1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 */ 15 16 #undef DEBUG 17 18 #include <stdarg.h> 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/init.h> 22 #include <linux/threads.h> 23 #include <linux/spinlock.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/stringify.h> 27 #include <linux/delay.h> 28 #include <linux/initrd.h> 29 #include <linux/bitops.h> 30 #include <linux/export.h> 31 #include <linux/kexec.h> 32 #include <linux/irq.h> 33 #include <linux/memblock.h> 34 #include <linux/of.h> 35 #include <linux/of_fdt.h> 36 #include <linux/libfdt.h> 37 #include <linux/cpu.h> 38 39 #include <asm/prom.h> 40 #include <asm/rtas.h> 41 #include <asm/page.h> 42 #include <asm/processor.h> 43 #include <asm/irq.h> 44 #include <asm/io.h> 45 #include <asm/kdump.h> 46 #include <asm/smp.h> 47 #include <asm/mmu.h> 48 #include <asm/paca.h> 49 #include <asm/pgtable.h> 50 #include <asm/iommu.h> 51 #include <asm/btext.h> 52 #include <asm/sections.h> 53 #include <asm/machdep.h> 54 #include <asm/pci-bridge.h> 55 #include <asm/kexec.h> 56 #include <asm/opal.h> 57 #include <asm/fadump.h> 58 #include <asm/epapr_hcalls.h> 59 #include <asm/firmware.h> 60 #include <asm/dt_cpu_ftrs.h> 61 62 #include <mm/mmu_decl.h> 63 64 #ifdef DEBUG 65 #define DBG(fmt...) printk(KERN_ERR fmt) 66 #else 67 #define DBG(fmt...) 68 #endif 69 70 #ifdef CONFIG_PPC64 71 int __initdata iommu_is_off; 72 int __initdata iommu_force_on; 73 unsigned long tce_alloc_start, tce_alloc_end; 74 u64 ppc64_rma_size; 75 #endif 76 static phys_addr_t first_memblock_size; 77 static int __initdata boot_cpu_count; 78 79 static int __init early_parse_mem(char *p) 80 { 81 if (!p) 82 return 1; 83 84 memory_limit = PAGE_ALIGN(memparse(p, &p)); 85 DBG("memory limit = 0x%llx\n", memory_limit); 86 87 return 0; 88 } 89 early_param("mem", early_parse_mem); 90 91 /* 92 * overlaps_initrd - check for overlap with page aligned extension of 93 * initrd. 94 */ 95 static inline int overlaps_initrd(unsigned long start, unsigned long size) 96 { 97 #ifdef CONFIG_BLK_DEV_INITRD 98 if (!initrd_start) 99 return 0; 100 101 return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) && 102 start <= _ALIGN_UP(initrd_end, PAGE_SIZE); 103 #else 104 return 0; 105 #endif 106 } 107 108 /** 109 * move_device_tree - move tree to an unused area, if needed. 110 * 111 * The device tree may be allocated beyond our memory limit, or inside the 112 * crash kernel region for kdump, or within the page aligned range of initrd. 113 * If so, move it out of the way. 114 */ 115 static void __init move_device_tree(void) 116 { 117 unsigned long start, size; 118 void *p; 119 120 DBG("-> move_device_tree\n"); 121 122 start = __pa(initial_boot_params); 123 size = fdt_totalsize(initial_boot_params); 124 125 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 126 overlaps_crashkernel(start, size) || 127 overlaps_initrd(start, size)) { 128 p = __va(memblock_alloc(size, PAGE_SIZE)); 129 memcpy(p, initial_boot_params, size); 130 initial_boot_params = p; 131 DBG("Moved device tree to 0x%p\n", p); 132 } 133 134 DBG("<- move_device_tree\n"); 135 } 136 137 /* 138 * ibm,pa-features is a per-cpu property that contains a string of 139 * attribute descriptors, each of which has a 2 byte header plus up 140 * to 254 bytes worth of processor attribute bits. First header 141 * byte specifies the number of bytes following the header. 142 * Second header byte is an "attribute-specifier" type, of which 143 * zero is the only currently-defined value. 144 * Implementation: Pass in the byte and bit offset for the feature 145 * that we are interested in. The function will return -1 if the 146 * pa-features property is missing, or a 1/0 to indicate if the feature 147 * is supported/not supported. Note that the bit numbers are 148 * big-endian to match the definition in PAPR. 149 */ 150 static struct ibm_pa_feature { 151 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 152 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 153 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 154 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ 155 unsigned char pabyte; /* byte number in ibm,pa-features */ 156 unsigned char pabit; /* bit number (big-endian) */ 157 unsigned char invert; /* if 1, pa bit set => clear feature */ 158 } ibm_pa_features[] __initdata = { 159 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, 160 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, 161 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, 162 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, 163 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, 164 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX }, 165 { .pabyte = 1, .