1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 */ 15 16 #undef DEBUG 17 18 #include <stdarg.h> 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/init.h> 22 #include <linux/threads.h> 23 #include <linux/spinlock.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/delay.h> 27 #include <linux/initrd.h> 28 #include <linux/bitops.h> 29 #include <linux/export.h> 30 #include <linux/kexec.h> 31 #include <linux/irq.h> 32 #include <linux/memblock.h> 33 #include <linux/of.h> 34 #include <linux/of_fdt.h> 35 #include <linux/libfdt.h> 36 #include <linux/cpu.h> 37 38 #include <asm/prom.h> 39 #include <asm/rtas.h> 40 #include <asm/page.h> 41 #include <asm/processor.h> 42 #include <asm/irq.h> 43 #include <asm/io.h> 44 #include <asm/kdump.h> 45 #include <asm/smp.h> 46 #include <asm/mmu.h> 47 #include <asm/paca.h> 48 #include <asm/pgtable.h> 49 #include <asm/powernv.h> 50 #include <asm/iommu.h> 51 #include <asm/btext.h> 52 #include <asm/sections.h> 53 #include <asm/machdep.h> 54 #include <asm/pci-bridge.h> 55 #include <asm/kexec.h> 56 #include <asm/opal.h> 57 #include <asm/fadump.h> 58 #include <asm/epapr_hcalls.h> 59 #include <asm/firmware.h> 60 #include <asm/dt_cpu_ftrs.h> 61 #include <asm/drmem.h> 62 63 #include <mm/mmu_decl.h> 64 65 #ifdef DEBUG 66 #define DBG(fmt...) printk(KERN_ERR fmt) 67 #else 68 #define DBG(fmt...) 69 #endif 70 71 #ifdef CONFIG_PPC64 72 int __initdata iommu_is_off; 73 int __initdata iommu_force_on; 74 unsigned long tce_alloc_start, tce_alloc_end; 75 u64 ppc64_rma_size; 76 #endif 77 static phys_addr_t first_memblock_size; 78 static int __initdata boot_cpu_count; 79 80 static int __init early_parse_mem(char *p) 81 { 82 if (!p) 83 return 1; 84 85 memory_limit = PAGE_ALIGN(memparse(p, &p)); 86 DBG("memory limit = 0x%llx\n", memory_limit); 87 88 return 0; 89 } 90 early_param("mem", early_parse_mem); 91 92 /* 93 * overlaps_initrd - check for overlap with page aligned extension of 94 * initrd. 95 */ 96 static inline int overlaps_initrd(unsigned long start, unsigned long size) 97 { 98 #ifdef CONFIG_BLK_DEV_INITRD 99 if (!initrd_start) 100 return 0; 101 102 return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) && 103 start <= _ALIGN_UP(initrd_end, PAGE_SIZE); 104 #else 105 return 0; 106 #endif 107 } 108 109 /** 110 * move_device_tree - move tree to an unused area, if needed. 111 * 112 * The device tree may be allocated beyond our memory limit, or inside the 113 * crash kernel region for kdump, or within the page aligned range of initrd. 114 * If so, move it out of the way. 115 */ 116 static void __init move_device_tree(void) 117 { 118 unsigned long start, size; 119 void *p; 120 121 DBG("-> move_device_tree\n"); 122 123 start = __pa(initial_boot_params); 124 size = fdt_totalsize(initial_boot_params); 125 126 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 127 !memblock_is_memory(start + size - 1) || 128 overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) { 129 p = memblock_alloc_raw(size, PAGE_SIZE); 130 if (!p) 131 panic("Failed to allocate %lu bytes to move device tree\n", 132 size); 133 memcpy(p, initial_boot_params, size); 134 initial_boot_params = p; 135 DBG("Moved device tree to 0x%px\n", p); 136 } 137 138 DBG("<- move_device_tree\n"); 139 } 140 141 /* 142 * ibm,pa-features is a per-cpu property that contains a string of 143 * attribute descriptors, each of which has a 2 byte header plus up 144 * to 254 bytes worth of processor attribute bits. First header 145 * byte specifies the number of bytes following the header. 146 * Second header byte is an "attribute-specifier" type, of which 147 * zero is the only currently-defined value. 148 * Implementation: Pass in the byte and bit offset for the feature 149 * that we are interested in. The function will return -1 if the 150 * pa-features property is missing, or a 1/0 to indicate if the feature 151 * is supported/not supported. Note that the bit numbers are 152 * big-endian to match the definition in PAPR. 153 */ 154 static struct ibm_pa_feature { 155 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 156 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 157 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 158 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ 159 unsigned char pabyte; /* byte number in ibm,pa-features */ 160 unsigned char pabit; /* bit number (big-endian) */ 161 unsigned char invert; /* if 1, pa bit set => clear feature */ 162 } ibm_pa_features[] __initdata = { 163 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, 164 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, 165 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, 166 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, 167 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, 168 #ifdef CONFIG_PPC_RADIX_MMU 169 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX }, 170 #endif 171 { .pabyte = 1, .