xref: /openbmc/linux/arch/powerpc/kernel/prom.c (revision 943ffb58)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 #undef DEBUG
17 
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
33 
34 #include <asm/prom.h>
35 #include <asm/rtas.h>
36 #include <asm/lmb.h>
37 #include <asm/page.h>
38 #include <asm/processor.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/smp.h>
43 #include <asm/system.h>
44 #include <asm/mmu.h>
45 #include <asm/pgtable.h>
46 #include <asm/pci.h>
47 #include <asm/iommu.h>
48 #include <asm/btext.h>
49 #include <asm/sections.h>
50 #include <asm/machdep.h>
51 #include <asm/pSeries_reconfig.h>
52 #include <asm/pci-bridge.h>
53 
54 #ifdef DEBUG
55 #define DBG(fmt...) printk(KERN_ERR fmt)
56 #else
57 #define DBG(fmt...)
58 #endif
59 
60 
61 static int __initdata dt_root_addr_cells;
62 static int __initdata dt_root_size_cells;
63 
64 #ifdef CONFIG_PPC64
65 static int __initdata iommu_is_off;
66 int __initdata iommu_force_on;
67 unsigned long tce_alloc_start, tce_alloc_end;
68 #endif
69 
70 typedef u32 cell_t;
71 
72 #if 0
73 static struct boot_param_header *initial_boot_params __initdata;
74 #else
75 struct boot_param_header *initial_boot_params;
76 #endif
77 
78 static struct device_node *allnodes = NULL;
79 
80 /* use when traversing tree through the allnext, child, sibling,
81  * or parent members of struct device_node.
82  */
83 static DEFINE_RWLOCK(devtree_lock);
84 
85 /* export that to outside world */
86 struct device_node *of_chosen;
87 
88 struct device_node *dflt_interrupt_controller;
89 int num_interrupt_controllers;
90 
91 /*
92  * Wrapper for allocating memory for various data that needs to be
93  * attached to device nodes as they are processed at boot or when
94  * added to the device tree later (e.g. DLPAR).  At boot there is
95  * already a region reserved so we just increment *mem_start by size;
96  * otherwise we call kmalloc.
97  */
98 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
99 {
100 	unsigned long tmp;
101 
102 	if (!mem_start)
103 		return kmalloc(size, GFP_KERNEL);
104 
105 	tmp = *mem_start;
106 	*mem_start += size;
107 	return (void *)tmp;
108 }
109 
110 /*
111  * Find the device_node with a given phandle.
112  */
113 static struct device_node * find_phandle(phandle ph)
114 {
115 	struct device_node *np;
116 
117 	for (np = allnodes; np != 0; np = np->allnext)
118 		if (np->linux_phandle == ph)
119 			return np;
120 	return NULL;
121 }
122 
123 /*
124  * Find the interrupt parent of a node.
125  */
126 static struct device_node * __devinit intr_parent(struct device_node *p)
127 {
128 	phandle *parp;
129 
130 	parp = (phandle *) get_property(p, "interrupt-parent", NULL);
131 	if (parp == NULL)
132 		return p->parent;
133 	p = find_phandle(*parp);
134 	if (p != NULL)
135 		return p;
136 	/*
137 	 * On a powermac booted with BootX, we don't get to know the
138 	 * phandles for any nodes, so find_phandle will return NULL.
139 	 * Fortunately these machines only have one interrupt controller
140 	 * so there isn't in fact any ambiguity.  -- paulus
141 	 */
142 	if (num_interrupt_controllers == 1)
143 		p = dflt_interrupt_controller;
144 	return p;
145 }
146 
147 /*
148  * Find out the size of each entry of the interrupts property
149  * for a node.
150  */
151 int __devinit prom_n_intr_cells(struct device_node *np)
152 {
153 	struct device_node *p;
154 	unsigned int *icp;
155 
156 	for (p = np; (p = intr_parent(p)) != NULL; ) {
157 		icp = (unsigned int *)
158 			get_property(p, "#interrupt-cells", NULL);
159 		if (icp != NULL)
160 			return *icp;
161 		if (get_property(p, "interrupt-controller", NULL) != NULL
162 		    || get_property(p, "interrupt-map", NULL) != NULL) {
163 			printk("oops, node %s doesn't have #interrupt-cells\n",
164 			       p->full_name);
165 			return 1;
166 		}
167 	}
168 #ifdef DEBUG_IRQ
169 	printk("prom_n_intr_cells failed for %s\n", np->full_name);
170 #endif
171 	return 1;
172 }
173 
174 /*
175  * Map an interrupt from a device up to the platform interrupt
176  * descriptor.
