1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 */ 15 16 #undef DEBUG 17 18 #include <stdarg.h> 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/init.h> 22 #include <linux/threads.h> 23 #include <linux/spinlock.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/stringify.h> 27 #include <linux/delay.h> 28 #include <linux/initrd.h> 29 #include <linux/bitops.h> 30 #include <linux/export.h> 31 #include <linux/kexec.h> 32 #include <linux/irq.h> 33 #include <linux/memblock.h> 34 #include <linux/of.h> 35 #include <linux/of_fdt.h> 36 #include <linux/libfdt.h> 37 #include <linux/cpu.h> 38 39 #include <asm/prom.h> 40 #include <asm/rtas.h> 41 #include <asm/page.h> 42 #include <asm/processor.h> 43 #include <asm/irq.h> 44 #include <asm/io.h> 45 #include <asm/kdump.h> 46 #include <asm/smp.h> 47 #include <asm/mmu.h> 48 #include <asm/paca.h> 49 #include <asm/pgtable.h> 50 #include <asm/powernv.h> 51 #include <asm/iommu.h> 52 #include <asm/btext.h> 53 #include <asm/sections.h> 54 #include <asm/machdep.h> 55 #include <asm/pci-bridge.h> 56 #include <asm/kexec.h> 57 #include <asm/opal.h> 58 #include <asm/fadump.h> 59 #include <asm/epapr_hcalls.h> 60 #include <asm/firmware.h> 61 #include <asm/dt_cpu_ftrs.h> 62 #include <asm/drmem.h> 63 64 #include <mm/mmu_decl.h> 65 66 #ifdef DEBUG 67 #define DBG(fmt...) printk(KERN_ERR fmt) 68 #else 69 #define DBG(fmt...) 70 #endif 71 72 #ifdef CONFIG_PPC64 73 int __initdata iommu_is_off; 74 int __initdata iommu_force_on; 75 unsigned long tce_alloc_start, tce_alloc_end; 76 u64 ppc64_rma_size; 77 #endif 78 static phys_addr_t first_memblock_size; 79 static int __initdata boot_cpu_count; 80 81 static int __init early_parse_mem(char *p) 82 { 83 if (!p) 84 return 1; 85 86 memory_limit = PAGE_ALIGN(memparse(p, &p)); 87 DBG("memory limit = 0x%llx\n", memory_limit); 88 89 return 0; 90 } 91 early_param("mem", early_parse_mem); 92 93 /* 94 * overlaps_initrd - check for overlap with page aligned extension of 95 * initrd. 96 */ 97 static inline int overlaps_initrd(unsigned long start, unsigned long size) 98 { 99 #ifdef CONFIG_BLK_DEV_INITRD 100 if (!initrd_start) 101 return 0; 102 103 return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) && 104 start <= _ALIGN_UP(initrd_end, PAGE_SIZE); 105 #else 106 return 0; 107 #endif 108 } 109 110 /** 111 * move_device_tree - move tree to an unused area, if needed. 112 * 113 * The device tree may be allocated beyond our memory limit, or inside the 114 * crash kernel region for kdump, or within the page aligned range of initrd. 115 * If so, move it out of the way. 116 */ 117 static void __init move_device_tree(void) 118 { 119 unsigned long start, size; 120 void *p; 121 122 DBG("-> move_device_tree\n"); 123 124 start = __pa(initial_boot_params); 125 size = fdt_totalsize(initial_boot_params); 126 127 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 128 overlaps_crashkernel(start, size) || 129 overlaps_initrd(start, size)) { 130 p = __va(memblock_alloc(size, PAGE_SIZE)); 131 memcpy(p, initial_boot_params, size); 132 initial_boot_params = p; 133 DBG("Moved device tree to 0x%p\n", p); 134 } 135 136 DBG("<- move_device_tree\n"); 137 } 138 139 /* 140 * ibm,pa-features is a per-cpu property that contains a string of 141 * attribute descriptors, each of which has a 2 byte header plus up 142 * to 254 bytes worth of processor attribute bits. First header 143 * byte specifies the number of bytes following the header. 144 * Second header byte is an "attribute-specifier" type, of which 145 * zero is the only currently-defined value. 146 * Implementation: Pass in the byte and bit offset for the feature 147 * that we are interested in. The function will return -1 if the 148 * pa-features property is missing, or a 1/0 to indicate if the feature 149 * is supported/not supported. Note that the bit numbers are 150 * big-endian to match the definition in PAPR. 151 */ 152 static struct ibm_pa_feature { 153 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 154 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 155 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 156 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ 157 unsigned char pabyte; /* byte number in ibm,pa-features */ 158 unsigned char pabit; /* bit number (big-endian) */ 159 unsigned char invert; /* if 1, pa bit set => clear feature */ 160 } ibm_pa_features[] __initdata = { 161 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, 162 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, 163 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, 164 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, 165 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, 166 #ifdef CONFIG_PPC_RADIX_MMU 167 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX }, 168 #endif 169 { .pabyte = 1, .