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN }, 172 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, 173 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, 174 /* 175 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), 176 * we don't want to turn on TM here, so we use the *_COMP versions 177 * which are 0 if the kernel doesn't support TM. 178 */ 179 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, 180 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, 181 }; 182 183 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 184 unsigned long tablelen, 185 struct ibm_pa_feature *fp, 186 unsigned long ft_size) 187 { 188 unsigned long i, len, bit; 189 190 /* find descriptor with type == 0 */ 191 for (;;) { 192 if (tablelen < 3) 193 return; 194 len = 2 + ftrs[0]; 195 if (tablelen < len) 196 return; /* descriptor 0 not found */ 197 if (ftrs[1] == 0) 198 break; 199 tablelen -= len; 200 ftrs += len; 201 } 202 203 /* loop over bits we know about */ 204 for (i = 0; i < ft_size; ++i, ++fp) { 205 if (fp->pabyte >= ftrs[0]) 206 continue; 207 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 208 if (bit ^ fp->invert) { 209 cur_cpu_spec->cpu_features |= fp->cpu_features; 210 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 211 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; 212 cur_cpu_spec->mmu_features |= fp->mmu_features; 213 } else { 214 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 215 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 216 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; 217 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 218 } 219 } 220 } 221 222 static void __init check_cpu_pa_features(unsigned long node) 223 { 224 const unsigned char *pa_ftrs; 225 int tablelen; 226 227 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); 228 if (pa_ftrs == NULL) 229 return; 230 231 scan_features(node, pa_ftrs, tablelen, 232 ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); 233 } 234 235 #ifdef CONFIG_PPC_BOOK3S_64 236 static void __init init_mmu_slb_size(unsigned long node) 237 { 238 const __be32 *slb_size_ptr; 239 240 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 241 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 242 243 if (slb_size_ptr) 244 mmu_slb_size = be32_to_cpup(slb_size_ptr); 245 } 246 #else 247 #define init_mmu_slb_size(node) do { } while(0) 248 #endif 249 250 static struct feature_property { 251 const char *name; 252 u32 min_value; 253 unsigned long cpu_feature; 254 unsigned long cpu_user_ftr; 255 } feature_properties[] __initdata = { 256 #ifdef CONFIG_ALTIVEC 257 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 258 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 259 #endif /* CONFIG_ALTIVEC */ 260 #ifdef CONFIG_VSX 261 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 262 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 263 #endif /* CONFIG_VSX */ 264 #ifdef CONFIG_PPC64 265 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 266 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 267 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 268 #endif /* CONFIG_PPC64 */ 269 }; 270 271 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 272 static inline void identical_pvr_fixup(unsigned long node) 273 { 274 unsigned int pvr; 275 const char *model = of_get_flat_dt_prop(node, "model", NULL); 276 277 /* 278 * Since 440GR(x)/440EP(x) processors have the same pvr, 279 * we check the node path and set bit 28 in the cur_cpu_spec 280 * pvr for EP(x) processor version. This bit is always 0 in 281 * the "real" pvr. Then we call identify_cpu again with 282 * the new logical pvr to enable FPU support. 