xref: /openbmc/linux/arch/powerpc/kernel/prom.c (revision a575b807)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 #undef DEBUG
17 
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 
33 #include <asm/prom.h>
34 #include <asm/rtas.h>
35 #include <asm/lmb.h>
36 #include <asm/page.h>
37 #include <asm/processor.h>
38 #include <asm/irq.h>
39 #include <asm/io.h>
40 #include <asm/smp.h>
41 #include <asm/system.h>
42 #include <asm/mmu.h>
43 #include <asm/pgtable.h>
44 #include <asm/pci.h>
45 #include <asm/iommu.h>
46 #include <asm/btext.h>
47 #include <asm/sections.h>
48 #include <asm/machdep.h>
49 #include <asm/pSeries_reconfig.h>
50 #include <asm/pci-bridge.h>
51 #ifdef CONFIG_PPC64
52 #include <asm/systemcfg.h>
53 #endif
54 
55 #ifdef DEBUG
56 #define DBG(fmt...) printk(KERN_ERR fmt)
57 #else
58 #define DBG(fmt...)
59 #endif
60 
61 struct pci_reg_property {
62 	struct pci_address addr;
63 	u32 size_hi;
64 	u32 size_lo;
65 };
66 
67 struct isa_reg_property {
68 	u32 space;
69 	u32 address;
70 	u32 size;
71 };
72 
73 
74 typedef int interpret_func(struct device_node *, unsigned long *,
75 			   int, int, int);
76 
77 extern struct rtas_t rtas;
78 extern struct lmb lmb;
79 extern unsigned long klimit;
80 
81 static unsigned long memory_limit;
82 
83 static int __initdata dt_root_addr_cells;
84 static int __initdata dt_root_size_cells;
85 
86 #ifdef CONFIG_PPC64
87 static int __initdata iommu_is_off;
88 int __initdata iommu_force_on;
89 extern unsigned long tce_alloc_start, tce_alloc_end;
90 #endif
91 
92 typedef u32 cell_t;
93 
94 #if 0
95 static struct boot_param_header *initial_boot_params __initdata;
96 #else
97 struct boot_param_header *initial_boot_params;
98 #endif
99 
100 static struct device_node *allnodes = NULL;
101 
102 /* use when traversing tree through the allnext, child, sibling,
103  * or parent members of struct device_node.
104  */
105 static DEFINE_RWLOCK(devtree_lock);
106 
107 /* export that to outside world */
108 struct device_node *of_chosen;
109 
110 struct device_node *dflt_interrupt_controller;
111 int num_interrupt_controllers;
112 
113 u32 rtas_data;
114 u32 rtas_entry;
115 
116 /*
117  * Wrapper for allocating memory for various data that needs to be
118  * attached to device nodes as they are processed at boot or when
119  * added to the device tree later (e.g. DLPAR).  At boot there is
120  * already a region reserved so we just increment *mem_start by size;
121  * otherwise we call kmalloc.
122  */
123 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
124 {
125 	unsigned long tmp;
126 
127 	if (!mem_start)
128 		return kmalloc(size, GFP_KERNEL);
129 
130 	tmp = *mem_start;
131 	*mem_start += size;
132 	return (void *)tmp;
133 }
134 
135 /*
136  * Find the device_node with a given phandle.
137  */
138 static struct device_node * find_phandle(phandle ph)
139 {
140 	struct device_node *np;
141 
142 	for (np = allnodes; np != 0; np = np->allnext)
143 		if (np->linux_phandle == ph)
144 			return np;
145 	return NULL;
146 }
147 
148 /*
149  * Find the interrupt parent of a node.
150  */
151 static struct device_node * __devinit intr_parent(struct device_node *p)
152 {
153 	phandle *parp;
154 
155 	parp = (phandle *) get_property(p, "interrupt-parent", NULL);
156 	if (parp == NULL)
157 		return p->parent;
158 	p = find_phandle(*parp);
159 	if (p != NULL)
160 		return p;
161 	/*
162 	 * On a powermac booted with BootX, we don't get to know the
163 	 * phandles for any nodes, so find_phandle will return NULL.
164 	 * Fortunately these machines only have one interrupt controller
165 	 * so there isn't in fact any ambiguity.  -- paulus
166 	 */
167 	if (num_interrupt_controllers == 1)
168 		p = dflt_interrupt_controller;
169 	return p;
170 }
171 
172 /*
173  * Find out the size of each entry of the interrupts property
174  * for a node.
175  */
176 int __devinit prom_n_intr_cells(struct device_node *np)
177 {
178 	struct device_node *p;
179 	unsigned int *icp;
180 
181 	for (p = np; (p = intr_parent(p)) != NULL; ) {
182 		icp = (unsigned int *)
183 			get_property(p, "#interrupt-cells", NULL);
184 		if (icp != NULL)
185 			return *icp;
186 		if (get_property(p, "interrupt-controller", NULL) != NULL
187 		    || get_property(p, "interrupt-map", NULL) != NULL) {
188 			printk("oops, node %s doesn't have #interrupt-cells\n",
189 			       p->full_name);
190 			return 1;
191 		}
192 	}
193 #ifdef DEBUG_IRQ
194 	printk("prom_n_intr_cells failed for %s\n", np->full_name);
195 #endif
196 	return 1;
197 }
198 
199 /*
200  * Map an interrupt from a device up to the platform interrupt
201  * descriptor.
202  */
203 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
204 				   struct device_node *np, unsigned int *ints,
205 				   int nintrc)
206 {
207 	struct device_node *p, *ipar;
208 	unsigned int *imap, *imask, *ip;
209 	int i, imaplen, match;
210 	int newintrc = 0, newaddrc = 0;
211 	unsigned int *reg;
212 	int naddrc;
213 
214 	reg = (unsigned int *) get_property(np, "reg", NULL);
215 	naddrc = prom_n_addr_cells(np);
216 	p = intr_parent(np);
217 	while (p != NULL) {
218 		if (get_property(p, "interrupt-controller", NULL) != NULL)
219 			/* this node is an interrupt controller, stop here */
220 			break;
221 		imap = (unsigned int *)
222 			get_property(p, "interrupt-map", &imaplen);
223 		if (imap == NULL) {
224 			p = intr_parent(p);
225 			continue;
226 		}
227 		imask = (unsigned int *)
228 			get_property(p, "interrupt-map-mask", NULL);
229 		if (imask == NULL) {
230 			printk("oops, %s has interrupt-map but no mask\n",
231 			       p->full_name);
232 			return 0;
233 		}
234 		imaplen /= sizeof(unsigned int);
235 		match = 0;
236 		ipar = NULL;
237 		while (imaplen > 0 && !match) {
238 			/* check the child-interrupt field */
239 			match = 1;
240 			for (i = 0; i < naddrc && match; ++i)
241 				match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
242 			for (; i < naddrc + nintrc && match; ++i)
243 				match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
244 			imap += naddrc + nintrc;
245 			imaplen -= naddrc + nintrc;
246 			/* grab the interrupt parent */
247 			ipar = find_phandle((phandle) *imap++);
248 			--imaplen;
249 			if (ipar == NULL && num_interrupt_controllers == 1)
250 				/* cope with BootX not giving us phandles */
251 				ipar = dflt_interrupt_controller;
252 			if (ipar == NULL) {
253 				printk("oops, no int parent %x in map of %s\n",
254 				       imap[-1], p->full_name);
255 				return 0;
256 			}
257 			/* find the parent's # addr and intr cells */
258 			ip = (unsigned int *)
259 				get_property(ipar, "#interrupt-cells", NULL);
260 			if (ip == NULL) {
261 				printk("oops, no #interrupt-cells on %s\n",
262 				       ipar->full_name);
263 				return 0;
264 			}
265 			newintrc = *ip;
266 			ip = (unsigned int *)
267 				get_property(ipar, "#address-cells", NULL);
268 			newaddrc = (ip == NULL)? 0: *ip;
269 			imap += newaddrc + newintrc;
270 			imaplen -= newaddrc + newintrc;
271 		}
272 		if (imaplen < 0) {
273 			printk("oops, error decoding int-map on %s, len=%d\n",
274 			       p->full_name, imaplen);
275 			return 0;
276 		}
277 		if (!match) {
278 #ifdef DEBUG_IRQ
279 			printk("oops, no match in %s int-map for %s\n",
280 			       p->full_name, np->full_name);
281 #endif
282 			return 0;
283 		}
284 		p = ipar;
285 		naddrc = newaddrc;
286 		nintrc = newintrc;
287 		ints = imap - nintrc;
288 		reg = ints - naddrc;
289 	}
290 	if (p == NULL) {
291 #ifdef DEBUG_IRQ
292 		printk("hmmm, int tree for %s doesn't have ctrler\n",
293 		       np->full_name);
294 #endif
295 		return 0;
296 	}
297 	*irq = ints;
298 	*ictrler = p;
299 	return nintrc;
300 }
301 
302 static int __devinit finish_node_interrupts(struct device_node *np,
303 					    unsigned long *mem_start,
304 					    int measure_only)
305 {
306 	unsigned int *ints;
307 	int intlen, intrcells, intrcount;
308 	int i, j, n;
309 	unsigned int *irq, virq;
310 	struct device_node *ic;
311 
312 	if (num_interrupt_controllers == 0) {
313 		/*
314 		 * Old machines just have a list of interrupt numbers
315 		 * and no interrupt-controller nodes.
