1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 */ 15 16 #undef DEBUG 17 18 #include <stdarg.h> 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/init.h> 22 #include <linux/threads.h> 23 #include <linux/spinlock.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/stringify.h> 27 #include <linux/delay.h> 28 #include <linux/initrd.h> 29 #include <linux/bitops.h> 30 #include <linux/export.h> 31 #include <linux/kexec.h> 32 #include <linux/irq.h> 33 #include <linux/memblock.h> 34 #include <linux/of.h> 35 #include <linux/of_fdt.h> 36 #include <linux/libfdt.h> 37 #include <linux/cpu.h> 38 39 #include <asm/prom.h> 40 #include <asm/rtas.h> 41 #include <asm/page.h> 42 #include <asm/processor.h> 43 #include <asm/irq.h> 44 #include <asm/io.h> 45 #include <asm/kdump.h> 46 #include <asm/smp.h> 47 #include <asm/mmu.h> 48 #include <asm/paca.h> 49 #include <asm/pgtable.h> 50 #include <asm/iommu.h> 51 #include <asm/btext.h> 52 #include <asm/sections.h> 53 #include <asm/machdep.h> 54 #include <asm/pci-bridge.h> 55 #include <asm/kexec.h> 56 #include <asm/opal.h> 57 #include <asm/fadump.h> 58 #include <asm/debug.h> 59 #include <asm/epapr_hcalls.h> 60 #include <asm/firmware.h> 61 62 #include <mm/mmu_decl.h> 63 64 #ifdef DEBUG 65 #define DBG(fmt...) printk(KERN_ERR fmt) 66 #else 67 #define DBG(fmt...) 68 #endif 69 70 #ifdef CONFIG_PPC64 71 int __initdata iommu_is_off; 72 int __initdata iommu_force_on; 73 unsigned long tce_alloc_start, tce_alloc_end; 74 u64 ppc64_rma_size; 75 #endif 76 static phys_addr_t first_memblock_size; 77 static int __initdata boot_cpu_count; 78 79 static int __init early_parse_mem(char *p) 80 { 81 if (!p) 82 return 1; 83 84 memory_limit = PAGE_ALIGN(memparse(p, &p)); 85 DBG("memory limit = 0x%llx\n", memory_limit); 86 87 return 0; 88 } 89 early_param("mem", early_parse_mem); 90 91 /* 92 * overlaps_initrd - check for overlap with page aligned extension of 93 * initrd. 94 */ 95 static inline int overlaps_initrd(unsigned long start, unsigned long size) 96 { 97 #ifdef CONFIG_BLK_DEV_INITRD 98 if (!initrd_start) 99 return 0; 100 101 return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) && 102 start <= _ALIGN_UP(initrd_end, PAGE_SIZE); 103 #else 104 return 0; 105 #endif 106 } 107 108 /** 109 * move_device_tree - move tree to an unused area, if needed. 110 * 111 * The device tree may be allocated beyond our memory limit, or inside the 112 * crash kernel region for kdump, or within the page aligned range of initrd. 113 * If so, move it out of the way. 114 */ 115 static void __init move_device_tree(void) 116 { 117 unsigned long start, size; 118 void *p; 119 120 DBG("-> move_device_tree\n"); 121 122 start = __pa(initial_boot_params); 123 size = fdt_totalsize(initial_boot_params); 124 125 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 126 overlaps_crashkernel(start, size) || 127 overlaps_initrd(start, size)) { 128 p = __va(memblock_alloc(size, PAGE_SIZE)); 129 memcpy(p, initial_boot_params, size); 130 initial_boot_params = p; 131 DBG("Moved device tree to 0x%p\n", p); 132 } 133 134 DBG("<- move_device_tree\n"); 135 } 136 137 /* 138 * ibm,pa-features is a per-cpu property that contains a string of 139 * attribute descriptors, each of which has a 2 byte header plus up 140 * to 254 bytes worth of processor attribute bits. First header 141 * byte specifies the number of bytes following the header. 142 * Second header byte is an "attribute-specifier" type, of which 143 * zero is the only currently-defined value. 144 * Implementation: Pass in the byte and bit offset for the feature 145 * that we are interested in. The function will return -1 if the 146 * pa-features property is missing, or a 1/0 to indicate if the feature 147 * is supported/not supported. Note that the bit numbers are 148 * big-endian to match the definition in PAPR. 149 */ 150 static struct ibm_pa_feature { 151 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 152 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 153 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 154 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ 155 unsigned char pabyte; /* byte number in ibm,pa-features */ 156 unsigned char pabit; /* bit number (big-endian) */ 157 unsigned char invert; /* if 1, pa bit set => clear feature */ 158 } ibm_pa_features[] __initdata = { 159 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, 160 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, 161 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, 162 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, 163 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, 164 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX }, 165 { .pabyte = 1, .