283 */ 284 if (model && strstr(model, "440EP")) { 285 pvr = cur_cpu_spec->pvr_value | 0x8; 286 identify_cpu(0, pvr); 287 DBG("Using logical pvr %x for %s\n", pvr, model); 288 } 289 } 290 #else 291 #define identical_pvr_fixup(node) do { } while(0) 292 #endif 293 294 static void __init check_cpu_feature_properties(unsigned long node) 295 { 296 int i; 297 struct feature_property *fp = feature_properties; 298 const __be32 *prop; 299 300 for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) { 301 prop = of_get_flat_dt_prop(node, fp->name, NULL); 302 if (prop && be32_to_cpup(prop) >= fp->min_value) { 303 cur_cpu_spec->cpu_features |= fp->cpu_feature; 304 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 305 } 306 } 307 } 308 309 static int __init early_init_dt_scan_cpus(unsigned long node, 310 const char *uname, int depth, 311 void *data) 312 { 313 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 314 const __be32 *prop; 315 const __be32 *intserv; 316 int i, nthreads; 317 int len; 318 int found = -1; 319 int found_thread = 0; 320 321 /* We are scanning "cpu" nodes only */ 322 if (type == NULL || strcmp(type, "cpu") != 0) 323 return 0; 324 325 /* Get physical cpuid */ 326 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 327 if (!intserv) 328 intserv = of_get_flat_dt_prop(node, "reg", &len); 329 330 nthreads = len / sizeof(int); 331 332 /* 333 * Now see if any of these threads match our boot cpu. 334 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 335 */ 336 for (i = 0; i < nthreads; i++) { 337 if (be32_to_cpu(intserv[i]) == 338 fdt_boot_cpuid_phys(initial_boot_params)) { 339 found = boot_cpu_count; 340 found_thread = i; 341 } 342 #ifdef CONFIG_SMP 343 /* logical cpu id is always 0 on UP kernels */ 344 boot_cpu_count++; 345 #endif 346 } 347 348 /* Not the boot CPU */ 349 if (found < 0) 350 return 0; 351 352 DBG("boot cpu: logical %d physical %d\n", found, 353 be32_to_cpu(intserv[found_thread])); 354 boot_cpuid = found; 355 356 /* 357 * PAPR defines "logical" PVR values for cpus that 358 * meet various levels of the architecture: 359 * 0x0f000001 Architecture version 2.04 360 * 0x0f000002 Architecture version 2.05 361 * If the cpu-version property in the cpu node contains 362 * such a value, we call identify_cpu again with the 363 * logical PVR value in order to use the cpu feature 364 * bits appropriate for the architecture level. 365 * 366 * A POWER6 partition in "POWER6 architected" mode 367 * uses the 0x0f000002 PVR value; in POWER5+ mode 368 * it uses 0x0f000001. 369 * 370 * If we're using device tree CPU feature discovery then we don't 371 * support the cpu-version property, and it's the responsibility of the 372 * firmware/hypervisor to provide the correct feature set for the 373 * architecture level via the ibm,powerpc-cpu-features binding. 374 */ 375 if (!dt_cpu_ftrs_in_use()) { 376 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 377 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) 378 identify_cpu(0, be32_to_cpup(prop)); 379 380 check_cpu_feature_properties(node); 381 check_cpu_pa_features(node); 382 } 383 384 identical_pvr_fixup(node); 385 init_mmu_slb_size(node); 386 387 #ifdef CONFIG_PPC64 388 if (nthreads == 1) 389 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 390 else if (!dt_cpu_ftrs_in_use()) 391 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 392 allocate_paca(boot_cpuid); 393 #endif 394 set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread])); 395 396 return 0; 397 } 398 399 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 400 const char *uname, 401 int depth, void *data) 402 { 403 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 404 405 /* Use common scan routine to determine if this is the chosen node */ 406 if (early_init_dt_scan_chosen(node, uname, depth, data) == 0) 407 return 0; 408 409 #ifdef CONFIG_PPC64 410 /* check if iommu is forced on or off */ 411 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 412 iommu_is_off = 1; 413 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 414 iommu_force_on = 1; 415 #endif 416 417 /* mem=x on the command line is the preferred mechanism */ 418 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 419 if (lprop) 420 memory_limit = *lprop; 421 422 #ifdef CONFIG_PPC64 423 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 424 if (lprop) 425 tce_alloc_start = *lprop; 426 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 427 if (lprop) 428 tce_alloc_end = *lprop; 429 #endif 430 431 #ifdef CONFIG_KEXEC_CORE 432 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 433 if (lprop) 434 crashk_res.start = *lprop; 435 436 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 437 if (lprop) 438 crashk_res.end = crashk_res.start + *lprop - 1; 439 #endif 440 441 /* break now */ 442 return 1; 443 } 444 445 /* 446 * Compare the range against max mem limit and update 447 * size if it cross the limit. 