316 		 */
317 		ints = (unsigned int *) get_property(np, "AAPL,interrupts",
318 						     &intlen);
319 		/* XXX old interpret_pci_props looked in parent too */
320 		/* XXX old interpret_macio_props looked for interrupts
321 		   before AAPL,interrupts */
322 		if (ints == NULL)
323 			ints = (unsigned int *) get_property(np, "interrupts",
324 							     &intlen);
325 		if (ints == NULL)
326 			return 0;
327 
328 		np->n_intrs = intlen / sizeof(unsigned int);
329 		np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
330 				       mem_start);
331 		if (!np->intrs)
332 			return -ENOMEM;
333 		if (measure_only)
334 			return 0;
335 
336 		for (i = 0; i < np->n_intrs; ++i) {
337 			np->intrs[i].line = *ints++;
338 			np->intrs[i].sense = 1;
339 		}
340 		return 0;
341 	}
342 
343 	ints = (unsigned int *) get_property(np, "interrupts", &intlen);
344 	if (ints == NULL)
345 		return 0;
346 	intrcells = prom_n_intr_cells(np);
347 	intlen /= intrcells * sizeof(unsigned int);
348 
349 	np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
350 	if (!np->intrs)
351 		return -ENOMEM;
352 
353 	if (measure_only)
354 		return 0;
355 
356 	intrcount = 0;
357 	for (i = 0; i < intlen; ++i, ints += intrcells) {
358 		n = map_interrupt(&irq, &ic, np, ints, intrcells);
359 		if (n <= 0)
360 			continue;
361 
362 		/* don't map IRQ numbers under a cascaded 8259 controller */
363 		if (ic && device_is_compatible(ic, "chrp,iic")) {
364 			np->intrs[intrcount].line = irq[0];
365 		} else {
366 #ifdef CONFIG_PPC64
367 			virq = virt_irq_create_mapping(irq[0]);
368 			if (virq == NO_IRQ) {
369 				printk(KERN_CRIT "Could not allocate interrupt"
370 				       " number for %s\n", np->full_name);
371 				continue;
372 			}
373 			virq = irq_offset_up(virq);
374 #else
375 			virq = irq[0];
376 #endif
377 			np->intrs[intrcount].line = virq;
378 		}
379 
380 #ifdef CONFIG_PPC64
381 		/* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
382 		if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
383 			char *name = get_property(ic->parent, "name", NULL);
384 			if (name && !strcmp(name, "u3"))
385 				np->intrs[intrcount].line += 128;
386 			else if (!(name && !strcmp(name, "mac-io")))
387 				/* ignore other cascaded controllers, such as
388 				   the k2-sata-root */
389 				break;
390 		}
391 #endif
392 		np->intrs[intrcount].sense = 1;
393 		if (n > 1)
394 			np->intrs[intrcount].sense = irq[1];
395 		if (n > 2) {
396 			printk("hmmm, got %d intr cells for %s:", n,
397 			       np->full_name);
398 			for (j = 0; j < n; ++j)
399 				printk(" %d", irq[j]);
400 			printk("\n");
401 		}
402 		++intrcount;
403 	}
404 	np->n_intrs = intrcount;
405 
406 	return 0;
407 }
408 
409 static int __devinit interpret_pci_props(struct device_node *np,
410 					 unsigned long *mem_start,
411 					 int naddrc, int nsizec,
412 					 int measure_only)
413 {
414 	struct address_range *adr;
415 	struct pci_reg_property *pci_addrs;
416 	int i, l, n_addrs;
417 
418 	pci_addrs = (struct pci_reg_property *)
419 		get_property(np, "assigned-addresses", &l);
420 	if (!pci_addrs)
421 		return 0;
422 
423 	n_addrs = l / sizeof(*pci_addrs);
424 
425 	adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
426 	if (!adr)
427 		return -ENOMEM;
428 
429  	if (measure_only)
430  		return 0;
431 
432  	np->addrs = adr;
433  	np->n_addrs = n_addrs;
434 
435  	for (i = 0; i < n_addrs; i++) {
436  		adr[i].space = pci_addrs[i].addr.a_hi;
437  		adr[i].address = pci_addrs[i].addr.a_lo |
438 			((u64)pci_addrs[i].addr.a_mid << 32);
439  		adr[i].size = pci_addrs[i].size_lo;
440 	}
441 
442 	return 0;
443 }
444 
445 static int __init interpret_dbdma_props(struct device_node *np,
446 					unsigned long *mem_start,
447 					int naddrc, int nsizec,
448 					int measure_only)
449 {
450 	struct reg_property32 *rp;
451 	struct address_range *adr;
452 	unsigned long base_address;
453 	int i, l;
454 	struct device_node *db;
455 
456 	base_address = 0;
457 	if (!measure_only) {
458 		for (db = np->parent; db != NULL; db = db->parent) {
459 			if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
460 				base_address = db->addrs[0].address;
461 				break;
462 			}
463 		}
464 	}
465 
466 	rp = (struct reg_property32 *) get_property(np, "reg", &l);
467 	if (rp != 0 && l >= sizeof(struct reg_property32)) {
468 		i = 0;
469 		adr = (struct address_range *) (*mem_start);
470 		while ((l -= sizeof(struct reg_property32)) >= 0) {
471 			if (!measure_only) {
472 				adr[i].space = 2;
473 				adr[i].address = rp[i].address + base_address;
474 				adr[i].size = rp[i].size;
475 			}
476 			++i;
477 		}
478 		np->addrs = adr;
479 		np->n_addrs = i;
480 		(*mem_start) += i * sizeof(struct address_range);
481 	}
482 
483 	return 0;
484 }
485 
486 static int __init interpret_macio_props(struct device_node *np,
487 					unsigned long *mem_start,
488 					int naddrc, int nsizec,
489 					int measure_only)
490 {
491 	struct reg_property32 *rp;
492 	struct address_range *adr;
493 	unsigned long base_address;
494 	int i, l;
495 	struct device_node *db;
496 
497 	base_address = 0;
498 	if (!measure_only) {
499 		for (db = np->parent; db != NULL; db = db->parent) {
500 			if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
501 				base_address = db->addrs[0].address;
502 				break;
503 			}
504 		}
505 	}
506 
507 	rp = (struct reg_property32 *) get_property(np, "reg", &l);
508 	if (rp != 0 && l >= sizeof(struct reg_property32)) {
509 		i = 0;
510 		adr = (struct address_range *) (*mem_start);
511 		while ((l -= sizeof(struct reg_property32)) >= 0) {
512 			if (!measure_only) {
513 				adr[i].space = 2;
514 				adr[i].address = rp[i].address + base_address;
515 				adr[i].size = rp[i].size;
516 			}
517 			++i;
518 		}
519 		np->addrs = adr;
520 		np->n_addrs = i;
521 		(*mem_start) += i * sizeof(struct address_range);
522 	}
523 
524 	return 0;
525 }
526 
527 static int __init interpret_isa_props(struct device_node *np,
528 				      unsigned long *mem_start,
529 				      int naddrc, int nsizec,
530 				      int measure_only)
531 {
532 	struct isa_reg_property *rp;
533 	struct address_range *adr;
534 	int i, l;
535 
536 	rp = (struct isa_reg_property *) get_property(np, "reg", &l);
537 	if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
538 		i = 0;
539 		adr = (struct address_range *) (*mem_start);
540 		while ((l -= sizeof(struct isa_reg_property)) >= 0) {
541 			if (!measure_only) {
542 				adr[i].space = rp[i].space;
543 				adr[i].address = rp[i].address;
544 				adr[i].size = rp[i].size;
545 			}
546 			++i;
547 		}
548 		np->addrs = adr;
549 		np->n_addrs = i;
550 		(*mem_start) += i * sizeof(struct address_range);
551 	}
552 
553 	return 0;
554 }
555 
556 static int __init interpret_root_props(struct device_node *np,
557 				       unsigned long *mem_start,
558 				       int naddrc, int nsizec,
559 				       int measure_only)
560 {
561 	struct address_range *adr;
562 	int i, l;
563 	unsigned int *rp;
564 	int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
565 
566 	rp = (unsigned int *) get_property(np, "reg", &l);
567 	if (rp != 0 && l >= rpsize) {
568 		i = 0;
569 		adr = (struct address_range *) (*mem_start);
570 		while ((l -= rpsize) >= 0) {
571 			if (!measure_only) {
572 				adr[i].space = 0;
573 				adr[i].address = rp[naddrc - 1];
574 				adr[i].size = rp[naddrc + nsizec - 1];
575 			}
576 			++i;
577 			rp += naddrc + nsizec;
578 		}
579 		np->addrs = adr;
580 		np->n_addrs = i;
581 		(*mem_start) += i * sizeof(struct address_range);
582 	}
583 
584 	return 0;
585 }
586 
587 static int __devinit finish_node(struct device_node *np,
588 				 unsigned long *mem_start,