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN }, 166 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, 167 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, 168 /* 169 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), 170 * we don't want to turn on TM here, so we use the *_COMP versions 171 * which are 0 if the kernel doesn't support TM. 172 */ 173 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, 174 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, 175 }; 176 177 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 178 unsigned long tablelen, 179 struct ibm_pa_feature *fp, 180 unsigned long ft_size) 181 { 182 unsigned long i, len, bit; 183 184 /* find descriptor with type == 0 */ 185 for (;;) { 186 if (tablelen < 3) 187 return; 188 len = 2 + ftrs[0]; 189 if (tablelen < len) 190 return; /* descriptor 0 not found */ 191 if (ftrs[1] == 0) 192 break; 193 tablelen -= len; 194 ftrs += len; 195 } 196 197 /* loop over bits we know about */ 198 for (i = 0; i < ft_size; ++i, ++fp) { 199 if (fp->pabyte >= ftrs[0]) 200 continue; 201 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 202 if (bit ^ fp->invert) { 203 cur_cpu_spec->cpu_features |= fp->cpu_features; 204 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 205 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; 206 cur_cpu_spec->mmu_features |= fp->mmu_features; 207 } else { 208 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 209 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 210 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; 211 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 212 } 213 } 214 } 215 216 static void __init check_cpu_pa_features(unsigned long node) 217 { 218 const unsigned char *pa_ftrs; 219 int tablelen; 220 221 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); 222 if (pa_ftrs == NULL) 223 return; 224 225 scan_features(node, pa_ftrs, tablelen, 226 ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); 227 } 228 229 #ifdef CONFIG_PPC_STD_MMU_64 230 static void __init init_mmu_slb_size(unsigned long node) 231 { 232 const __be32 *slb_size_ptr; 233 234 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 235 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 236 237 if (slb_size_ptr) 238 mmu_slb_size = be32_to_cpup(slb_size_ptr); 239 } 240 #else 241 #define init_mmu_slb_size(node) do { } while(0) 242 #endif 243 244 static struct feature_property { 245 const char *name; 246 u32 min_value; 247 unsigned long cpu_feature; 248 unsigned long cpu_user_ftr; 249 } feature_properties[] __initdata = { 250 #ifdef CONFIG_ALTIVEC 251 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 252 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 253 #endif /* CONFIG_ALTIVEC */ 254 #ifdef CONFIG_VSX 255 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 256 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 257 #endif /* CONFIG_VSX */ 258 #ifdef CONFIG_PPC64 259 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 260 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 261 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 262 #endif /* CONFIG_PPC64 */ 263 }; 264 265 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 266 static inline void identical_pvr_fixup(unsigned long node) 267 { 268 unsigned int pvr; 269 const char *model = of_get_flat_dt_prop(node, "model", NULL); 270 271 /* 272 * Since 440GR(x)/440EP(x) processors have the same pvr, 273 * we check the node path and set bit 28 in the cur_cpu_spec 274 * pvr for EP(x) processor version. This bit is always 0 in 275 * the "real" pvr. Then we call identify_cpu again with 276 * the new logical pvr to enable FPU support. 