448 */ 449 450 #ifdef CONFIG_SPARSEMEM 451 static bool validate_mem_limit(u64 base, u64 *size) 452 { 453 u64 max_mem = 1UL << (MAX_PHYSMEM_BITS); 454 455 if (base >= max_mem) 456 return false; 457 if ((base + *size) > max_mem) 458 *size = max_mem - base; 459 return true; 460 } 461 #else 462 static bool validate_mem_limit(u64 base, u64 *size) 463 { 464 return true; 465 } 466 #endif 467 468 #ifdef CONFIG_PPC_PSERIES 469 /* 470 * Interpret the ibm dynamic reconfiguration memory LMBs. 471 * This contains a list of memory blocks along with NUMA affinity 472 * information. 473 */ 474 static void __init early_init_drmem_lmb(struct drmem_lmb *lmb, 475 const __be32 **usm) 476 { 477 u64 base, size; 478 int is_kexec_kdump = 0, rngs; 479 480 base = lmb->base_addr; 481 size = drmem_lmb_size(); 482 rngs = 1; 483 484 /* 485 * Skip this block if the reserved bit is set in flags 486 * or if the block is not assigned to this partition. 487 */ 488 if ((lmb->flags & DRCONF_MEM_RESERVED) || 489 !(lmb->flags & DRCONF_MEM_ASSIGNED)) 490 return; 491 492 if (*usm) 493 is_kexec_kdump = 1; 494 495 if (is_kexec_kdump) { 496 /* 497 * For each memblock in ibm,dynamic-memory, a 498 * corresponding entry in linux,drconf-usable-memory 499 * property contains a counter 'p' followed by 'p' 500 * (base, size) duple. Now read the counter from 501 * linux,drconf-usable-memory property 502 */ 503 rngs = dt_mem_next_cell(dt_root_size_cells, usm); 504 if (!rngs) /* there are no (base, size) duple */ 505 return; 506 } 507 508 do { 509 if (is_kexec_kdump) { 510 base = dt_mem_next_cell(dt_root_addr_cells, usm); 511 size = dt_mem_next_cell(dt_root_size_cells, usm); 512 } 513 514 if (iommu_is_off) { 515 if (base >= 0x80000000ul) 516 continue; 517 if ((base + size) > 0x80000000ul) 518 size = 0x80000000ul - base; 519 } 520 521 DBG("Adding: %llx -> %llx\n", base, size); 522 if (validate_mem_limit(base, &size)) 523 memblock_add(base, size); 524 } while (--rngs); 525 } 526 #endif /* CONFIG_PPC_PSERIES */ 527 528 static int __init early_init_dt_scan_memory_ppc(unsigned long node, 529 const char *uname, 530 int depth, void *data) 531 { 532 #ifdef CONFIG_PPC_PSERIES 533 if (depth == 1 && 534 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) { 535 walk_drmem_lmbs_early(node, early_init_drmem_lmb); 536 return 0; 537 } 538 #endif 539 540 return early_init_dt_scan_memory(node, uname, depth, data); 541 } 542 543 /* 544 * For a relocatable kernel, we need to get the memstart_addr first, 545 * then use it to calculate the virtual kernel start address. This has 546 * to happen at a very early stage (before machine_init). In this case, 547 * we just want to get the memstart_address and would not like to mess the 548 * memblock at this stage. So introduce a variable to skip the memblock_add() 549 * for this reason. 550 */ 551 #ifdef CONFIG_RELOCATABLE 552 static int add_mem_to_memblock = 1; 553 #else 554 #define add_mem_to_memblock 1 555 #endif 556 557 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 558 { 559 #ifdef CONFIG_PPC64 560 if (iommu_is_off) { 561 if (base >= 0x80000000ul) 562 return; 563 if ((base + size) > 0x80000000ul) 564 size = 0x80000000ul - base; 565 } 566 #endif 567 /* Keep track of the beginning of memory -and- the size of 568 * the very first block in the device-tree as it represents 569 * the RMA on ppc64 server 570 */ 571 if (base < memstart_addr) { 572 memstart_addr = base; 573 first_memblock_size = size; 574 } 575 576 /* Add the chunk to the MEMBLOCK list */ 577 if (add_mem_to_memblock) { 578 if (validate_mem_limit(base, &size)) 579 memblock_add(base, size); 580 } 581 } 582 583 static void __init early_reserve_mem_dt(void) 584 { 585 unsigned long i, dt_root; 586 int len; 587 const __be32 *prop; 588 589 early_init_fdt_reserve_self(); 590 early_init_fdt_scan_reserved_mem(); 591 592 dt_root = of_get_flat_dt_root(); 593 594 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 