589 				 interpret_func *ifunc,
590 				 int naddrc, int nsizec,
591 				 int measure_only)
592 {
593 	struct device_node *child;
594 	int *ip, rc = 0;
595 
596 	/* get the device addresses and interrupts */
597 	if (ifunc != NULL)
598 		rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
599 	if (rc)
600 		goto out;
601 
602 	rc = finish_node_interrupts(np, mem_start, measure_only);
603 	if (rc)
604 		goto out;
605 
606 	/* Look for #address-cells and #size-cells properties. */
607 	ip = (int *) get_property(np, "#address-cells", NULL);
608 	if (ip != NULL)
609 		naddrc = *ip;
610 	ip = (int *) get_property(np, "#size-cells", NULL);
611 	if (ip != NULL)
612 		nsizec = *ip;
613 
614 	if (!strcmp(np->name, "device-tree") || np->parent == NULL)
615 		ifunc = interpret_root_props;
616 	else if (np->type == 0)
617 		ifunc = NULL;
618 	else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
619 		ifunc = interpret_pci_props;
620 	else if (!strcmp(np->type, "dbdma"))
621 		ifunc = interpret_dbdma_props;
622 	else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
623 		ifunc = interpret_macio_props;
624 	else if (!strcmp(np->type, "isa"))
625 		ifunc = interpret_isa_props;
626 	else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
627 		ifunc = interpret_root_props;
628 	else if (!((ifunc == interpret_dbdma_props
629 		    || ifunc == interpret_macio_props)
630 		   && (!strcmp(np->type, "escc")
631 		       || !strcmp(np->type, "media-bay"))))
632 		ifunc = NULL;
633 
634 	for (child = np->child; child != NULL; child = child->sibling) {
635 		rc = finish_node(child, mem_start, ifunc,
636 				 naddrc, nsizec, measure_only);
637 		if (rc)
638 			goto out;
639 	}
640 out:
641 	return rc;
642 }
643 
644 static void __init scan_interrupt_controllers(void)
645 {
646 	struct device_node *np;
647 	int n = 0;
648 	char *name, *ic;
649 	int iclen;
650 
651 	for (np = allnodes; np != NULL; np = np->allnext) {
652 		ic = get_property(np, "interrupt-controller", &iclen);
653 		name = get_property(np, "name", NULL);
654 		/* checking iclen makes sure we don't get a false
655 		   match on /chosen.interrupt_controller */
656 		if ((name != NULL
657 		     && strcmp(name, "interrupt-controller") == 0)
658 		    || (ic != NULL && iclen == 0
659 			&& strcmp(name, "AppleKiwi"))) {
660 			if (n == 0)
661 				dflt_interrupt_controller = np;
662 			++n;
663 		}
664 	}
665 	num_interrupt_controllers = n;
666 }
667 
668 /**
669  * finish_device_tree is called once things are running normally
670  * (i.e. with text and data mapped to the address they were linked at).
671  * It traverses the device tree and fills in some of the additional,
672  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
673  * mapping is also initialized at this point.
674  */
675 void __init finish_device_tree(void)
676 {
677 	unsigned long start, end, size = 0;
678 
679 	DBG(" -> finish_device_tree\n");
680 
681 #ifdef CONFIG_PPC64
682 	/* Initialize virtual IRQ map */
683 	virt_irq_init();
684 #endif
685 	scan_interrupt_controllers();
686 
687 	/*
688 	 * Finish device-tree (pre-parsing some properties etc...)
689 	 * We do this in 2 passes. One with "measure_only" set, which
690 	 * will only measure the amount of memory needed, then we can
691 	 * allocate that memory, and call finish_node again. However,
692 	 * we must be careful as most routines will fail nowadays when
693 	 * prom_alloc() returns 0, so we must make sure our first pass
694 	 * doesn't start at 0. We pre-initialize size to 16 for that
695 	 * reason and then remove those additional 16 bytes
696 	 */
697 	size = 16;
698 	finish_node(allnodes, &size, NULL, 0, 0, 1);
699 	size -= 16;
700 	end = start = (unsigned long) __va(lmb_alloc(size, 128));
701 	finish_node(allnodes, &end, NULL, 0, 0, 0);
702 	BUG_ON(end != start + size);
703 
704 	DBG(" <- finish_device_tree\n");
705 }
706 
707 static inline char *find_flat_dt_string(u32 offset)
708 {
709 	return ((char *)initial_boot_params) +
710 		initial_boot_params->off_dt_strings + offset;
711 }
712 
713 /**
714  * This function is used to scan the flattened device-tree, it is
715  * used to extract the memory informations at boot before we can
716  * unflatten the tree
717  */
718 static int __init scan_flat_dt(int (*it)(unsigned long node,
719 					 const char *uname, int depth,
720 					 void *data),
721 			       void *data)
722 {
723 	unsigned long p = ((unsigned long)initial_boot_params) +
724 		initial_boot_params->off_dt_struct;
725 	int rc = 0;
726 	int depth = -1;
727 
728 	do {
729 		u32 tag = *((u32 *)p);
730 		char *pathp;
731 
732 		p += 4;
733 		if (tag == OF_DT_END_NODE) {
734 			depth --;
735 			continue;
736 		}
737 		if (tag == OF_DT_NOP)
738 			continue;
739 		if (tag == OF_DT_END)
740 			break;
741 		if (tag == OF_DT_PROP) {
742 			u32 sz = *((u32 *)p);
743 			p += 8;
744 			if (initial_boot_params->version < 0x10)
745 				p = _ALIGN(p, sz >= 8 ? 8 : 4);
746 			p += sz;
747 			p = _ALIGN(p, 4);
748 			continue;
749 		}
750 		if (tag != OF_DT_BEGIN_NODE) {
751 			printk(KERN_WARNING "Invalid tag %x scanning flattened"
752 			       " device tree !\n", tag);
753 			return -EINVAL;
754 		}
755 		depth++;
756 		pathp = (char *)p;
757 		p = _ALIGN(p + strlen(pathp) + 1, 4);
758 		if ((*pathp) == '/') {
759 			char *lp, *np;
760 			for (lp = NULL, np = pathp; *np; np++)
761 				if ((*np) == '/')
762 					lp = np+1;
763 			if (lp != NULL)
764 				pathp = lp;
765 		}
766 		rc = it(p, pathp, depth, data);
767 		if (rc != 0)
768 			break;
769 	} while(1);
770 
771 	return rc;
772 }
773 
774 /**
775  * This  function can be used within scan_flattened_dt callback to get
776  * access to properties
777  */
778 static void* __init get_flat_dt_prop(unsigned long node, const char *name,
779 				     unsigned long *size)
780 {
781 	unsigned long p = node;
782 
783 	do {
784 		u32 tag = *((u32 *)p);
785 		u32 sz, noff;
786 		const char *nstr;
787 
788 		p += 4;
789 		if (tag == OF_DT_NOP)
790 			continue;
791 		if (tag != OF_DT_PROP)
792 			return NULL;
793 
794 		sz = *((u32 *)p);
795 		noff = *((u32 *)(p + 4));
796 		p += 8;
797 		if (initial_boot_params->version < 0x10)
798 			p = _ALIGN(p, sz >= 8 ? 8 : 4);
799 
800 		nstr = find_flat_dt_string(noff);
801 		if (nstr == NULL) {
802 			printk(KERN_WARNING "Can't find property index"
803 			       " name !\n");
804 			return NULL;
805 		}
806 		if (strcmp(name, nstr) == 0) {
807 			if (size)
808 				*size = sz;
809 			return (void *)p;
810 		}
811 		p += sz;
812 		p = _ALIGN(p, 4);
813 	} while(1);
814 }
815 
816 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
817 				       unsigned long align)
818 {
819 	void *res;
820 
821 	*mem = _ALIGN(*mem, align);
822 	res = (void *)*mem;
823 	*mem += size;
824 
825 	return res;
826 }
827 
828 static unsigned long __init unflatten_dt_node(unsigned long mem,
829 					      unsigned long *p,
830 					      struct device_node *dad,
831 					      struct device_node ***allnextpp,
832 					      unsigned long fpsize)
833 {
834 	struct device_node *np;
835 	struct property *pp, **prev_pp = NULL;
836 	char *pathp;
837 	u32 tag;
838 	unsigned int l, allocl;
839 	int has_name = 0;
840 	int new_format = 0;
841 
842 	tag = *((u32 *)(*p));
843 	if (tag != OF_DT_BEGIN_NODE) {
844 		printk("Weird tag at start of node: %x\n", tag);
845 		return mem;
846 	}
847 	*p += 4;
848 	pathp = (char *)*p;
849 	l = allocl = strlen(pathp) + 1;
850 	*p = _ALIGN(*p + l, 4);
851 
852 	/* version 0x10 has a more compact unit name here instead of the full
853 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
854 	 * it later. We detect this because the first character of the name is
855 	 * not '/'.