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN }, 166 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, 167 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, 168 /* 169 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), 170 * we don't want to turn on TM here, so we use the *_COMP versions 171 * which are 0 if the kernel doesn't support TM. 172 */ 173 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, 174 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, 175 }; 176 177 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 178 unsigned long tablelen, 179 struct ibm_pa_feature *fp, 180 unsigned long ft_size) 181 { 182 unsigned long i, len, bit; 183 184 /* find descriptor with type == 0 */ 185 for (;;) { 186 if (tablelen < 3) 187 return; 188 len = 2 + ftrs[0]; 189 if (tablelen < len) 190 return; /* descriptor 0 not found */ 191 if (ftrs[1] == 0) 192 break; 193 tablelen -= len; 194 ftrs += len; 195 } 196 197 /* loop over bits we know about */ 198 for (i = 0; i < ft_size; ++i, ++fp) { 199 if (fp->pabyte >= ftrs[0]) 200 continue; 201 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 202 if (bit ^ fp->invert) { 203 cur_cpu_spec->cpu_features |= fp->cpu_features; 204 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 205 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; 206 cur_cpu_spec->mmu_features |= fp->mmu_features; 207 } else { 208 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 209 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 210 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; 211 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 212 } 213 } 214 } 215 216 static void __init check_cpu_pa_features(unsigned long node) 217 { 218 const unsigned char *pa_ftrs; 219 int tablelen; 220 221 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); 222 if (pa_ftrs == NULL) 223 return; 224 225 scan_features(node, pa_ftrs, tablelen, 226 ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); 227 } 228 229 #ifdef CONFIG_PPC_STD_MMU_64 230 static void __init init_mmu_slb_size(unsigned long node) 231 { 232 const __be32 *slb_size_ptr; 233 234 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 235 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 236 237 if (slb_size_ptr) 238 mmu_slb_size = be32_to_cpup(slb_size_ptr); 239 } 240 #else 241 #define init_mmu_slb_size(node) do { } while(0) 242 #endif 243 244 static struct feature_property { 245 const char *name; 246 u32 min_value; 247 unsigned long cpu_feature; 248 unsigned long cpu_user_ftr; 249 } feature_properties[] __initdata = { 250 #ifdef CONFIG_ALTIVEC 251 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 252 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 253 #endif /* CONFIG_ALTIVEC */ 254 #ifdef CONFIG_VSX 255 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 256 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 257 #endif /* CONFIG_VSX */ 258 #ifdef CONFIG_PPC64 259 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 260 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 261 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 262 #endif /* CONFIG_PPC64 */ 263 }; 264 265 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 266 static inline void identical_pvr_fixup(unsigned long node) 267 { 268 unsigned int pvr; 269 const char *model = of_get_flat_dt_prop(node, "model", NULL); 270 271 /* 272 * Since 440GR(x)/440EP(x) processors have the same pvr, 273 * we check the node path and set bit 28 in the cur_cpu_spec 274 * pvr for EP(x) processor version. This bit is always 0 in 275 * the "real" pvr. Then we call identify_cpu again with 276 * the new logical pvr to enable FPU support. 