595 596 if (!prop) 597 return; 598 599 DBG("Found new-style reserved-ranges\n"); 600 601 /* Each reserved range is an (address,size) pair, 2 cells each, 602 * totalling 4 cells per range. */ 603 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 604 u64 base, size; 605 606 base = of_read_number(prop + (i * 4) + 0, 2); 607 size = of_read_number(prop + (i * 4) + 2, 2); 608 609 if (size) { 610 DBG("reserving: %llx -> %llx\n", base, size); 611 memblock_reserve(base, size); 612 } 613 } 614 } 615 616 static void __init early_reserve_mem(void) 617 { 618 __be64 *reserve_map; 619 620 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 621 fdt_off_mem_rsvmap(initial_boot_params)); 622 623 /* Look for the new "reserved-regions" property in the DT */ 624 early_reserve_mem_dt(); 625 626 #ifdef CONFIG_BLK_DEV_INITRD 627 /* Then reserve the initrd, if any */ 628 if (initrd_start && (initrd_end > initrd_start)) { 629 memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 630 _ALIGN_UP(initrd_end, PAGE_SIZE) - 631 _ALIGN_DOWN(initrd_start, PAGE_SIZE)); 632 } 633 #endif /* CONFIG_BLK_DEV_INITRD */ 634 635 #ifdef CONFIG_PPC32 636 /* 637 * Handle the case where we might be booting from an old kexec 638 * image that setup the mem_rsvmap as pairs of 32-bit values 639 */ 640 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 641 u32 base_32, size_32; 642 __be32 *reserve_map_32 = (__be32 *)reserve_map; 643 644 DBG("Found old 32-bit reserve map\n"); 645 646 while (1) { 647 base_32 = be32_to_cpup(reserve_map_32++); 648 size_32 = be32_to_cpup(reserve_map_32++); 649 if (size_32 == 0) 650 break; 651 DBG("reserving: %x -> %x\n", base_32, size_32); 652 memblock_reserve(base_32, size_32); 653 } 654 return; 655 } 656 #endif 657 } 658 659 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 660 static bool tm_disabled __initdata; 661 662 static int __init parse_ppc_tm(char *str) 663 { 664 bool res; 665 666 if (kstrtobool(str, &res)) 667 return -EINVAL; 668 669 tm_disabled = !res; 670 671 return 0; 672 } 673 early_param("ppc_tm", parse_ppc_tm); 674 675 static void __init tm_init(void) 676 { 677 if (tm_disabled) { 678 pr_info("Disabling hardware transactional memory (HTM)\n"); 679 cur_cpu_spec->cpu_user_features2 &= 680 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM); 681 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM; 682 return; 683 } 684 685 pnv_tm_init(); 686 } 687 #else 688 static void tm_init(void) { } 689 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 690 691 void __init early_init_devtree(void *params) 692 { 693 phys_addr_t limit; 694 695 DBG(" -> early_init_devtree(%px)\n", params); 696 697 /* Too early to BUG_ON(), do it by hand */ 698 if (!early_init_dt_verify(params)) 699 panic("BUG: Failed verifying flat device tree, bad version?"); 700 701 #ifdef CONFIG_PPC_RTAS 702 /* Some machines might need RTAS info for debugging, grab it now. */ 703 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 704 #endif 705 706 #ifdef CONFIG_PPC_POWERNV 707 /* Some machines might need OPAL info for debugging, grab it now. */ 708 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 709 #endif 710 711 #ifdef CONFIG_FA_DUMP 712 /* scan tree to see if dump is active during last boot */ 713 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 714 #endif 715 716 /* Retrieve various informations from the /chosen node of the 717 * device-tree, including the platform type, initrd location and 718 * size, TCE reserve, and more ... 719 */ 720 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 721 722 /* Scan memory nodes and rebuild MEMBLOCKs */ 723 of_scan_flat_dt(early_init_dt_scan_root, NULL); 724 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 725 726 parse_early_param(); 727 728 /* make sure we've parsed cmdline for mem= before this */ 729 if (memory_limit) 730 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 731 setup_initial_memory_limit(memstart_addr, first_memblock_size); 732 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 733 memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); 734 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 735 if (PHYSICAL_START > MEMORY_START) 736 memblock_reserve(MEMORY_START, 0x8000); 737 reserve_kdump_trampoline(); 738 #ifdef CONFIG_FA_DUMP 739 /* 740 * If we fail to reserve memory for firmware-assisted dump then 741 * fallback to kexec based kdump. 