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN }, 170 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, 171 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, 172 /* 173 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), 174 * we don't want to turn on TM here, so we use the *_COMP versions 175 * which are 0 if the kernel doesn't support TM. 176 */ 177 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, 178 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, 179 }; 180 181 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 182 unsigned long tablelen, 183 struct ibm_pa_feature *fp, 184 unsigned long ft_size) 185 { 186 unsigned long i, len, bit; 187 188 /* find descriptor with type == 0 */ 189 for (;;) { 190 if (tablelen < 3) 191 return; 192 len = 2 + ftrs[0]; 193 if (tablelen < len) 194 return; /* descriptor 0 not found */ 195 if (ftrs[1] == 0) 196 break; 197 tablelen -= len; 198 ftrs += len; 199 } 200 201 /* loop over bits we know about */ 202 for (i = 0; i < ft_size; ++i, ++fp) { 203 if (fp->pabyte >= ftrs[0]) 204 continue; 205 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 206 if (bit ^ fp->invert) { 207 cur_cpu_spec->cpu_features |= fp->cpu_features; 208 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 209 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; 210 cur_cpu_spec->mmu_features |= fp->mmu_features; 211 } else { 212 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 213 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 214 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; 215 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 216 } 217 } 218 } 219 220 static void __init check_cpu_pa_features(unsigned long node) 221 { 222 const unsigned char *pa_ftrs; 223 int tablelen; 224 225 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); 226 if (pa_ftrs == NULL) 227 return; 228 229 scan_features(node, pa_ftrs, tablelen, 230 ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); 231 } 232 233 #ifdef CONFIG_PPC_BOOK3S_64 234 static void __init init_mmu_slb_size(unsigned long node) 235 { 236 const __be32 *slb_size_ptr; 237 238 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 239 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 240 241 if (slb_size_ptr) 242 mmu_slb_size = be32_to_cpup(slb_size_ptr); 243 } 244 #else 245 #define init_mmu_slb_size(node) do { } while(0) 246 #endif 247 248 static struct feature_property { 249 const char *name; 250 u32 min_value; 251 unsigned long cpu_feature; 252 unsigned long cpu_user_ftr; 253 } feature_properties[] __initdata = { 254 #ifdef CONFIG_ALTIVEC 255 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 256 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 257 #endif /* CONFIG_ALTIVEC */ 258 #ifdef CONFIG_VSX 259 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 260 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 261 #endif /* CONFIG_VSX */ 262 #ifdef CONFIG_PPC64 263 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 264 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 265 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 266 #endif /* CONFIG_PPC64 */ 267 }; 268 269 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 270 static inline void identical_pvr_fixup(unsigned long node) 271 { 272 unsigned int pvr; 273 const char *model = of_get_flat_dt_prop(node, "model", NULL); 274 275 /* 276 * Since 440GR(x)/440EP(x) processors have the same pvr, 277 * we check the node path and set bit 28 in the cur_cpu_spec 278 * pvr for EP(x) processor version. This bit is always 0 in 279 * the "real" pvr. Then we call identify_cpu again with 280 * the new logical pvr to enable FPU support. 