277 */ 278 if (model && strstr(model, "440EP")) { 279 pvr = cur_cpu_spec->pvr_value | 0x8; 280 identify_cpu(0, pvr); 281 DBG("Using logical pvr %x for %s\n", pvr, model); 282 } 283 } 284 #else 285 #define identical_pvr_fixup(node) do { } while(0) 286 #endif 287 288 static void __init check_cpu_feature_properties(unsigned long node) 289 { 290 unsigned long i; 291 struct feature_property *fp = feature_properties; 292 const __be32 *prop; 293 294 for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) { 295 prop = of_get_flat_dt_prop(node, fp->name, NULL); 296 if (prop && be32_to_cpup(prop) >= fp->min_value) { 297 cur_cpu_spec->cpu_features |= fp->cpu_feature; 298 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 299 } 300 } 301 } 302 303 static int __init early_init_dt_scan_cpus(unsigned long node, 304 const char *uname, int depth, 305 void *data) 306 { 307 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 308 const __be32 *prop; 309 const __be32 *intserv; 310 int i, nthreads; 311 int len; 312 int found = -1; 313 int found_thread = 0; 314 315 /* We are scanning "cpu" nodes only */ 316 if (type == NULL || strcmp(type, "cpu") != 0) 317 return 0; 318 319 /* Get physical cpuid */ 320 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 321 if (!intserv) 322 intserv = of_get_flat_dt_prop(node, "reg", &len); 323 324 nthreads = len / sizeof(int); 325 326 /* 327 * Now see if any of these threads match our boot cpu. 328 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 329 */ 330 for (i = 0; i < nthreads; i++) { 331 /* 332 * version 2 of the kexec param format adds the phys cpuid of 333 * booted proc. 334 */ 335 if (fdt_version(initial_boot_params) >= 2) { 336 if (be32_to_cpu(intserv[i]) == 337 fdt_boot_cpuid_phys(initial_boot_params)) { 338 found = boot_cpu_count; 339 found_thread = i; 340 } 341 } else { 342 /* 343 * Check if it's the boot-cpu, set it's hw index now, 344 * unfortunately this format did not support booting 345 * off secondary threads. 346 */ 347 if (of_get_flat_dt_prop(node, 348 "linux,boot-cpu", NULL) != NULL) 349 found = boot_cpu_count; 350 } 351 #ifdef CONFIG_SMP 352 /* logical cpu id is always 0 on UP kernels */ 353 boot_cpu_count++; 354 #endif 355 } 356 357 /* Not the boot CPU */ 358 if (found < 0) 359 return 0; 360 361 DBG("boot cpu: logical %d physical %d\n", found, 362 be32_to_cpu(intserv[found_thread])); 363 boot_cpuid = found; 364 set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread])); 365 366 /* 367 * PAPR defines "logical" PVR values for cpus that 368 * meet various levels of the architecture: 369 * 0x0f000001 Architecture version 2.04 370 * 0x0f000002 Architecture version 2.05 371 * If the cpu-version property in the cpu node contains 372 * such a value, we call identify_cpu again with the 373 * logical PVR value in order to use the cpu feature 374 * bits appropriate for the architecture level. 375 * 376 * A POWER6 partition in "POWER6 architected" mode 377 * uses the 0x0f000002 PVR value; in POWER5+ mode 378 * it uses 0x0f000001. 379 * 380 * If we're using device tree CPU feature discovery then we don't 381 * support the cpu-version property, and it's the responsibility of the 382 * firmware/hypervisor to provide the correct feature set for the 383 * architecture level via the ibm,powerpc-cpu-features binding. 384 */ 385 if (!dt_cpu_ftrs_in_use()) { 386 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 387 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) 388 identify_cpu(0, be32_to_cpup(prop)); 389 390 check_cpu_feature_properties(node); 391 check_cpu_pa_features(node); 392 } 393 394 identical_pvr_fixup(node); 395 init_mmu_slb_size(node); 396 397 #ifdef CONFIG_PPC64 398 if (nthreads == 1) 399 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 400 else if (!dt_cpu_ftrs_in_use()) 401 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 402 #endif 403 404 return 0; 405 } 406 407 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 408 const char *uname, 409 int depth, void *data) 410 { 411 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 412 413 /* Use common scan routine to determine if this is the chosen node */ 414 if (early_init_dt_scan_chosen(node, uname, depth, data) == 0) 415 return 0; 416 417 #ifdef CONFIG_PPC64 418 /* check if iommu is forced on or off */ 419 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 