742 */ 743 if (fadump_reserve_mem() == 0) 744 #endif 745 reserve_crashkernel(); 746 early_reserve_mem(); 747 748 /* Ensure that total memory size is page-aligned. */ 749 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); 750 memblock_enforce_memory_limit(limit); 751 752 memblock_allow_resize(); 753 memblock_dump_all(); 754 755 DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size()); 756 757 /* We may need to relocate the flat tree, do it now. 758 * FIXME .. and the initrd too? */ 759 move_device_tree(); 760 761 allocate_paca_ptrs(); 762 763 DBG("Scanning CPUs ...\n"); 764 765 dt_cpu_ftrs_scan(); 766 767 /* Retrieve CPU related informations from the flat tree 768 * (altivec support, boot CPU ID, ...) 769 */ 770 of_scan_flat_dt(early_init_dt_scan_cpus, NULL); 771 if (boot_cpuid < 0) { 772 printk("Failed to identify boot CPU !\n"); 773 BUG(); 774 } 775 776 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 777 /* We'll later wait for secondaries to check in; there are 778 * NCPUS-1 non-boot CPUs :-) 779 */ 780 spinning_secondaries = boot_cpu_count - 1; 781 #endif 782 783 mmu_early_init_devtree(); 784 785 #ifdef CONFIG_PPC_POWERNV 786 /* Scan and build the list of machine check recoverable ranges */ 787 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 788 #endif 789 epapr_paravirt_early_init(); 790 791 /* Now try to figure out if we are running on LPAR and so on */ 792 pseries_probe_fw_features(); 793 794 #ifdef CONFIG_PPC_PS3 795 /* Identify PS3 firmware */ 796 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) 797 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; 798 #endif 799 800 tm_init(); 801 802 DBG(" <- early_init_devtree()\n"); 803 } 804 805 #ifdef CONFIG_RELOCATABLE 806 /* 807 * This function run before early_init_devtree, so we have to init 808 * initial_boot_params. 809 */ 810 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 811 { 812 /* Setup flat device-tree pointer */ 813 initial_boot_params = params; 814 815 /* 816 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 817 * mess the memblock. 818 */ 819 add_mem_to_memblock = 0; 820 of_scan_flat_dt(early_init_dt_scan_root, NULL); 821 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); 822 add_mem_to_memblock = 1; 823 824 if (size) 825 *size = first_memblock_size; 826 } 827 #endif 828 829 /******* 830 * 831 * New implementation of the OF "find" APIs, return a refcounted 832 * object, call of_node_put() when done. The device tree and list 833 * are protected by a rw_lock. 834 * 835 * Note that property management will need some locking as well, 836 * this isn't dealt with yet. 837 * 838 *******/ 839 840 /** 841 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 842 * @np: device node of the device 843 * 844 * This looks for a property "ibm,chip-id" in the node or any 845 * of its parents and returns its content, or -1 if it cannot 846 * be found. 847 */ 848 int of_get_ibm_chip_id(struct device_node *np) 849 { 850 of_node_get(np); 851 while (np) { 852 u32 chip_id; 853 854 /* 855 * Skiboot may produce memory nodes that contain more than one 856 * cell in chip-id, we only read the first one here. 857 */ 858 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { 859 of_node_put(np); 860 return chip_id; 861 } 862 863 np = of_get_next_parent(np); 864 } 865 return -1; 866 } 867 EXPORT_SYMBOL(of_get_ibm_chip_id); 868 869 /** 870 * cpu_to_chip_id - Return the cpus chip-id 871 * @cpu: The logical cpu number. 872 * 873 * Return the value of the ibm,chip-id property corresponding to the given 874 * logical cpu number. If the chip-id can not be found, returns -1. 875 */ 876 int cpu_to_chip_id(int cpu) 877 { 878 struct device_node *np; 879 880 np = of_get_cpu_node(cpu, NULL); 881 if (!np) 882 return -1; 883 884 of_node_put(np); 885 return of_get_ibm_chip_id(np); 886 } 887 EXPORT_SYMBOL(cpu_to_chip_id); 888 889 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 890 { 891 #ifdef CONFIG_SMP 892 /* 893 * Early firmware scanning must use this rather than 894 * get_hard_smp_processor_id because we don't have pacas allocated 895 * until memory topology is discovered. 896 */ 897 if (cpu_to_phys_id != NULL) 898 return (int)phys_id == cpu_to_phys_id[cpu]; 899 #endif 900 901 return (int)phys_id == get_hard_smp_processor_id(cpu); 902 } 903