281 */ 282 if (model && strstr(model, "440EP")) { 283 pvr = cur_cpu_spec->pvr_value | 0x8; 284 identify_cpu(0, pvr); 285 DBG("Using logical pvr %x for %s\n", pvr, model); 286 } 287 } 288 #else 289 #define identical_pvr_fixup(node) do { } while(0) 290 #endif 291 292 static void __init check_cpu_feature_properties(unsigned long node) 293 { 294 unsigned long i; 295 struct feature_property *fp = feature_properties; 296 const __be32 *prop; 297 298 for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) { 299 prop = of_get_flat_dt_prop(node, fp->name, NULL); 300 if (prop && be32_to_cpup(prop) >= fp->min_value) { 301 cur_cpu_spec->cpu_features |= fp->cpu_feature; 302 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 303 } 304 } 305 } 306 307 static int __init early_init_dt_scan_cpus(unsigned long node, 308 const char *uname, int depth, 309 void *data) 310 { 311 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 312 const __be32 *prop; 313 const __be32 *intserv; 314 int i, nthreads; 315 int len; 316 int found = -1; 317 int found_thread = 0; 318 319 /* We are scanning "cpu" nodes only */ 320 if (type == NULL || strcmp(type, "cpu") != 0) 321 return 0; 322 323 /* Get physical cpuid */ 324 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 325 if (!intserv) 326 intserv = of_get_flat_dt_prop(node, "reg", &len); 327 328 nthreads = len / sizeof(int); 329 330 /* 331 * Now see if any of these threads match our boot cpu. 332 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 333 */ 334 for (i = 0; i < nthreads; i++) { 335 /* 336 * version 2 of the kexec param format adds the phys cpuid of 337 * booted proc. 338 */ 339 if (fdt_version(initial_boot_params) >= 2) { 340 if (be32_to_cpu(intserv[i]) == 341 fdt_boot_cpuid_phys(initial_boot_params)) { 342 found = boot_cpu_count; 343 found_thread = i; 344 } 345 } else { 346 /* 347 * Check if it's the boot-cpu, set it's hw index now, 348 * unfortunately this format did not support booting 349 * off secondary threads. 350 */ 351 if (of_get_flat_dt_prop(node, 352 "linux,boot-cpu", NULL) != NULL) 353 found = boot_cpu_count; 354 } 355 #ifdef CONFIG_SMP 356 /* logical cpu id is always 0 on UP kernels */ 357 boot_cpu_count++; 358 #endif 359 } 360 361 /* Not the boot CPU */ 362 if (found < 0) 363 return 0; 364 365 DBG("boot cpu: logical %d physical %d\n", found, 366 be32_to_cpu(intserv[found_thread])); 367 boot_cpuid = found; 368 set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread])); 369 370 /* 371 * PAPR defines "logical" PVR values for cpus that 372 * meet various levels of the architecture: 373 * 0x0f000001 Architecture version 2.04 374 * 0x0f000002 Architecture version 2.05 375 * If the cpu-version property in the cpu node contains 376 * such a value, we call identify_cpu again with the 377 * logical PVR value in order to use the cpu feature 378 * bits appropriate for the architecture level. 379 * 380 * A POWER6 partition in "POWER6 architected" mode 381 * uses the 0x0f000002 PVR value; in POWER5+ mode 382 * it uses 0x0f000001. 383 * 384 * If we're using device tree CPU feature discovery then we don't 385 * support the cpu-version property, and it's the responsibility of the 386 * firmware/hypervisor to provide the correct feature set for the 387 * architecture level via the ibm,powerpc-cpu-features binding. 388 */ 389 if (!dt_cpu_ftrs_in_use()) { 390 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 391 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) 392 identify_cpu(0, be32_to_cpup(prop)); 393 394 check_cpu_feature_properties(node); 395 check_cpu_pa_features(node); 396 } 397 398 identical_pvr_fixup(node); 399 init_mmu_slb_size(node); 400 401 #ifdef CONFIG_PPC64 402 if (nthreads == 1) 403 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 404 else if (!dt_cpu_ftrs_in_use()) 405 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 406 #endif 407 408 return 0; 409 } 410 411 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 412 const char *uname, 413 int depth, void *data) 414 { 415 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 416 417 /* Use common scan routine to determine if this is the chosen node */ 418 if (early_init_dt_scan_chosen(node, uname, depth, data) == 0) 419 return 0; 420 421 #ifdef CONFIG_PPC64 422 /* check