856 	 */
857 	if ((*pathp) != '/') {
858 		new_format = 1;
859 		if (fpsize == 0) {
860 			/* root node: special case. fpsize accounts for path
861 			 * plus terminating zero. root node only has '/', so
862 			 * fpsize should be 2, but we want to avoid the first
863 			 * level nodes to have two '/' so we use fpsize 1 here
864 			 */
865 			fpsize = 1;
866 			allocl = 2;
867 		} else {
868 			/* account for '/' and path size minus terminal 0
869 			 * already in 'l'
870 			 */
871 			fpsize += l;
872 			allocl = fpsize;
873 		}
874 	}
875 
876 
877 	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
878 				__alignof__(struct device_node));
879 	if (allnextpp) {
880 		memset(np, 0, sizeof(*np));
881 		np->full_name = ((char*)np) + sizeof(struct device_node);
882 		if (new_format) {
883 			char *p = np->full_name;
884 			/* rebuild full path for new format */
885 			if (dad && dad->parent) {
886 				strcpy(p, dad->full_name);
887 #ifdef DEBUG
888 				if ((strlen(p) + l + 1) != allocl) {
889 					DBG("%s: p: %d, l: %d, a: %d\n",
890 					    pathp, strlen(p), l, allocl);
891 				}
892 #endif
893 				p += strlen(p);
894 			}
895 			*(p++) = '/';
896 			memcpy(p, pathp, l);
897 		} else
898 			memcpy(np->full_name, pathp, l);
899 		prev_pp = &np->properties;
900 		**allnextpp = np;
901 		*allnextpp = &np->allnext;
902 		if (dad != NULL) {
903 			np->parent = dad;
904 			/* we temporarily use the next field as `last_child'*/
905 			if (dad->next == 0)
906 				dad->child = np;
907 			else
908 				dad->next->sibling = np;
909 			dad->next = np;
910 		}
911 		kref_init(&np->kref);
912 	}
913 	while(1) {
914 		u32 sz, noff;
915 		char *pname;
916 
917 		tag = *((u32 *)(*p));
918 		if (tag == OF_DT_NOP) {
919 			*p += 4;
920 			continue;
921 		}
922 		if (tag != OF_DT_PROP)
923 			break;
924 		*p += 4;
925 		sz = *((u32 *)(*p));
926 		noff = *((u32 *)((*p) + 4));
927 		*p += 8;
928 		if (initial_boot_params->version < 0x10)
929 			*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
930 
931 		pname = find_flat_dt_string(noff);
932 		if (pname == NULL) {
933 			printk("Can't find property name in list !\n");
934 			break;
935 		}
936 		if (strcmp(pname, "name") == 0)
937 			has_name = 1;
938 		l = strlen(pname) + 1;
939 		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
940 					__alignof__(struct property));
941 		if (allnextpp) {
942 			if (strcmp(pname, "linux,phandle") == 0) {
943 				np->node = *((u32 *)*p);
944 				if (np->linux_phandle == 0)
945 					np->linux_phandle = np->node;
946 			}
947 			if (strcmp(pname, "ibm,phandle") == 0)
948 				np->linux_phandle = *((u32 *)*p);
949 			pp->name = pname;
950 			pp->length = sz;
951 			pp->value = (void *)*p;
952 			*prev_pp = pp;
953 			prev_pp = &pp->next;
954 		}
955 		*p = _ALIGN((*p) + sz, 4);
956 	}
957 	/* with version 0x10 we may not have the name property, recreate
958 	 * it here from the unit name if absent
959 	 */
960 	if (!has_name) {
961 		char *p = pathp, *ps = pathp, *pa = NULL;
962 		int sz;
963 
964 		while (*p) {
965 			if ((*p) == '@')
966 				pa = p;
967 			if ((*p) == '/')
968 				ps = p + 1;
969 			p++;
970 		}
971 		if (pa < ps)
972 			pa = p;
973 		sz = (pa - ps) + 1;
974 		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
975 					__alignof__(struct property));
976 		if (allnextpp) {
977 			pp->name = "name";
978 			pp->length = sz;
979 			pp->value = (unsigned char *)(pp + 1);
980 			*prev_pp = pp;
981 			prev_pp = &pp->next;
982 			memcpy(pp->value, ps, sz - 1);
983 			((char *)pp->value)[sz - 1] = 0;
984 			DBG("fixed up name for %s -> %s\n", pathp, pp->value);
985 		}
986 	}
987 	if (allnextpp) {
988 		*prev_pp = NULL;
989 		np->name = get_property(np, "name", NULL);
990 		np->type = get_property(np, "device_type", NULL);
991 
992 		if (!np->name)
993 			np->name = "<NULL>";
994 		if (!np->type)
995 			np->type = "<NULL>";
996 	}
997 	while (tag == OF_DT_BEGIN_NODE) {
998 		mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
999 		tag = *((u32 *)(*p));
1000 	}
1001 	if (tag != OF_DT_END_NODE) {
1002 		printk("Weird tag at end of node: %x\n", tag);
1003 		return mem;
1004 	}
1005 	*p += 4;
1006 	return mem;
1007 }
1008 
1009 
1010 /**
1011  * unflattens the device-tree passed by the firmware, creating the
1012  * tree of struct device_node. It also fills the "name" and "type"
1013  * pointers of the nodes so the normal device-tree walking functions
1014  * can be used (this used to be done by finish_device_tree)
1015  */
1016 void __init unflatten_device_tree(void)
1017 {
1018 	unsigned long start, mem, size;
1019 	struct device_node **allnextp = &allnodes;
1020 	char *p = NULL;
1021 	int l = 0;
1022 
1023 	DBG(" -> unflatten_device_tree()\n");
1024 
1025 	/* First pass, scan for size */
1026 	start = ((unsigned long)initial_boot_params) +
1027 		initial_boot_params->off_dt_struct;
1028 	size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1029 	size = (size | 3) + 1;
1030 
1031 	DBG("  size is %lx, allocating...\n", size);
1032 
1033 	/* Allocate memory for the expanded device tree */
1034 	mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1035 	if (!mem) {
1036 		DBG("Couldn't allocate memory with lmb_alloc()!\n");
1037 		panic("Couldn't allocate memory with lmb_alloc()!\n");
1038 	}
1039 	mem = (unsigned long) __va(mem);
1040 
1041 	((u32 *)mem)[size / 4] = 0xdeadbeef;
1042 
1043 	DBG("  unflattening %lx...\n", mem);
1044 
1045 	/* Second pass, do actual unflattening */
1046 	start = ((unsigned long)initial_boot_params) +
1047 		initial_boot_params->off_dt_struct;
1048 	unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1049 	if (*((u32 *)start) != OF_DT_END)
1050 		printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1051 	if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1052 		printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1053 		       ((u32 *)mem)[size / 4] );
1054 	*allnextp = NULL;
1055 
1056 	/* Get pointer to OF "/chosen" node for use everywhere */
1057 	of_chosen = of_find_node_by_path("/chosen");
1058 	if (of_chosen == NULL)
1059 		of_chosen = of_find_node_by_path("/chosen@0");
1060 
1061 	/* Retreive command line */
1062 	if (of_chosen != NULL) {
1063 		p = (char *)get_property(of_chosen, "bootargs", &l);
1064 		if (p != NULL && l > 0)
1065 			strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1066 	}
1067 #ifdef CONFIG_CMDLINE
1068 	if (l == 0 || (l == 1 && (*p) == 0))
1069 		strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1070 #endif /* CONFIG_CMDLINE */
1071 
1072 	DBG("Command line is: %s\n", cmd_line);
1073 
1074 	DBG(" <- unflatten_device_tree()\n");
1075 }
1076 
1077 
1078 static int __init early_init_dt_scan_cpus(unsigned long node,
1079 					  const char *uname, int depth, void *data)
1080 {
1081 	char *type = get_flat_dt_prop(node, "device_type", NULL);
1082 	u32 *prop;
1083 	unsigned long size = 0;
1084 
1085 	/* We are scanning "cpu" nodes only */
1086 	if (type == NULL || strcmp(type, "cpu") != 0)
1087 		return 0;
1088 
1089 #ifdef CONFIG_PPC_PSERIES
1090 	/* On LPAR, look for the first ibm,pft-size property for the  hash table size
1091 	 */
1092 	if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
1093 		u32 *pft_size;
1094 		pft_size = get_flat_dt_prop(node, "ibm,pft-size", NULL);
1095 		if (pft_size != NULL) {
1096 			/* pft_size[0] is the NUMA CEC cookie */
1097 			ppc64_pft_size = pft_size[1];
1098 		}
1099 	}
1100 #endif
1101 
1102 #ifdef CONFIG_PPC64
1103 	if (initial_boot_params && initial_boot_params->version >= 2) {
1104 		/* version 2 of the kexec param format adds the phys cpuid
1105 		 * of booted proc.