420 iommu_is_off = 1; 421 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 422 iommu_force_on = 1; 423 #endif 424 425 /* mem=x on the command line is the preferred mechanism */ 426 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 427 if (lprop) 428 memory_limit = *lprop; 429 430 #ifdef CONFIG_PPC64 431 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 432 if (lprop) 433 tce_alloc_start = *lprop; 434 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 435 if (lprop) 436 tce_alloc_end = *lprop; 437 #endif 438 439 #ifdef CONFIG_KEXEC_CORE 440 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 441 if (lprop) 442 crashk_res.start = *lprop; 443 444 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 445 if (lprop) 446 crashk_res.end = crashk_res.start + *lprop - 1; 447 #endif 448 449 /* break now */ 450 return 1; 451 } 452 453 #ifdef CONFIG_PPC_PSERIES 454 /* 455 * Interpret the ibm,dynamic-memory property in the 456 * /ibm,dynamic-reconfiguration-memory node. 457 * This contains a list of memory blocks along with NUMA affinity 458 * information. 459 */ 460 static int __init early_init_dt_scan_drconf_memory(unsigned long node) 461 { 462 const __be32 *dm, *ls, *usm; 463 int l; 464 unsigned long n, flags; 465 u64 base, size, memblock_size; 466 unsigned int is_kexec_kdump = 0, rngs; 467 468 ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l); 469 if (ls == NULL || l < dt_root_size_cells * sizeof(__be32)) 470 return 0; 471 memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls); 472 473 dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l); 474 if (dm == NULL || l < sizeof(__be32)) 475 return 0; 476 477 n = of_read_number(dm++, 1); /* number of entries */ 478 if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32)) 479 return 0; 480 481 /* check if this is a kexec/kdump kernel. */ 482 usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory", 483 &l); 484 if (usm != NULL) 485 is_kexec_kdump = 1; 486 487 for (; n != 0; --n) { 488 base = dt_mem_next_cell(dt_root_addr_cells, &dm); 489 flags = of_read_number(&dm[3], 1); 490 /* skip DRC index, pad, assoc. list index, flags */ 491 dm += 4; 492 /* skip this block if the reserved bit is set in flags 493 or if the block is not assigned to this partition */ 494 if ((flags & DRCONF_MEM_RESERVED) || 495 !(flags & DRCONF_MEM_ASSIGNED)) 496 continue; 497 size = memblock_size; 498 rngs = 1; 499 if (is_kexec_kdump) { 500 /* 501 * For each memblock in ibm,dynamic-memory, a corresponding 502 * entry in linux,drconf-usable-memory property contains 503 * a counter 'p' followed by 'p' (base, size) duple. 504 * Now read the counter from 505 * linux,drconf-usable-memory property 506 */ 507 rngs = dt_mem_next_cell(dt_root_size_cells, &usm); 508 if (!rngs) /* there are no (base, size) duple */ 509 continue; 510 } 511 do { 512 if (is_kexec_kdump) { 513 base = dt_mem_next_cell(dt_root_addr_cells, 514 &usm); 515 size = dt_mem_next_cell(dt_root_size_cells, 516 &usm); 517 } 518 if (iommu_is_off) { 519 if (base >= 0x80000000ul) 520 continue; 521 if ((base + size) > 0x80000000ul) 522 size = 0x80000000ul - base; 523 } 524 memblock_add(base, size); 525 } while (--rngs); 526 } 527 memblock_dump_all(); 528 return 0; 529 } 530 #else 531 #define early_init_dt_scan_drconf_memory(node) 0 532 #endif /* CONFIG_PPC_PSERIES */ 533 534 static int __init early_init_dt_scan_memory_ppc(unsigned long node, 535 const char *uname, 536 int depth, void *data) 537 { 538 if (depth == 1 && 539 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) 540 return early_init_dt_scan_drconf_memory(node); 541 542 return early_init_dt_scan_memory(node, uname, depth, data); 543 } 544 545 /* 546 * For a relocatable kernel, we need to get the memstart_addr first, 547 * then use it to calculate the virtual kernel start address. This has 548 * to happen at a very early stage (before machine_init). In this case, 549 * we just want to get the memstart_address and would not like to mess the 550 * memblock at this stage. So introduce a variable to skip the memblock_add() 551 * for this reason. 