if iommu is forced on or off */ 423 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 424 iommu_is_off = 1; 425 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 426 iommu_force_on = 1; 427 #endif 428 429 /* mem=x on the command line is the preferred mechanism */ 430 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 431 if (lprop) 432 memory_limit = *lprop; 433 434 #ifdef CONFIG_PPC64 435 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 436 if (lprop) 437 tce_alloc_start = *lprop; 438 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 439 if (lprop) 440 tce_alloc_end = *lprop; 441 #endif 442 443 #ifdef CONFIG_KEXEC_CORE 444 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 445 if (lprop) 446 crashk_res.start = *lprop; 447 448 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 449 if (lprop) 450 crashk_res.end = crashk_res.start + *lprop - 1; 451 #endif 452 453 /* break now */ 454 return 1; 455 } 456 457 #ifdef CONFIG_PPC_PSERIES 458 /* 459 * Interpret the ibm dynamic reconfiguration memory LMBs. 460 * This contains a list of memory blocks along with NUMA affinity 461 * information. 462 */ 463 static void __init early_init_drmem_lmb(struct drmem_lmb *lmb, 464 const __be32 **usm) 465 { 466 u64 base, size; 467 int is_kexec_kdump = 0, rngs; 468 469 base = lmb->base_addr; 470 size = drmem_lmb_size(); 471 rngs = 1; 472 473 /* 474 * Skip this block if the reserved bit is set in flags 475 * or if the block is not assigned to this partition. 476 */ 477 if ((lmb->flags & DRCONF_MEM_RESERVED) || 478 !(lmb->flags & DRCONF_MEM_ASSIGNED)) 479 return; 480 481 if (*usm) 482 is_kexec_kdump = 1; 483 484 if (is_kexec_kdump) { 485 /* 486 * For each memblock in ibm,dynamic-memory, a 487 * corresponding entry in linux,drconf-usable-memory 488 * property contains a counter 'p' followed by 'p' 489 * (base, size) duple. Now read the counter from 490 * linux,drconf-usable-memory property 491 */ 492 rngs = dt_mem_next_cell(dt_root_size_cells, usm); 493 if (!rngs) /* there are no (base, size) duple */ 494 return; 495 } 496 497 do { 498 if (is_kexec_kdump) { 499 base = dt_mem_next_cell(dt_root_addr_cells, usm); 500 size = dt_mem_next_cell(dt_root_size_cells, usm); 501 } 502 503 if (iommu_is_off) { 504 if (base >= 0x80000000ul) 505 continue; 506 if ((base + size) > 0x80000000ul) 507 size = 0x80000000ul - base; 508 } 509 510 DBG("Adding: %llx -> %llx\n", base, size); 511 memblock_add(base, size); 512 } while (--rngs); 513 } 514 #endif /* CONFIG_PPC_PSERIES */ 515 516 static int __init early_init_dt_scan_memory_ppc(unsigned long node, 517 const char *uname, 518 int depth, void *data) 519 { 520 #ifdef CONFIG_PPC_PSERIES 521 if (depth == 1 && 522 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) { 523 walk_drmem_lmbs_early(node, early_init_drmem_lmb); 524 return 0; 525 } 526 #endif 527 528 return early_init_dt_scan_memory(node, uname, depth, data); 529 } 530 531 /* 532 * For a relocatable kernel, we need to get the memstart_addr first, 533 * then use it to calculate the virtual kernel start address. This has 534 * to happen at a very early stage (before machine_init). In this case, 535 * we just want to get the memstart_address and would not like to mess the 536 * memblock at this stage. So introduce a variable to skip the memblock_add() 537 * for this reason. 538 */ 539 #ifdef CONFIG_RELOCATABLE 540 static int add_mem_to_memblock = 1; 541 #else 542 #define add_mem_to_memblock 1 543 #endif 544 545 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 546 { 547 #ifdef CONFIG_PPC64 548 if (iommu_is_off) { 549 if (base >= 0x80000000ul) 550 return; 551 if ((base + size) > 0x80000000ul) 552 size = 0x80000000ul - base; 553 } 554 #endif 555 /* Keep track of the beginning of memory -and- the size of 556 * the very first block in the device-tree as it represents 557 * the RMA on ppc64 server 558 */ 559 if (base < memstart_addr) { 560 memstart_addr = base; 561 first_memblock_size = size; 562 } 563 564 /* Add the chunk to the MEMBLOCK list */ 565 if (add_mem_to_memblock) 566 memblock_add(base, size); 567 } 568 569 static void __init early_reserve_mem_dt(void) 570 { 571 unsigned long i, dt_root; 572 int len; 573 const __be32 *prop; 574 575 early_init_fdt_reserve_self(); 576 