1106 		 */
1107 		boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1108 		boot_cpuid = 0;
1109 	} else {
1110 		/* Check if it's the boot-cpu, set it's hw index in paca now */
1111 		if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
1112 			prop = get_flat_dt_prop(node, "reg", NULL);
1113 			set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop);
1114 			boot_cpuid_phys = get_hard_smp_processor_id(0);
1115 		}
1116 	}
1117 #endif
1118 
1119 #ifdef CONFIG_ALTIVEC
1120 	/* Check if we have a VMX and eventually update CPU features */
1121 	prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", &size);
1122 	if (prop && (*prop) > 0) {
1123 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1124 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1125 	}
1126 
1127 	/* Same goes for Apple's "altivec" property */
1128 	prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
1129 	if (prop) {
1130 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1131 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1132 	}
1133 #endif /* CONFIG_ALTIVEC */
1134 
1135 #ifdef CONFIG_PPC_PSERIES
1136 	/*
1137 	 * Check for an SMT capable CPU and set the CPU feature. We do
1138 	 * this by looking at the size of the ibm,ppc-interrupt-server#s
1139 	 * property
1140 	 */
1141 	prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1142 				       &size);
1143 	cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1144 	if (prop && ((size / sizeof(u32)) > 1))
1145 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1146 #endif
1147 
1148 	return 0;
1149 }
1150 
1151 static int __init early_init_dt_scan_chosen(unsigned long node,
1152 					    const char *uname, int depth, void *data)
1153 {
1154 	u32 *prop;
1155 	unsigned long *lprop;
1156 
1157 	DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1158 
1159 	if (depth != 1 ||
1160 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1161 		return 0;
1162 
1163 	/* get platform type */
1164 	prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
1165 	if (prop == NULL)
1166 		return 0;
1167 #ifdef CONFIG_PPC64
1168 	systemcfg->platform = *prop;
1169 #else
1170 	_machine = *prop;
1171 #endif
1172 
1173 #ifdef CONFIG_PPC64
1174 	/* check if iommu is forced on or off */
1175 	if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1176 		iommu_is_off = 1;
1177 	if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1178 		iommu_force_on = 1;
1179 #endif
1180 
1181  	lprop = get_flat_dt_prop(node, "linux,memory-limit", NULL);
1182  	if (lprop)
1183  		memory_limit = *lprop;
1184 
1185 #ifdef CONFIG_PPC64
1186  	lprop = get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1187  	if (lprop)
1188  		tce_alloc_start = *lprop;
1189  	lprop = get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1190  	if (lprop)
1191  		tce_alloc_end = *lprop;
1192 #endif
1193 
1194 #ifdef CONFIG_PPC_RTAS
1195 	/* To help early debugging via the front panel, we retreive a minimal
1196 	 * set of RTAS infos now if available
1197 	 */
1198 	{
1199 		u64 *basep, *entryp;
1200 
1201 		basep = get_flat_dt_prop(node, "linux,rtas-base", NULL);
1202 		entryp = get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1203 		prop = get_flat_dt_prop(node, "linux,rtas-size", NULL);
1204 		if (basep && entryp && prop) {
1205 			rtas.base = *basep;
1206 			rtas.entry = *entryp;
1207 			rtas.size = *prop;
1208 		}
1209 	}
1210 #endif /* CONFIG_PPC_RTAS */
1211 
1212 	/* break now */
1213 	return 1;
1214 }
1215 
1216 static int __init early_init_dt_scan_root(unsigned long node,
1217 					  const char *uname, int depth, void *data)
1218 {
1219 	u32 *prop;
1220 
1221 	if (depth != 0)
1222 		return 0;
1223 
1224 	prop = get_flat_dt_prop(node, "#size-cells", NULL);
1225 	dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1226 	DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1227 
1228 	prop = get_flat_dt_prop(node, "#address-cells", NULL);
1229 	dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1230 	DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1231 
1232 	/* break now */
1233 	return 1;
1234 }
1235 
1236 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1237 {
1238 	cell_t *p = *cellp;
1239 	unsigned long r;
1240 
1241 	/* Ignore more than 2 cells */
1242 	while (s > sizeof(unsigned long) / 4) {
1243 		p++;
1244 		s--;
1245 	}
1246 	r = *p++;
1247 #ifdef CONFIG_PPC64
1248 	if (s > 1) {
1249 		r <<= 32;
1250 		r |= *(p++);
1251 		s--;
1252 	}
1253 #endif
1254 
1255 	*cellp = p;
1256 	return r;
1257 }
1258 
1259 
1260 static int __init early_init_dt_scan_memory(unsigned long node,
1261 					    const char *uname, int depth, void *data)
1262 {
1263 	char *type = get_flat_dt_prop(node, "device_type", NULL);
1264 	cell_t *reg, *endp;
1265 	unsigned long l;
1266 
1267 	/* We are scanning "memory" nodes only */
1268 	if (type == NULL || strcmp(type, "memory") != 0)
1269 		return 0;
1270 
1271 	reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1272 	if (reg == NULL)
1273 		return 0;
1274 
1275 	endp = reg + (l / sizeof(cell_t));
1276 
1277 	DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
1278 	    uname, l, reg[0], reg[1], reg[2], reg[3]);
1279 
1280 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1281 		unsigned long base, size;
1282 
1283 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1284 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1285 
1286 		if (size == 0)
1287 			continue;
1288 		DBG(" - %lx ,  %lx\n", base, size);
1289 #ifdef CONFIG_PPC64
1290 		if (iommu_is_off) {
1291 			if (base >= 0x80000000ul)
1292 				continue;
1293 			if ((base + size) > 0x80000000ul)
1294 				size = 0x80000000ul - base;
1295 		}
1296 #endif
1297 		lmb_add(base, size);
1298 	}
1299 	return 0;
1300 }
1301 
1302 static void __init early_reserve_mem(void)
1303 {
1304 	unsigned long base, size;
1305 	unsigned long *reserve_map;
1306 
1307 	reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1308 					initial_boot_params->off_mem_rsvmap);
1309 	while (1) {
1310 		base = *(reserve_map++);
1311 		size = *(reserve_map++);
1312 		if (size == 0)
1313 			break;
1314 		DBG("reserving: %lx -> %lx\n", base, size);
1315 		lmb_reserve(base, size);
1316 	}
1317 
1318 #if 0
1319 	DBG("memory reserved, lmbs :\n");
1320       	lmb_dump_all();
1321 #endif
1322 }
1323 
1324 void __init early_init_devtree(void *params)
1325 {
1326 	DBG(" -> early_init_devtree()\n");
1327 
1328 	/* Setup flat device-tree pointer */
1329 	initial_boot_params = params;
1330 
1331 	/* Retrieve various informations from the /chosen node of the
1332 	 * device-tree, including the platform type, initrd location and
1333 	 * size, TCE reserve, and more ...
1334 	 */
1335 	scan_flat_dt(early_init_dt_scan_chosen, NULL);
1336 
1337 	/* Scan memory nodes and rebuild LMBs */
1338 	lmb_init();
1339 	scan_flat_dt(early_init_dt_scan_root, NULL);
1340 	scan_flat_dt(early_init_dt_scan_memory, NULL);
1341 	lmb_enforce_memory_limit(memory_limit);
1342 	lmb_analyze();
1343 #ifdef CONFIG_PPC64
1344 	systemcfg->physicalMemorySize = lmb_phys_mem_size();
1345 #endif
1346 	lmb_reserve(0, __pa(klimit));
1347 
1348 	DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1349 
1350 	/* Reserve LMB regions used by kernel, initrd, dt, etc... */
1351 	early_reserve_mem();
1352 
1353 	DBG("Scanning CPUs ...\n");
1354 
1355 	/* Retreive hash table size from flattened tree plus other
1356 	 * CPU related informations (altivec support, boot CPU ID, ...)