277 */ 278 if (model && strstr(model, "440EP")) { 279 pvr = cur_cpu_spec->pvr_value | 0x8; 280 identify_cpu(0, pvr); 281 DBG("Using logical pvr %x for %s\n", pvr, model); 282 } 283 } 284 #else 285 #define identical_pvr_fixup(node) do { } while(0) 286 #endif 287 288 static void __init check_cpu_feature_properties(unsigned long node) 289 { 290 unsigned long i; 291 struct feature_property *fp = feature_properties; 292 const __be32 *prop; 293 294 for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) { 295 prop = of_get_flat_dt_prop(node, fp->name, NULL); 296 if (prop && be32_to_cpup(prop) >= fp->min_value) { 297 cur_cpu_spec->cpu_features |= fp->cpu_feature; 298 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 299 } 300 } 301 } 302 303 static int __init early_init_dt_scan_cpus(unsigned long node, 304 const char *uname, int depth, 305 void *data) 306 { 307 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 308 const __be32 *prop; 309 const __be32 *intserv; 310 int i, nthreads; 311 int len; 312 int found = -1; 313 int found_thread = 0; 314 315 /* We are scanning "cpu" nodes only */ 316 if (type == NULL || strcmp(type, "cpu") != 0) 317 return 0; 318 319 /* Get physical cpuid */ 320 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 321 if (!intserv) 322 intserv = of_get_flat_dt_prop(node, "reg", &len); 323 324 nthreads = len / sizeof(int); 325 326 /* 327 * Now see if any of these threads match our boot cpu. 328 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 329 */ 330 for (i = 0; i < nthreads; i++) { 331 /* 332 * version 2 of the kexec param format adds the phys cpuid of 333 * booted proc. 334 */ 335 if (fdt_version(initial_boot_params) >= 2) { 336 if (be32_to_cpu(intserv[i]) == 337 fdt_boot_cpuid_phys(initial_boot_params)) { 338 found = boot_cpu_count; 339 found_thread = i; 340 } 341 } else { 342 /* 343 * Check if it's the boot-cpu, set it's hw index now, 344 * unfortunately this format did not support booting 345 * off secondary threads. 346 */ 347 if (of_get_flat_dt_prop(node, 348 "linux,boot-cpu", NULL) != NULL) 349 found = boot_cpu_count; 350 } 351 #ifdef CONFIG_SMP 352 /* logical cpu id is always 0 on UP kernels */ 353 boot_cpu_count++; 354 #endif 355 } 356 357 /* Not the boot CPU */ 358 if (found < 0) 359 return 0; 360 361 DBG("boot cpu: logical %d physical %d\n", found, 362 be32_to_cpu(intserv[found_thread])); 363 boot_cpuid = found; 364 set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread])); 365 366 /* 367 * PAPR defines "logical" PVR values for cpus that 368 * meet various levels of the architecture: 369 * 0x0f000001 Architecture version 2.04 370 * 0x0f000002 Architecture version 2.05 371 * If the cpu-version property in the cpu node contains 372 * such a value, we call identify_cpu again with the 373 * logical PVR value in order to use the cpu feature 374 * bits appropriate for the architecture level. 375 * 376 * A POWER6 partition in "POWER6 architected" mode 377 * uses the 0x0f000002 PVR value; in POWER5+ mode 378 * it uses 0x0f000001. 379 */ 380 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 381 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) 382 identify_cpu(0, be32_to_cpup(prop)); 383 384 identical_pvr_fixup(node); 385 386 check_cpu_feature_properties(node); 387 check_cpu_pa_features(node); 388 init_mmu_slb_size(node); 389 390 #ifdef CONFIG_PPC64 391 if (nthreads > 1) 392 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 393 else 394 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 395 #endif 396 return 0; 397 } 398 399 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 400 const char *uname, 401 int depth, void *data) 402 { 403 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 404 405 /* Use common scan routine to determine if this is the chosen node */ 406 if (early_init_dt_scan_chosen(node, uname, depth, data) == 0) 407 return 0; 408 409 #ifdef CONFIG_PPC64 410 /* check if iommu is forced on or off */ 411 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 412 iommu_is_off = 1; 413 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 414 iommu_force_on = 1; 415 #endif 416 417 /* mem=x on the command line is