early_init_fdt_scan_reserved_mem(); 577 578 dt_root = of_get_flat_dt_root(); 579 580 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 581 582 if (!prop) 583 return; 584 585 DBG("Found new-style reserved-ranges\n"); 586 587 /* Each reserved range is an (address,size) pair, 2 cells each, 588 * totalling 4 cells per range. */ 589 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 590 u64 base, size; 591 592 base = of_read_number(prop + (i * 4) + 0, 2); 593 size = of_read_number(prop + (i * 4) + 2, 2); 594 595 if (size) { 596 DBG("reserving: %llx -> %llx\n", base, size); 597 memblock_reserve(base, size); 598 } 599 } 600 } 601 602 static void __init early_reserve_mem(void) 603 { 604 __be64 *reserve_map; 605 606 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 607 fdt_off_mem_rsvmap(initial_boot_params)); 608 609 /* Look for the new "reserved-regions" property in the DT */ 610 early_reserve_mem_dt(); 611 612 #ifdef CONFIG_BLK_DEV_INITRD 613 /* Then reserve the initrd, if any */ 614 if (initrd_start && (initrd_end > initrd_start)) { 615 memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 616 _ALIGN_UP(initrd_end, PAGE_SIZE) - 617 _ALIGN_DOWN(initrd_start, PAGE_SIZE)); 618 } 619 #endif /* CONFIG_BLK_DEV_INITRD */ 620 621 #ifdef CONFIG_PPC32 622 /* 623 * Handle the case where we might be booting from an old kexec 624 * image that setup the mem_rsvmap as pairs of 32-bit values 625 */ 626 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 627 u32 base_32, size_32; 628 __be32 *reserve_map_32 = (__be32 *)reserve_map; 629 630 DBG("Found old 32-bit reserve map\n"); 631 632 while (1) { 633 base_32 = be32_to_cpup(reserve_map_32++); 634 size_32 = be32_to_cpup(reserve_map_32++); 635 if (size_32 == 0) 636 break; 637 DBG("reserving: %x -> %x\n", base_32, size_32); 638 memblock_reserve(base_32, size_32); 639 } 640 return; 641 } 642 #endif 643 } 644 645 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 646 static bool tm_disabled __initdata; 647 648 static int __init parse_ppc_tm(char *str) 649 { 650 bool res; 651 652 if (kstrtobool(str, &res)) 653 return -EINVAL; 654 655 tm_disabled = !res; 656 657 return 0; 658 } 659 early_param("ppc_tm", parse_ppc_tm); 660 661 static void __init tm_init(void) 662 { 663 if (tm_disabled) { 664 pr_info("Disabling hardware transactional memory (HTM)\n"); 665 cur_cpu_spec->cpu_user_features2 &= 666 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM); 667 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM; 668 return; 669 } 670 671 pnv_tm_init(); 672 } 673 #else 674 static void tm_init(void) { } 675 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 676 677 void __init early_init_devtree(void *params) 678 { 679 phys_addr_t limit; 680 681 DBG(" -> early_init_devtree(%p)\n", params); 682 683 /* Too early to BUG_ON(), do it by hand */ 684 if (!early_init_dt_verify(params)) 685 panic("BUG: Failed verifying flat device tree, bad version?"); 686 687 #ifdef CONFIG_PPC_RTAS 688 /* Some machines might need RTAS info for debugging, grab it now. */ 689 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 690 #endif 691 692 #ifdef CONFIG_PPC_POWERNV 693 /* Some machines might need OPAL info for debugging, grab it now. */ 694 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 695 #endif 696 697 #ifdef CONFIG_FA_DUMP 698 /* scan tree to see if dump is active during last boot */ 699 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 700 #endif 701 702 /* Retrieve various informations from the /chosen node of the 703 * device-tree, including the platform type, initrd location and 704 * size, TCE reserve, and more ... 705 */ 706 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 707 708 /* Scan memory nodes and rebuild MEMBLOCKs */ 709 of_scan_flat_dt(early_init_dt_scan_root, NULL); 710 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 711 712 parse_early_param(); 713 714 /* make sure we've parsed cmdline for mem= before this */ 715 if (memory_limit) 716 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 717 setup_initial_memory_limit(memstart_addr, first_memblock_size); 718 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 719 memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); 720 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 721 if (PHYSICAL_START > MEMORY_START) 722 memblock_reserve(MEMORY_START, 0x8000); 723 reserve_kdump_trampoline(); 724 #ifdef CONFIG_FA_DUMP 725 /* 726 * If we fail to reserve memory for firmware-assisted dump then 727 * fallback to kexec based kdump. 