552 */ 553 #ifdef CONFIG_RELOCATABLE 554 static int add_mem_to_memblock = 1; 555 #else 556 #define add_mem_to_memblock 1 557 #endif 558 559 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 560 { 561 #ifdef CONFIG_PPC64 562 if (iommu_is_off) { 563 if (base >= 0x80000000ul) 564 return; 565 if ((base + size) > 0x80000000ul) 566 size = 0x80000000ul - base; 567 } 568 #endif 569 /* Keep track of the beginning of memory -and- the size of 570 * the very first block in the device-tree as it represents 571 * the RMA on ppc64 server 572 */ 573 if (base < memstart_addr) { 574 memstart_addr = base; 575 first_memblock_size = size; 576 } 577 578 /* Add the chunk to the MEMBLOCK list */ 579 if (add_mem_to_memblock) 580 memblock_add(base, size); 581 } 582 583 static void __init early_reserve_mem_dt(void) 584 { 585 unsigned long i, dt_root; 586 int len; 587 const __be32 *prop; 588 589 early_init_fdt_reserve_self(); 590 early_init_fdt_scan_reserved_mem(); 591 592 dt_root = of_get_flat_dt_root(); 593 594 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 595 596 if (!prop) 597 return; 598 599 DBG("Found new-style reserved-ranges\n"); 600 601 /* Each reserved range is an (address,size) pair, 2 cells each, 602 * totalling 4 cells per range. */ 603 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 604 u64 base, size; 605 606 base = of_read_number(prop + (i * 4) + 0, 2); 607 size = of_read_number(prop + (i * 4) + 2, 2); 608 609 if (size) { 610 DBG("reserving: %llx -> %llx\n", base, size); 611 memblock_reserve(base, size); 612 } 613 } 614 } 615 616 static void __init early_reserve_mem(void) 617 { 618 __be64 *reserve_map; 619 620 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 621 fdt_off_mem_rsvmap(initial_boot_params)); 622 623 /* Look for the new "reserved-regions" property in the DT */ 624 early_reserve_mem_dt(); 625 626 #ifdef CONFIG_BLK_DEV_INITRD 627 /* Then reserve the initrd, if any */ 628 if (initrd_start && (initrd_end > initrd_start)) { 629 memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 630 _ALIGN_UP(initrd_end, PAGE_SIZE) - 631 _ALIGN_DOWN(initrd_start, PAGE_SIZE)); 632 } 633 #endif /* CONFIG_BLK_DEV_INITRD */ 634 635 #ifdef CONFIG_PPC32 636 /* 637 * Handle the case where we might be booting from an old kexec 638 * image that setup the mem_rsvmap as pairs of 32-bit values 639 */ 640 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 641 u32 base_32, size_32; 642 __be32 *reserve_map_32 = (__be32 *)reserve_map; 643 644 DBG("Found old 32-bit reserve map\n"); 645 646 while (1) { 647 base_32 = be32_to_cpup(reserve_map_32++); 648 size_32 = be32_to_cpup(reserve_map_32++); 649 if (size_32 == 0) 650 break; 651 DBG("reserving: %x -> %x\n", base_32, size_32); 652 memblock_reserve(base_32, size_32); 653 } 654 return; 655 } 656 #endif 657 } 658 659 void __init early_init_devtree(void *params) 660 { 661 phys_addr_t limit; 662 663 DBG(" -> early_init_devtree(%p)\n", params); 664 665 /* Too early to BUG_ON(), do it by hand */ 666 if (!early_init_dt_verify(params)) 667 panic("BUG: Failed verifying flat device tree, bad version?"); 668 669 #ifdef CONFIG_PPC_RTAS 670 /* Some machines might need RTAS info for debugging, grab it now. */ 671 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 672 #endif 673 674 #ifdef CONFIG_PPC_POWERNV 675 /* Some machines might need OPAL info for debugging, grab it now. */ 676 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 677 #endif 678 679 #ifdef CONFIG_FA_DUMP 680 /* scan tree to see if dump is active during last boot */ 681 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 682 #endif 683 684 /* Retrieve various informations from the /chosen node of the 685 * device-tree, including the platform type, initrd location and 686 * size, TCE reserve, and more ... 687 */ 688 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 689 690 /* Scan memory nodes and rebuild MEMBLOCKs */ 691 of_scan_flat_dt(early_init_dt_scan_root, NULL); 692 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 693 694 parse_early_param(); 695 696 /* make sure we've parsed cmdline for mem= before this */ 697 if (memory_limit) 698 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 699 setup_initial_memory_limit(memstart_addr, first_memblock_size); 700 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 701 memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); 702 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 703 if (PHYSICAL_START > MEMORY_START) 704 memblock_reserve(MEMORY_START, 0x8000); 705 reserve_kdump_trampoline(); 706 #ifdef CONFIG_FA_DUMP 707 /* 708 * If we fail to reserve memory for firmware-assisted dump then 709 * fallback to kexec based kdump. 