the preferred mechanism */ 418 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 419 if (lprop) 420 memory_limit = *lprop; 421 422 #ifdef CONFIG_PPC64 423 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 424 if (lprop) 425 tce_alloc_start = *lprop; 426 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 427 if (lprop) 428 tce_alloc_end = *lprop; 429 #endif 430 431 #ifdef CONFIG_KEXEC_CORE 432 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 433 if (lprop) 434 crashk_res.start = *lprop; 435 436 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 437 if (lprop) 438 crashk_res.end = crashk_res.start + *lprop - 1; 439 #endif 440 441 /* break now */ 442 return 1; 443 } 444 445 #ifdef CONFIG_PPC_PSERIES 446 /* 447 * Interpret the ibm,dynamic-memory property in the 448 * /ibm,dynamic-reconfiguration-memory node. 449 * This contains a list of memory blocks along with NUMA affinity 450 * information. 451 */ 452 static int __init early_init_dt_scan_drconf_memory(unsigned long node) 453 { 454 const __be32 *dm, *ls, *usm; 455 int l; 456 unsigned long n, flags; 457 u64 base, size, memblock_size; 458 unsigned int is_kexec_kdump = 0, rngs; 459 460 ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l); 461 if (ls == NULL || l < dt_root_size_cells * sizeof(__be32)) 462 return 0; 463 memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls); 464 465 dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l); 466 if (dm == NULL || l < sizeof(__be32)) 467 return 0; 468 469 n = of_read_number(dm++, 1); /* number of entries */ 470 if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32)) 471 return 0; 472 473 /* check if this is a kexec/kdump kernel. */ 474 usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory", 475 &l); 476 if (usm != NULL) 477 is_kexec_kdump = 1; 478 479 for (; n != 0; --n) { 480 base = dt_mem_next_cell(dt_root_addr_cells, &dm); 481 flags = of_read_number(&dm[3], 1); 482 /* skip DRC index, pad, assoc. list index, flags */ 483 dm += 4; 484 /* skip this block if the reserved bit is set in flags 485 or if the block is not assigned to this partition */ 486 if ((flags & DRCONF_MEM_RESERVED) || 487 !(flags & DRCONF_MEM_ASSIGNED)) 488 continue; 489 size = memblock_size; 490 rngs = 1; 491 if (is_kexec_kdump) { 492 /* 493 * For each memblock in ibm,dynamic-memory, a corresponding 494 * entry in linux,drconf-usable-memory property contains 495 * a counter 'p' followed by 'p' (base, size) duple. 496 * Now read the counter from 497 * linux,drconf-usable-memory property 498 */ 499 rngs = dt_mem_next_cell(dt_root_size_cells, &usm); 500 if (!rngs) /* there are no (base, size) duple */ 501 continue; 502 } 503 do { 504 if (is_kexec_kdump) { 505 base = dt_mem_next_cell(dt_root_addr_cells, 506 &usm); 507 size = dt_mem_next_cell(dt_root_size_cells, 508 &usm); 509 } 510 if (iommu_is_off) { 511 if (base >= 0x80000000ul) 512 continue; 513 if ((base + size) > 0x80000000ul) 514 size = 0x80000000ul - base; 515 } 516 memblock_add(base, size); 517 } while (--rngs); 518 } 519 memblock_dump_all(); 520 return 0; 521 } 522 #else 523 #define early_init_dt_scan_drconf_memory(node) 0 524 #endif /* CONFIG_PPC_PSERIES */ 525 526 static int __init early_init_dt_scan_memory_ppc(unsigned long node, 527 const char *uname, 528 int depth, void *data) 529 { 530 if (depth == 1 && 531 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) 532 return early_init_dt_scan_drconf_memory(node); 533 534 return early_init_dt_scan_memory(node, uname, depth, data); 535 } 536 537 /* 538 * For a relocatable kernel, we need to get the memstart_addr first, 539 * then use it to calculate the virtual kernel start address. This has 540 * to happen at a very early stage (before machine_init). In this case, 541 * we just want to get the memstart_address and would not like to mess the 542 * memblock at this stage. So introduce a variable to skip the memblock_add() 543 * for this reason. 