1357 	 */
1358 	scan_flat_dt(early_init_dt_scan_cpus, NULL);
1359 
1360 	DBG(" <- early_init_devtree()\n");
1361 }
1362 
1363 #undef printk
1364 
1365 int
1366 prom_n_addr_cells(struct device_node* np)
1367 {
1368 	int* ip;
1369 	do {
1370 		if (np->parent)
1371 			np = np->parent;
1372 		ip = (int *) get_property(np, "#address-cells", NULL);
1373 		if (ip != NULL)
1374 			return *ip;
1375 	} while (np->parent);
1376 	/* No #address-cells property for the root node, default to 1 */
1377 	return 1;
1378 }
1379 
1380 int
1381 prom_n_size_cells(struct device_node* np)
1382 {
1383 	int* ip;
1384 	do {
1385 		if (np->parent)
1386 			np = np->parent;
1387 		ip = (int *) get_property(np, "#size-cells", NULL);
1388 		if (ip != NULL)
1389 			return *ip;
1390 	} while (np->parent);
1391 	/* No #size-cells property for the root node, default to 1 */
1392 	return 1;
1393 }
1394 
1395 /**
1396  * Work out the sense (active-low level / active-high edge)
1397  * of each interrupt from the device tree.
1398  */
1399 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1400 {
1401 	struct device_node *np;
1402 	int i, j;
1403 
1404 	/* default to level-triggered */
1405 	memset(senses, 1, max - off);
1406 
1407 	for (np = allnodes; np != 0; np = np->allnext) {
1408 		for (j = 0; j < np->n_intrs; j++) {
1409 			i = np->intrs[j].line;
1410 			if (i >= off && i < max)
1411 				senses[i-off] = np->intrs[j].sense ?
1412 					IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE :
1413 					IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE;
1414 		}
1415 	}
1416 }
1417 
1418 /**
1419  * Construct and return a list of the device_nodes with a given name.
1420  */
1421 struct device_node *find_devices(const char *name)
1422 {
1423 	struct device_node *head, **prevp, *np;
1424 
1425 	prevp = &head;
1426 	for (np = allnodes; np != 0; np = np->allnext) {
1427 		if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1428 			*prevp = np;
1429 			prevp = &np->next;
1430 		}
1431 	}
1432 	*prevp = NULL;
1433 	return head;
1434 }
1435 EXPORT_SYMBOL(find_devices);
1436 
1437 /**
1438  * Construct and return a list of the device_nodes with a given type.
1439  */
1440 struct device_node *find_type_devices(const char *type)
1441 {
1442 	struct device_node *head, **prevp, *np;
1443 
1444 	prevp = &head;
1445 	for (np = allnodes; np != 0; np = np->allnext) {
1446 		if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1447 			*prevp = np;
1448 			prevp = &np->next;
1449 		}
1450 	}
1451 	*prevp = NULL;
1452 	return head;
1453 }
1454 EXPORT_SYMBOL(find_type_devices);
1455 
1456 /**
1457  * Returns all nodes linked together
1458  */
1459 struct device_node *find_all_nodes(void)
1460 {
1461 	struct device_node *head, **prevp, *np;
1462 
1463 	prevp = &head;
1464 	for (np = allnodes; np != 0; np = np->allnext) {
1465 		*prevp = np;
1466 		prevp = &np->next;
1467 	}
1468 	*prevp = NULL;
1469 	return head;
1470 }
1471 EXPORT_SYMBOL(find_all_nodes);
1472 
1473 /** Checks if the given "compat" string matches one of the strings in
1474  * the device's "compatible" property
1475  */
1476 int device_is_compatible(struct device_node *device, const char *compat)
1477 {
1478 	const char* cp;
1479 	int cplen, l;
1480 
1481 	cp = (char *) get_property(device, "compatible", &cplen);
1482 	if (cp == NULL)
1483 		return 0;
1484 	while (cplen > 0) {
1485 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
1486 			return 1;
1487 		l = strlen(cp) + 1;
1488 		cp += l;
1489 		cplen -= l;
1490 	}
1491 
1492 	return 0;
1493 }
1494 EXPORT_SYMBOL(device_is_compatible);
1495 
1496 
1497 /**
1498  * Indicates whether the root node has a given value in its
1499  * compatible property.
1500  */
1501 int machine_is_compatible(const char *compat)
1502 {
1503 	struct device_node *root;
1504 	int rc = 0;
1505 
1506 	root = of_find_node_by_path("/");
1507 	if (root) {
1508 		rc = device_is_compatible(root, compat);
1509 		of_node_put(root);
1510 	}
1511 	return rc;
1512 }
1513 EXPORT_SYMBOL(machine_is_compatible);
1514 
1515 /**
1516  * Construct and return a list of the device_nodes with a given type
1517  * and compatible property.
1518  */
1519 struct device_node *find_compatible_devices(const char *type,
1520 					    const char *compat)
1521 {
1522 	struct device_node *head, **prevp, *np;
1523 
1524 	prevp = &head;
1525 	for (np = allnodes; np != 0; np = np->allnext) {
1526 		if (type != NULL
1527 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1528 			continue;
1529 		if (device_is_compatible(np, compat)) {
1530 			*prevp = np;
1531 			prevp = &np->next;
1532 		}
1533 	}
1534 	*prevp = NULL;
1535 	return head;
1536 }
1537 EXPORT_SYMBOL(find_compatible_devices);
1538 
1539 /**
1540  * Find the device_node with a given full_name.
1541  */
1542 struct device_node *find_path_device(const char *path)
1543 {
1544 	struct device_node *np;
1545 
1546 	for (np = allnodes; np != 0; np = np->allnext)
1547 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1548 			return np;
1549 	return NULL;
1550 }
1551 EXPORT_SYMBOL(find_path_device);
1552 
1553 /*******
1554  *
1555  * New implementation of the OF "find" APIs, return a refcounted
1556  * object, call of_node_put() when done.  The device tree and list
1557  * are protected by a rw_lock.
1558  *
1559  * Note that property management will need some locking as well,
1560  * this isn't dealt with yet.
1561  *
1562  *******/
1563 
1564 /**
1565  *	of_find_node_by_name - Find a node by its "name" property
1566  *	@from:	The node to start searching from or NULL, the node
1567  *		you pass will not be searched, only the next one
1568  *		will; typically, you pass what the previous call
1569  *		returned. of_node_put() will be called on it
1570  *	@name:	The name string to match against
1571  *
1572  *	Returns a node pointer with refcount incremented, use
1573  *	of_node_put() on it when done.
1574  */
1575 struct device_node *of_find_node_by_name(struct device_node *from,
1576 	const char *name)
1577 {
1578 	struct device_node *np;
1579 
1580 	read_lock(&devtree_lock);
1581 	np = from ? from->allnext : allnodes;
1582 	for (; np != 0; np = np->allnext)
1583 		if (np->name != 0 && strcasecmp(np->name, name) == 0
1584 		    && of_node_get(np))
1585 			break;
1586 	if (from)
1587 		of_node_put(from);
1588 	read_unlock(&devtree_lock);
1589 	return np;
1590 }
1591 EXPORT_SYMBOL(of_find_node_by_name);
1592 
1593 /**
1594  *	of_find_node_by_type - Find a node by its "device_type" property
1595  *	@from:	The node to start searching from or NULL, the node
1596  *		you pass will not be searched, only the next one
1597  *		will; typically, you pass what the previous call
1598  *		returned. of_node_put() will be called on it
1599  *	@name:	The type string to match against
1600  *
1601  *	Returns a node pointer with refcount incremented, use
1602  *	of_node_put() on it when done.
1603  */
1604 struct device_node *of_find_node_by_type(struct device_node *from,
1605 	const char *type)
1606 {
1607 	struct device_node *np;
1608 
1609 	read_lock(&devtree_lock);
1610 	np = from ? from->allnext : allnodes;
1611 	for (; np != 0; np = np->allnext)
1612 		if (np->type != 0 && strcasecmp(np->type, type) == 0
1613 		    && of_node_get(np))
1614 			break;
1615 	if (from)
1616 		of_node_put(from);
1617 	read_unlock(&devtree_lock);
1618 	return np;
1619 }
1620 EXPORT_SYMBOL(of_find_node_by_type);
1621 
1622 /**
1623  *	of_find_compatible_node - Find a node based on type and one of the
1624  *                                tokens in its "compatible" property
1625  *	@from:		The node to start searching from or NULL, the node
1626  *			you pass will not be searched, only the next one
1627  *			will; typically, you pass what the previous call
1628  *			returned. of_node_put() will be called on it
1629  *	@type:		The type string to match "device_type" or NULL to ignore
1630  *	@compatible:	The string to match to one of the tokens in the device
1631  *			"compatible" list.