728 */ 729 if (fadump_reserve_mem() == 0) 730 #endif 731 reserve_crashkernel(); 732 early_reserve_mem(); 733 734 /* Ensure that total memory size is page-aligned. */ 735 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); 736 memblock_enforce_memory_limit(limit); 737 738 memblock_allow_resize(); 739 memblock_dump_all(); 740 741 DBG("Phys. mem: %llx\n", memblock_phys_mem_size()); 742 743 /* We may need to relocate the flat tree, do it now. 744 * FIXME .. and the initrd too? */ 745 move_device_tree(); 746 747 allocate_pacas(); 748 749 DBG("Scanning CPUs ...\n"); 750 751 dt_cpu_ftrs_scan(); 752 753 /* Retrieve CPU related informations from the flat tree 754 * (altivec support, boot CPU ID, ...) 755 */ 756 of_scan_flat_dt(early_init_dt_scan_cpus, NULL); 757 if (boot_cpuid < 0) { 758 printk("Failed to identify boot CPU !\n"); 759 BUG(); 760 } 761 762 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 763 /* We'll later wait for secondaries to check in; there are 764 * NCPUS-1 non-boot CPUs :-) 765 */ 766 spinning_secondaries = boot_cpu_count - 1; 767 #endif 768 769 mmu_early_init_devtree(); 770 771 #ifdef CONFIG_PPC_POWERNV 772 /* Scan and build the list of machine check recoverable ranges */ 773 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 774 #endif 775 epapr_paravirt_early_init(); 776 777 /* Now try to figure out if we are running on LPAR and so on */ 778 pseries_probe_fw_features(); 779 780 #ifdef CONFIG_PPC_PS3 781 /* Identify PS3 firmware */ 782 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) 783 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; 784 #endif 785 786 tm_init(); 787 788 DBG(" <- early_init_devtree()\n"); 789 } 790 791 #ifdef CONFIG_RELOCATABLE 792 /* 793 * This function run before early_init_devtree, so we have to init 794 * initial_boot_params. 795 */ 796 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 797 { 798 /* Setup flat device-tree pointer */ 799 initial_boot_params = params; 800 801 /* 802 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 803 * mess the memblock. 804 */ 805 add_mem_to_memblock = 0; 806 of_scan_flat_dt(early_init_dt_scan_root, NULL); 807 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 808 add_mem_to_memblock = 1; 809 810 if (size) 811 *size = first_memblock_size; 812 } 813 #endif 814 815 /******* 816 * 817 * New implementation of the OF "find" APIs, return a refcounted 818 * object, call of_node_put() when done. The device tree and list 819 * are protected by a rw_lock. 820 * 821 * Note that property management will need some locking as well, 822 * this isn't dealt with yet. 823 * 824 *******/ 825 826 /** 827 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 828 * @np: device node of the device 829 * 830 * This looks for a property "ibm,chip-id" in the node or any 831 * of its parents and returns its content, or -1 if it cannot 832 * be found. 833 */ 834 int of_get_ibm_chip_id(struct device_node *np) 835 { 836 of_node_get(np); 837 while (np) { 838 u32 chip_id; 839 840 /* 841 * Skiboot may produce memory nodes that contain more than one 842 * cell in chip-id, we only read the first one here. 843 */ 844 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { 845 of_node_put(np); 846 return chip_id; 847 } 848 849 np = of_get_next_parent(np); 850 } 851 return -1; 852 } 853 EXPORT_SYMBOL(of_get_ibm_chip_id); 854 855 /** 856 * cpu_to_chip_id - Return the cpus chip-id 857 * @cpu: The logical cpu number. 858 * 859 * Return the value of the ibm,chip-id property corresponding to the given 860 * logical cpu number. If the chip-id can not be found, returns -1. 861 */ 862 int cpu_to_chip_id(int cpu) 863 { 864 struct device_node *np; 865 866 np = of_get_cpu_node(cpu, NULL); 867 if (!np) 868 return -1; 869 870 of_node_put(np); 871 return of_get_ibm_chip_id(np); 872 } 873 EXPORT_SYMBOL(cpu_to_chip_id); 874 875 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 876 { 877 return (int)phys_id == get_hard_smp_processor_id(cpu); 878 } 879