544 */ 545 #ifdef CONFIG_RELOCATABLE 546 static int add_mem_to_memblock = 1; 547 #else 548 #define add_mem_to_memblock 1 549 #endif 550 551 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 552 { 553 #ifdef CONFIG_PPC64 554 if (iommu_is_off) { 555 if (base >= 0x80000000ul) 556 return; 557 if ((base + size) > 0x80000000ul) 558 size = 0x80000000ul - base; 559 } 560 #endif 561 /* Keep track of the beginning of memory -and- the size of 562 * the very first block in the device-tree as it represents 563 * the RMA on ppc64 server 564 */ 565 if (base < memstart_addr) { 566 memstart_addr = base; 567 first_memblock_size = size; 568 } 569 570 /* Add the chunk to the MEMBLOCK list */ 571 if (add_mem_to_memblock) 572 memblock_add(base, size); 573 } 574 575 static void __init early_reserve_mem_dt(void) 576 { 577 unsigned long i, dt_root; 578 int len; 579 const __be32 *prop; 580 581 early_init_fdt_reserve_self(); 582 early_init_fdt_scan_reserved_mem(); 583 584 dt_root = of_get_flat_dt_root(); 585 586 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 587 588 if (!prop) 589 return; 590 591 DBG("Found new-style reserved-ranges\n"); 592 593 /* Each reserved range is an (address,size) pair, 2 cells each, 594 * totalling 4 cells per range. */ 595 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 596 u64 base, size; 597 598 base = of_read_number(prop + (i * 4) + 0, 2); 599 size = of_read_number(prop + (i * 4) + 2, 2); 600 601 if (size) { 602 DBG("reserving: %llx -> %llx\n", base, size); 603 memblock_reserve(base, size); 604 } 605 } 606 } 607 608 static void __init early_reserve_mem(void) 609 { 610 __be64 *reserve_map; 611 612 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 613 fdt_off_mem_rsvmap(initial_boot_params)); 614 615 /* Look for the new "reserved-regions" property in the DT */ 616 early_reserve_mem_dt(); 617 618 #ifdef CONFIG_BLK_DEV_INITRD 619 /* Then reserve the initrd, if any */ 620 if (initrd_start && (initrd_end > initrd_start)) { 621 memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 622 _ALIGN_UP(initrd_end, PAGE_SIZE) - 623 _ALIGN_DOWN(initrd_start, PAGE_SIZE)); 624 } 625 #endif /* CONFIG_BLK_DEV_INITRD */ 626 627 #ifdef CONFIG_PPC32 628 /* 629 * Handle the case where we might be booting from an old kexec 630 * image that setup the mem_rsvmap as pairs of 32-bit values 631 */ 632 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 633 u32 base_32, size_32; 634 __be32 *reserve_map_32 = (__be32 *)reserve_map; 635 636 DBG("Found old 32-bit reserve map\n"); 637 638 while (1) { 639 base_32 = be32_to_cpup(reserve_map_32++); 640 size_32 = be32_to_cpup(reserve_map_32++); 641 if (size_32 == 0) 642 break; 643 DBG("reserving: %x -> %x\n", base_32, size_32); 644 memblock_reserve(base_32, size_32); 645 } 646 return; 647 } 648 #endif 649 } 650 651 void __init early_init_devtree(void *params) 652 { 653 phys_addr_t limit; 654 655 DBG(" -> early_init_devtree(%p)\n", params); 656 657 /* Too early to BUG_ON(), do it by hand */ 658 if (!early_init_dt_verify(params)) 659 panic("BUG: Failed verifying flat device tree, bad version?"); 660 661 #ifdef CONFIG_PPC_RTAS 662 /* Some machines might need RTAS info for debugging, grab it now. */ 663 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 664 #endif 665 666 #ifdef CONFIG_PPC_POWERNV 667 /* Some machines might need OPAL info for debugging, grab it now. */ 668 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 669 #endif 670 671 #ifdef CONFIG_FA_DUMP 672 /* scan tree to see if dump is active during last boot */ 673 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 674 #endif 675 676 /* Retrieve various informations from the /chosen node of the 677 * device-tree, including the platform type, initrd location and 678 * size, TCE reserve, and more ... 679 */ 680 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 681 682 /* Scan memory nodes and rebuild MEMBLOCKs */ 683 of_scan_flat_dt(early_init_dt_scan_root, NULL); 684 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 685 686 parse_early_param(); 687 688 /* make sure we've parsed cmdline for mem= before this */ 689 if (memory_limit) 690 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 691 setup_initial_memory_limit(memstart_addr, first_memblock_size); 692 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 693 memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); 694 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 695 if (PHYSICAL_START > MEMORY_START) 696 memblock_reserve(MEMORY_START, 0x8000); 697 reserve_kdump_trampoline(); 698 #ifdef CONFIG_FA_DUMP 699 /* 700 * If we fail to reserve memory for firmware-assisted dump then 701 * fallback to kexec based kdump. 