	struct property *pp;
1791 
1792 	read_lock(&devtree_lock);
1793 	for (pp = np->properties; pp != 0; pp = pp->next)
1794 		if (strcmp(pp->name, name) == 0) {
1795 			if (lenp != 0)
1796 				*lenp = pp->length;
1797 			break;
1798 		}
1799 	read_unlock(&devtree_lock);
1800 
1801 	return pp;
1802 }
1803 
1804 /*
1805  * Find a property with a given name for a given node
1806  * and return the value.
1807  */
1808 unsigned char *get_property(struct device_node *np, const char *name,
1809 			    int *lenp)
1810 {
1811 	struct property *pp = of_find_property(np,name,lenp);
1812 	return pp ? pp->value : NULL;
1813 }
1814 EXPORT_SYMBOL(get_property);
1815 
1816 /*
1817  * Add a property to a node
1818  */
1819 int prom_add_property(struct device_node* np, struct property* prop)
1820 {
1821 	struct property **next;
1822 
1823 	prop->next = NULL;
1824 	write_lock(&devtree_lock);
1825 	next = &np->properties;
1826 	while (*next) {
1827 		if (strcmp(prop->name, (*next)->name) == 0) {
1828 			/* duplicate ! don't insert it */
1829 			write_unlock(&devtree_lock);
1830 			return -1;
1831 		}
1832 		next = &(*next)->next;
1833 	}
1834 	*next = prop;
1835 	write_unlock(&devtree_lock);
1836 
1837 #ifdef CONFIG_PROC_DEVICETREE
1838 	/* try to add to proc as well if it was initialized */
1839 	if (np->pde)
1840 		proc_device_tree_add_prop(np->pde, prop);
1841 #endif /* CONFIG_PROC_DEVICETREE */
1842 
1843 	return 0;
1844 }
1845 
1846 /*
1847  * Remove a property from a node.  Note that we don't actually
1848  * remove it, since we have given out who-knows-how-many pointers
1849  * to the data using get-property.  Instead we just move the property
1850  * to the "dead properties" list, so it won't be found any more.
1851  */
1852 int prom_remove_property(struct device_node *np, struct property *prop)
1853 {
1854 	struct property **next;
1855 	int found = 0;
1856 
1857 	write_lock(&devtree_lock);
1858 	next = &np->properties;
1859 	while (*next) {
1860 		if (*next == prop) {
1861 			/* found the node */
1862 			*next = prop->next;
1863 			prop->next = np->deadprops;
1864 			np->deadprops = prop;
1865 			found = 1;
1866 			break;
1867 		}
1868 		next = &(*next)->next;
1869 	}
1870 	write_unlock(&devtree_lock);
1871 
1872 	if (!found)
1873 		return -ENODEV;
1874 
1875 #ifdef CONFIG_PROC_DEVICETREE
1876 	/* try to remove the proc node as well */
1877 	if (np->pde)
1878 		proc_device_tree_remove_prop(np->pde, prop);
1879 #endif /* CONFIG_PROC_DEVICETREE */
1880 
1881 	return 0;
1882 }
1883 
1884 /*
1885  * Update a property in a node.  Note that we don't actually
1886  * remove it, since we have given out who-knows-how-many pointers
1887  * to the data using get-property.  Instead we just move the property
1888  * to the "dead properties" list, and add the new property to the
1889  * property list
1890  */
1891 int prom_update_property(struct device_node *np,
1892 			 struct property *newprop,
1893 			 struct property *oldprop)
1894 {
1895 	struct property **next;
1896 	int found = 0;
1897 
1898 	write_lock(&devtree_lock);
1899 	next = &np->properties;
1900 	while (*next) {
1901 		if (*next == oldprop) {
1902 			/* found the node */
1903 			newprop->next = oldprop->next;
1904 			*next = newprop;
1905 			oldprop->next = np->deadprops;
1906 			np->deadprops = oldprop;
1907 			found = 1;
1908 			break;
1909 		}
1910 		next = &(*next)->next;
1911 	}
1912 	write_unlock(&devtree_lock);
1913 
1914 	if (!found)
1915 		return -ENODEV;
1916 
1917 #ifdef CONFIG_PROC_DEVICETREE
1918 	/* try to add to proc as well if it was initialized */
1919 	if (np->pde)
1920 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1921 #endif /* CONFIG_PROC_DEVICETREE */
1922 
1923 	return 0;
1924 }
1925 
1926 #ifdef CONFIG_KEXEC
1927 /* We may have allocated the flat device tree inside the crash kernel region
1928  * in prom_init. If so we need to move it out into regular memory. */
1929 void kdump_move_device_tree(void)
1930 {
1931 	unsigned long start, end;
1932 	struct boot_param_header *new;
1933 
1934 	start = __pa((unsigned long)initial_boot_params);
1935 	end = start + initial_boot_params->totalsize;
1936 
1937 	if (end < crashk_res.start || start > crashk_res.end)
1938 		return;
1939 
1940 	new = (struct boot_param_header*)
1941 		__va(lmb_alloc(initial_boot_params->totalsize, PAGE_SIZE));
1942 
1943 	memcpy(new, initial_boot_params, initial_boot_params->totalsize);
1944 
1945 	initial_boot_params = new;
1946 
1947 	DBG("Flat device tree blob moved to %p\n", initial_boot_params);
1948 
1949 	/* XXX should we unreserve the old DT? */
1950 }
1951 #endif /* CONFIG_KEXEC */
1952