1632  *
1633  *	Returns a node pointer with refcount incremented, use
1634  *	of_node_put() on it when done.
1635  */
1636 struct device_node *of_find_compatible_node(struct device_node *from,
1637 	const char *type, const char *compatible)
1638 {
1639 	struct device_node *np;
1640 
1641 	read_lock(&devtree_lock);
1642 	np = from ? from->allnext : allnodes;
1643 	for (; np != 0; np = np->allnext) {
1644 		if (type != NULL
1645 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1646 			continue;
1647 		if (device_is_compatible(np, compatible) && of_node_get(np))
1648 			break;
1649 	}
1650 	if (from)
1651 		of_node_put(from);
1652 	read_unlock(&devtree_lock);
1653 	return np;
1654 }
1655 EXPORT_SYMBOL(of_find_compatible_node);
1656 
1657 /**
1658  *	of_find_node_by_path - Find a node matching a full OF path
1659  *	@path:	The full path to match
1660  *
1661  *	Returns a node pointer with refcount incremented, use
1662  *	of_node_put() on it when done.
1663  */
1664 struct device_node *of_find_node_by_path(const char *path)
1665 {
1666 	struct device_node *np = allnodes;
1667 
1668 	read_lock(&devtree_lock);
1669 	for (; np != 0; np = np->allnext) {
1670 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1671 		    && of_node_get(np))
1672 			break;
1673 	}
1674 	read_unlock(&devtree_lock);
1675 	return np;
1676 }
1677 EXPORT_SYMBOL(of_find_node_by_path);
1678 
1679 /**
1680  *	of_find_node_by_phandle - Find a node given a phandle
1681  *	@handle:	phandle of the node to find
1682  *
1683  *	Returns a node pointer with refcount incremented, use
1684  *	of_node_put() on it when done.
1685  */
1686 struct device_node *of_find_node_by_phandle(phandle handle)
1687 {
1688 	struct device_node *np;
1689 
1690 	read_lock(&devtree_lock);
1691 	for (np = allnodes; np != 0; np = np->allnext)
1692 		if (np->linux_phandle == handle)
1693 			break;
1694 	if (np)
1695 		of_node_get(np);
1696 	read_unlock(&devtree_lock);
1697 	return np;
1698 }
1699 EXPORT_SYMBOL(of_find_node_by_phandle);
1700 
1701 /**
1702  *	of_find_all_nodes - Get next node in global list
1703  *	@prev:	Previous node or NULL to start iteration
1704  *		of_node_put() will be called on it
1705  *
1706  *	Returns a node pointer with refcount incremented, use
1707  *	of_node_put() on it when done.
1708  */
1709 struct device_node *of_find_all_nodes(struct device_node *prev)
1710 {
1711 	struct device_node *np;
1712 
1713 	read_lock(&devtree_lock);
1714 	np = prev ? prev->allnext : allnodes;
1715 	for (; np != 0; np = np->allnext)
1716 		if (of_node_get(np))
1717 			break;
1718 	if (prev)
1719 		of_node_put(prev);
1720 	read_unlock(&devtree_lock);
1721 	return np;
1722 }
1723 EXPORT_SYMBOL(of_find_all_nodes);
1724 
1725 /**
1726  *	of_get_parent - Get a node's parent if any
1727  *	@node:	Node to get parent
1728  *
1729  *	Returns a node pointer with refcount incremented, use
1730  *	of_node_put() on it when done.
1731  */
1732 struct device_node *of_get_parent(const struct device_node *node)
1733 {
1734 	struct device_node *np;
1735 
1736 	if (!node)
1737 		return NULL;
1738 
1739 	read_lock(&devtree_lock);
1740 	np = of_node_get(node->parent);
1741 	read_unlock(&devtree_lock);
1742 	return np;
1743 }
1744 EXPORT_SYMBOL(of_get_parent);
1745 
1746 /**
1747  *	of_get_next_child - Iterate a node childs
1748  *	@node:	parent node
1749  *	@prev:	previous child of the parent node, or NULL to get first
1750  *
1751  *	Returns a node pointer with refcount incremented, use
1752  *	of_node_put() on it when done.
1753  */
1754 struct device_node *of_get_next_child(const struct device_node *node,
1755 	struct device_node *prev)
1756 {
1757 	struct device_node *next;
1758 
1759 	read_lock(&devtree_lock);
1760 	next = prev ? prev->sibling : node->child;
1761 	for (; next != 0; next = next->sibling)
1762 		if (of_node_get(next))
1763 			break;
1764 	if (prev)
1765 		of_node_put(prev);
1766 	read_unlock(&devtree_lock);
1767 	return next;
1768 }
1769 EXPORT_SYMBOL(of_get_next_child);
1770 
1771 /**
1772  *	of_node_get - Increment refcount of a node
1773  *	@node:	Node to inc refcount, NULL is supported to
1774  *		simplify writing of callers
1775  *
1776  *	Returns node.
1777  */
1778 struct device_node *of_node_get(struct device_node *node)
1779 {
1780 	if (node)
1781 		kref_get(&node->kref);
1782 	return node;
1783 }
1784 EXPORT_SYMBOL(of_node_get);
1785 
1786 static inline struct device_node * kref_to_device_node(struct kref *kref)
1787 {
1788 	return container_of(kref, struct device_node, kref);
1789 }
1790 
1791 /**
1792  *	of_node_release - release a dynamically allocated node
1793  *	@kref:  kref element of the node to be released
1794  *
1795  *	In of_node_put() this function is passed to kref_put()
1796  *	as the destructor.
1797  */
1798 static void of_node_release(struct kref *kref)
1799 {
1800 	struct device_node *node = kref_to_device_node(kref);
1801 	struct property *prop = node->properties;
1802 
1803 	if (!OF_IS_DYNAMIC(node))
1804 		return;
1805 	while (prop) {
1806 		struct property *next = prop->next;
1807 		kfree(prop->name);
1808 		kfree(prop->value);
1809 		kfree(prop);
1810 		prop = next;
1811 	}
1812 	kfree(node->intrs);
1813 	kfree(node->addrs);
1814 	kfree(node->full_name);
1815 	kfree(node->data);
1816 	kfree(node);
1817 }
1818 
1819 /**
1820  *	of_node_put - Decrement refcount of a node
1821  *	@node:	Node to dec refcount, NULL is supported to
1822  *		simplify writing of callers
1823  *
1824  */
1825 void of_node_put(struct device_node *node)
1826 {
1827 	if (node)
1828 		kref_put(&node->kref, of_node_release);
1829 }
1830 EXPORT_SYMBOL(of_node_put);
1831 
1832 /*
1833  * Plug a device node into the tree and global list.
1834  */
1835 void of_attach_node(struct device_node *np)
1836 {
1837 	write_lock(&devtree_lock);
1838 	np->sibling = np->parent->child;
1839 	np->allnext = allnodes;
1840 	np->parent->child = np;
1841 	allnodes = np;
1842 	write_unlock(&devtree_lock);
1843 }
1844 
1845 /*
1846  * "Unplug" a node from the device tree.  The caller must hold
1847  * a reference to the node.  The memory associated with the node
1848  * is not freed until its refcount goes to zero.
1849  */
1850 void of_detach_node(const struct device_node *np)
1851 {
1852 	struct device_node *parent;
1853 
1854 	write_lock(&devtree_lock);
1855 
1856 	parent = np->parent;
1857 
1858 	if (allnodes == np)
1859 		allnodes = np->allnext;
1860 	else {
1861 		struct device_node *prev;
1862 		for (prev = allnodes;
1863 		     prev->allnext != np;
1864 		     prev = prev->allnext)
1865 			;
1866 		prev->allnext = np->allnext;
1867 	}
1868 
1869 	if (parent->child == np)
1870 		parent->child = np->sibling;
1871 	else {
1872 		struct device_node *prevsib;
1873 		for (prevsib = np->parent->child;
1874 		     prevsib->sibling != np;
1875 		     prevsib = prevsib->sibling)
1876 			;
1877 		prevsib->sibling = np->sibling;
1878 	}
1879 
1880 	write_unlock(&devtree_lock);
1881 }
1882 
1883 #ifdef CONFIG_PPC_PSERIES
1884 /*
1885  * Fix up the uninitialized fields in a new device node:
1886  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1887  *
1888  * A lot of boot-time code is duplicated here, because functions such
1889  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1890  * slab allocator.