710 */ 711 if (fadump_reserve_mem() == 0) 712 #endif 713 reserve_crashkernel(); 714 early_reserve_mem(); 715 716 /* Ensure that total memory size is page-aligned. */ 717 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); 718 memblock_enforce_memory_limit(limit); 719 720 memblock_allow_resize(); 721 memblock_dump_all(); 722 723 DBG("Phys. mem: %llx\n", memblock_phys_mem_size()); 724 725 /* We may need to relocate the flat tree, do it now. 726 * FIXME .. and the initrd too? */ 727 move_device_tree(); 728 729 allocate_pacas(); 730 731 DBG("Scanning CPUs ...\n"); 732 733 dt_cpu_ftrs_scan(); 734 735 /* Retrieve CPU related informations from the flat tree 736 * (altivec support, boot CPU ID, ...) 737 */ 738 of_scan_flat_dt(early_init_dt_scan_cpus, NULL); 739 if (boot_cpuid < 0) { 740 printk("Failed to identify boot CPU !\n"); 741 BUG(); 742 } 743 744 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 745 /* We'll later wait for secondaries to check in; there are 746 * NCPUS-1 non-boot CPUs :-) 747 */ 748 spinning_secondaries = boot_cpu_count - 1; 749 #endif 750 751 mmu_early_init_devtree(); 752 753 #ifdef CONFIG_PPC_POWERNV 754 /* Scan and build the list of machine check recoverable ranges */ 755 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 756 #endif 757 epapr_paravirt_early_init(); 758 759 /* Now try to figure out if we are running on LPAR and so on */ 760 pseries_probe_fw_features(); 761 762 #ifdef CONFIG_PPC_PS3 763 /* Identify PS3 firmware */ 764 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) 765 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; 766 #endif 767 768 DBG(" <- early_init_devtree()\n"); 769 } 770 771 #ifdef CONFIG_RELOCATABLE 772 /* 773 * This function run before early_init_devtree, so we have to init 774 * initial_boot_params. 775 */ 776 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 777 { 778 /* Setup flat device-tree pointer */ 779 initial_boot_params = params; 780 781 /* 782 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 783 * mess the memblock. 784 */ 785 add_mem_to_memblock = 0; 786 of_scan_flat_dt(early_init_dt_scan_root, NULL); 787 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 788 add_mem_to_memblock = 1; 789 790 if (size) 791 *size = first_memblock_size; 792 } 793 #endif 794 795 /******* 796 * 797 * New implementation of the OF "find" APIs, return a refcounted 798 * object, call of_node_put() when done. The device tree and list 799 * are protected by a rw_lock. 800 * 801 * Note that property management will need some locking as well, 802 * this isn't dealt with yet. 803 * 804 *******/ 805 806 /** 807 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 808 * @np: device node of the device 809 * 810 * This looks for a property "ibm,chip-id" in the node or any 811 * of its parents and returns its content, or -1 if it cannot 812 * be found. 813 */ 814 int of_get_ibm_chip_id(struct device_node *np) 815 { 816 of_node_get(np); 817 while (np) { 818 u32 chip_id; 819 820 /* 821 * Skiboot may produce memory nodes that contain more than one 822 * cell in chip-id, we only read the first one here. 823 */ 824 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { 825 of_node_put(np); 826 return chip_id; 827 } 828 829 np = of_get_next_parent(np); 830 } 831 return -1; 832 } 833 EXPORT_SYMBOL(of_get_ibm_chip_id); 834 835 /** 836 * cpu_to_chip_id - Return the cpus chip-id 837 * @cpu: The logical cpu number. 838 * 839 * Return the value of the ibm,chip-id property corresponding to the given 840 * logical cpu number. If the chip-id can not be found, returns -1. 841 */ 842 int cpu_to_chip_id(int cpu) 843 { 844 struct device_node *np; 845 846 np = of_get_cpu_node(cpu, NULL); 847 if (!np) 848 return -1; 849 850 of_node_put(np); 851 return of_get_ibm_chip_id(np); 852 } 853 EXPORT_SYMBOL(cpu_to_chip_id); 854 855 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 856 { 857 return (int)phys_id == get_hard_smp_processor_id(cpu); 858 } 859