702 */ 703 if (fadump_reserve_mem() == 0) 704 #endif 705 reserve_crashkernel(); 706 early_reserve_mem(); 707 708 /* Ensure that total memory size is page-aligned. */ 709 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); 710 memblock_enforce_memory_limit(limit); 711 712 memblock_allow_resize(); 713 memblock_dump_all(); 714 715 DBG("Phys. mem: %llx\n", memblock_phys_mem_size()); 716 717 /* We may need to relocate the flat tree, do it now. 718 * FIXME .. and the initrd too? */ 719 move_device_tree(); 720 721 allocate_pacas(); 722 723 DBG("Scanning CPUs ...\n"); 724 725 /* Retrieve CPU related informations from the flat tree 726 * (altivec support, boot CPU ID, ...) 727 */ 728 of_scan_flat_dt(early_init_dt_scan_cpus, NULL); 729 if (boot_cpuid < 0) { 730 printk("Failed to identify boot CPU !\n"); 731 BUG(); 732 } 733 734 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 735 /* We'll later wait for secondaries to check in; there are 736 * NCPUS-1 non-boot CPUs :-) 737 */ 738 spinning_secondaries = boot_cpu_count - 1; 739 #endif 740 741 mmu_early_init_devtree(); 742 743 #ifdef CONFIG_PPC_POWERNV 744 /* Scan and build the list of machine check recoverable ranges */ 745 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 746 #endif 747 epapr_paravirt_early_init(); 748 749 /* Now try to figure out if we are running on LPAR and so on */ 750 pseries_probe_fw_features(); 751 752 #ifdef CONFIG_PPC_PS3 753 /* Identify PS3 firmware */ 754 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) 755 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; 756 #endif 757 758 DBG(" <- early_init_devtree()\n"); 759 } 760 761 #ifdef CONFIG_RELOCATABLE 762 /* 763 * This function run before early_init_devtree, so we have to init 764 * initial_boot_params. 765 */ 766 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 767 { 768 /* Setup flat device-tree pointer */ 769 initial_boot_params = params; 770 771 /* 772 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 773 * mess the memblock. 774 */ 775 add_mem_to_memblock = 0; 776 of_scan_flat_dt(early_init_dt_scan_root, NULL); 777 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 778 add_mem_to_memblock = 1; 779 780 if (size) 781 *size = first_memblock_size; 782 } 783 #endif 784 785 /******* 786 * 787 * New implementation of the OF "find" APIs, return a refcounted 788 * object, call of_node_put() when done. The device tree and list 789 * are protected by a rw_lock. 790 * 791 * Note that property management will need some locking as well, 792 * this isn't dealt with yet. 793 * 794 *******/ 795 796 /** 797 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 798 * @np: device node of the device 799 * 800 * This looks for a property "ibm,chip-id" in the node or any 801 * of its parents and returns its content, or -1 if it cannot 802 * be found. 803 */ 804 int of_get_ibm_chip_id(struct device_node *np) 805 { 806 of_node_get(np); 807 while (np) { 808 u32 chip_id; 809 810 /* 811 * Skiboot may produce memory nodes that contain more than one 812 * cell in chip-id, we only read the first one here. 813 */ 814 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { 815 of_node_put(np); 816 return chip_id; 817 } 818 819 np = of_get_next_parent(np); 820 } 821 return -1; 822 } 823 EXPORT_SYMBOL(of_get_ibm_chip_id); 824 825 /** 826 * cpu_to_chip_id - Return the cpus chip-id 827 * @cpu: The logical cpu number. 828 * 829 * Return the value of the ibm,chip-id property corresponding to the given 830 * logical cpu number. If the chip-id can not be found, returns -1. 831 */ 832 int cpu_to_chip_id(int cpu) 833 { 834 struct device_node *np; 835 836 np = of_get_cpu_node(cpu, NULL); 837 if (!np) 838 return -1; 839 840 of_node_put(np); 841 return of_get_ibm_chip_id(np); 842 } 843 EXPORT_SYMBOL(cpu_to_chip_id); 844 845 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 846 { 847 return (int)phys_id == get_hard_smp_processor_id(cpu); 848 } 849