1891  *
1892  * This should probably be split up into smaller chunks.
1893  */
1894 
1895 static int of_finish_dynamic_node(struct device_node *node,
1896 				  unsigned long *unused1, int unused2,
1897 				  int unused3, int unused4)
1898 {
1899 	struct device_node *parent = of_get_parent(node);
1900 	int err = 0;
1901 	phandle *ibm_phandle;
1902 
1903 	node->name = get_property(node, "name", NULL);
1904 	node->type = get_property(node, "device_type", NULL);
1905 
1906 	if (!parent) {
1907 		err = -ENODEV;
1908 		goto out;
1909 	}
1910 
1911 	/* We don't support that function on PowerMac, at least
1912 	 * not yet
1913 	 */
1914 	if (systemcfg->platform == PLATFORM_POWERMAC)
1915 		return -ENODEV;
1916 
1917 	/* fix up new node's linux_phandle field */
1918 	if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1919 		node->linux_phandle = *ibm_phandle;
1920 
1921 out:
1922 	of_node_put(parent);
1923 	return err;
1924 }
1925 
1926 static int prom_reconfig_notifier(struct notifier_block *nb,
1927 				  unsigned long action, void *node)
1928 {
1929 	int err;
1930 
1931 	switch (action) {
1932 	case PSERIES_RECONFIG_ADD:
1933 		err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1934 		if (err < 0) {
1935 			printk(KERN_ERR "finish_node returned %d\n", err);
1936 			err = NOTIFY_BAD;
1937 		}
1938 		break;
1939 	default:
1940 		err = NOTIFY_DONE;
1941 		break;
1942 	}
1943 	return err;
1944 }
1945 
1946 static struct notifier_block prom_reconfig_nb = {
1947 	.notifier_call = prom_reconfig_notifier,
1948 	.priority = 10, /* This one needs to run first */
1949 };
1950 
1951 static int __init prom_reconfig_setup(void)
1952 {
1953 	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1954 }
1955 __initcall(prom_reconfig_setup);
1956 #endif
1957 
1958 /*
1959  * Find a property with a given name for a given node
1960  * and return the value.
1961  */
1962 unsigned char *get_property(struct device_node *np, const char *name,
1963 			    int *lenp)
1964 {
1965 	struct property *pp;
1966 
1967 	for (pp = np->properties; pp != 0; pp = pp->next)
1968 		if (strcmp(pp->name, name) == 0) {
1969 			if (lenp != 0)
1970 				*lenp = pp->length;
1971 			return pp->value;
1972 		}
1973 	return NULL;
1974 }
1975 EXPORT_SYMBOL(get_property);
1976 
1977 /*
1978  * Add a property to a node
1979  */
1980 void prom_add_property(struct device_node* np, struct property* prop)
1981 {
1982 	struct property **next = &np->properties;
1983 
1984 	prop->next = NULL;
1985 	while (*next)
1986 		next = &(*next)->next;
1987 	*next = prop;
1988 }
1989 
1990 /* I quickly hacked that one, check against spec ! */
1991 static inline unsigned long
1992 bus_space_to_resource_flags(unsigned int bus_space)
1993 {
1994 	u8 space = (bus_space >> 24) & 0xf;
1995 	if (space == 0)
1996 		space = 0x02;
1997 	if (space == 0x02)
1998 		return IORESOURCE_MEM;
1999 	else if (space == 0x01)
2000 		return IORESOURCE_IO;
2001 	else {
2002 		printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2003 		    	bus_space);
2004 		return 0;
2005 	}
2006 }
2007 
2008 static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2009 						 struct address_range *range)
2010 {
2011 	unsigned long mask;
2012 	int i;
2013 
2014 	/* Check this one */
2015 	mask = bus_space_to_resource_flags(range->space);
2016 	for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2017 		if ((pdev->resource[i].flags & mask) == mask &&
2018 			pdev->resource[i].start <= range->address &&
2019 			pdev->resource[i].end > range->address) {
2020 				if ((range->address + range->size - 1) > pdev->resource[i].end) {
2021 					/* Add better message */
2022 					printk(KERN_WARNING "PCI/OF resource overlap !\n");
2023 					return NULL;
2024 				}
2025 				break;
2026 			}
2027 	}
2028 	if (i == DEVICE_COUNT_RESOURCE)
2029 		return NULL;
2030 	return &pdev->resource[i];
2031 }
2032 
2033 /*
2034  * Request an OF device resource. Currently handles child of PCI devices,
2035  * or other nodes attached to the root node. Ultimately, put some
2036  * link to resources in the OF node.
2037  */
2038 struct resource *request_OF_resource(struct device_node* node, int index,
2039 				     const char* name_postfix)
2040 {
2041 	struct pci_dev* pcidev;
2042 	u8 pci_bus, pci_devfn;
2043 	unsigned long iomask;
2044 	struct device_node* nd;
2045 	struct resource* parent;
2046 	struct resource *res = NULL;
2047 	int nlen, plen;
2048 
2049 	if (index >= node->n_addrs)
2050 		goto fail;
2051 
2052 	/* Sanity check on bus space */
2053 	iomask = bus_space_to_resource_flags(node->addrs[index].space);
2054 	if (iomask & IORESOURCE_MEM)
2055 		parent = &iomem_resource;
2056 	else if (iomask & IORESOURCE_IO)
2057 		parent = &ioport_resource;
2058 	else
2059 		goto fail;
2060 
2061 	/* Find a PCI parent if any */
2062 	nd = node;
2063 	pcidev = NULL;
2064 	while (nd) {
2065 		if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2066 			pcidev = pci_find_slot(pci_bus, pci_devfn);
2067 		if (pcidev) break;
2068 		nd = nd->parent;
2069 	}
2070 	if (pcidev)
2071 		parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2072 	if (!parent) {
2073 		printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2074 			node->name);
2075 		goto fail;
2076 	}
2077 
2078 	res = __request_region(parent, node->addrs[index].address,
2079 			       node->addrs[index].size, NULL);
2080 	if (!res)
2081 		goto fail;
2082 	nlen = strlen(node->name);
2083 	plen = name_postfix ? strlen(name_postfix) : 0;
2084 	res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2085 	if (res->name) {
2086 		strcpy((char *)res->name, node->name);
2087 		if (plen)
2088 			strcpy((char *)res->name+nlen, name_postfix);
2089 	}
2090 	return res;
2091 fail:
2092 	return NULL;
2093 }
2094 EXPORT_SYMBOL(request_OF_resource);
2095 
2096 int release_OF_resource(struct device_node *node, int index)
2097 {
2098 	struct pci_dev* pcidev;
2099 	u8 pci_bus, pci_devfn;
2100 	unsigned long iomask, start, end;
2101 	struct device_node* nd;
2102 	struct resource* parent;
2103 	struct resource *res = NULL;
2104 
2105 	if (index >= node->n_addrs)
2106 		return -EINVAL;
2107 
2108 	/* Sanity check on bus space */
2109 	iomask = bus_space_to_resource_flags(node->addrs[index].space);
2110 	if (iomask & IORESOURCE_MEM)
2111 		parent = &iomem_resource;
2112 	else if (iomask & IORESOURCE_IO)
2113 		parent = &ioport_resource;
2114 	else
2115 		return -EINVAL;
2116 
2117 	/* Find a PCI parent if any */
2118 	nd = node;
2119 	pcidev = NULL;
2120 	while(nd) {
2121 		if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2122 			pcidev = pci_find_slot(pci_bus, pci_devfn);
2123 		if (pcidev) break;
2124 		nd = nd->parent;
2125 	}
2126 	if (pcidev)
2127 		parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2128 	if (!parent) {
2129 		printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2130 			node->name);
2131 		return -ENODEV;
2132 	}
2133 
2134 	/* Find us in the parent and its childs */
2135 	res = parent->child;
2136 	start = node->addrs[index].address;
2137 	end = start + node->addrs[index].size - 1;
2138 	while (res) {
2139 		if (res->start == start && res->end == end &&
2140 		    (res->flags & IORESOURCE_BUSY))
2141 		    	break;
2142 		if (res->start <= start && res->end >= end)
2143 			res = res->child;
2144 		else
2145 			res = res->sibling;
2146 	}
2147 	if (!res)
2148 		return -ENODEV;
2149 
2150 	if (res->name) {
2151 		kfree(res->name);
2152 		res->name = NULL;
2153 	}
2154 	release_resource(res);
2155 	kfree(res);
2156 
2157 	return 0;
2158 }
2159 EXPORT_SYMBOL(release_OF_resource);
2160