177  */
178 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
179 				   struct device_node *np, unsigned int *ints,
180 				   int nintrc)
181 {
182 	struct device_node *p, *ipar;
183 	unsigned int *imap, *imask, *ip;
184 	int i, imaplen, match;
185 	int newintrc = 0, newaddrc = 0;
186 	unsigned int *reg;
187 	int naddrc;
188 
189 	reg = (unsigned int *) get_property(np, "reg", NULL);
190 	naddrc = prom_n_addr_cells(np);
191 	p = intr_parent(np);
192 	while (p != NULL) {
193 		if (get_property(p, "interrupt-controller", NULL) != NULL)
194 			/* this node is an interrupt controller, stop here */
195 			break;
196 		imap = (unsigned int *)
197 			get_property(p, "interrupt-map", &imaplen);
198 		if (imap == NULL) {
199 			p = intr_parent(p);
200 			continue;
201 		}
202 		imask = (unsigned int *)
203 			get_property(p, "interrupt-map-mask", NULL);
204 		if (imask == NULL) {
205 			printk("oops, %s has interrupt-map but no mask\n",
206 			       p->full_name);
207 			return 0;
208 		}
209 		imaplen /= sizeof(unsigned int);
210 		match = 0;
211 		ipar = NULL;
212 		while (imaplen > 0 && !match) {
213 			/* check the child-interrupt field */
214 			match = 1;
215 			for (i = 0; i < naddrc && match; ++i)
216 				match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
217 			for (; i < naddrc + nintrc && match; ++i)
218 				match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
219 			imap += naddrc + nintrc;
220 			imaplen -= naddrc + nintrc;
221 			/* grab the interrupt parent */
222 			ipar = find_phandle((phandle) *imap++);
223 			--imaplen;
224 			if (ipar == NULL && num_interrupt_controllers == 1)
225 				/* cope with BootX not giving us phandles */
226 				ipar = dflt_interrupt_controller;
227 			if (ipar == NULL) {
228 				printk("oops, no int parent %x in map of %s\n",
229 				       imap[-1], p->full_name);
230 				return 0;
231 			}
232 			/* find the parent's # addr and intr cells */
233 			ip = (unsigned int *)
234 				get_property(ipar, "#interrupt-cells", NULL);
235 			if (ip == NULL) {
236 				printk("oops, no #interrupt-cells on %s\n",
237 				       ipar->full_name);
238 				return 0;
239 			}
240 			newintrc = *ip;
241 			ip = (unsigned int *)
242 				get_property(ipar, "#address-cells", NULL);
243 			newaddrc = (ip == NULL)? 0: *ip;
244 			imap += newaddrc + newintrc;
245 			imaplen -= newaddrc + newintrc;
246 		}
247 		if (imaplen < 0) {
248 			printk("oops, error decoding int-map on %s, len=%d\n",
249 			       p->full_name, imaplen);
250 			return 0;
251 		}
252 		if (!match) {
253 #ifdef DEBUG_IRQ
254 			printk("oops, no match in %s int-map for %s\n",
255 			       p->full_name, np->full_name);
256 #endif
257 			return 0;
258 		}
259 		p = ipar;
260 		naddrc = newaddrc;
261 		nintrc = newintrc;
262 		ints = imap - nintrc;
263 		reg = ints - naddrc;
264 	}
265 	if (p == NULL) {
266 #ifdef DEBUG_IRQ
267 		printk("hmmm, int tree for %s doesn't have ctrler\n",
268 		       np->full_name);
269 #endif
270 		return 0;
271 	}
272 	*irq = ints;
273 	*ictrler = p;
274 	return nintrc;
275 }
276 
277 static unsigned char map_isa_senses[4] = {
278 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
279 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
280 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
281 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
282 };
283 
284 static unsigned char map_mpic_senses[4] = {
285 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
286 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
287 	/* 2 seems to be used for the 8259 cascade... */
288 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
289 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
290 };
291 
292 static int __devinit finish_node_interrupts(struct device_node *np,
293 					    unsigned long *mem_start,
294 					    int measure_only)
295 {
296 	unsigned int *ints;
297 	int intlen, intrcells, intrcount;
298 	int i, j, n, sense;
299 	unsigned int *irq, virq;
300 	struct device_node *ic;
301 	int trace = 0;
302 
303 	//#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
304 #define TRACE(fmt...)
305 
306 	if (!strcmp(np->name, "smu-doorbell"))
307 		trace = 1;
308 
309 	TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
310 	      num_interrupt_controllers);
311 
312 	if (num_interrupt_controllers == 0) {
313 		/*
314 		 * Old machines just have a list of interrupt numbers
315 		 * and no interrupt-controller nodes.
316 		 */
317 		ints = (unsigned int *) get_property(np, "AAPL,interrupts",
318 						     &intlen);
319 		/* XXX old interpret_pci_props looked in parent too */
320 		/* XXX old interpret_macio_props looked for interrupts
321 		   before AAPL,interrupts */
322 		if (ints == NULL)
323 			ints = (unsigned int *) get_property(np, "interrupts",
324 							     &intlen);
325 		if (ints == NULL)
326 			return 0;
327 
328 		np->n_intrs = intlen / sizeof(unsigned int);
329 		np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
330 				       mem_start);
331 		if (!np->intrs)
332 			return -ENOMEM;
333 		if (measure_only)
334 			return 0;
335 
336 		for (i = 0; i < np->n_intrs; ++i) {
337 			np->intrs[i].line = *ints++;
338 			np->intrs[i].sense = IRQ_SENSE_LEVEL
339 				| IRQ_POLARITY_NEGATIVE;
340 		}
341 		return 0;
342 	}
343 
344 	ints = (unsigned int *) get_property(np, "interrupts", &intlen);
345 	TRACE("ints=%p, intlen=%d\n", ints, intlen);
346 	if (ints == NULL)
347 		return 0;
348 	intrcells = prom_n_intr_cells(np);
349 	intlen /= intrcells * sizeof(unsigned int);
350 	TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
351 	np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
352 	if (!np->intrs)
353 		return -ENOMEM;
354 
355 	if (measure_only)
356 		return 0;
357 
358 	intrcount = 0;
359 	for (i = 0; i < intlen; ++i, ints += intrcells) {
360 		n = map_interrupt(&irq, &ic, np, ints, intrcells);
361 		TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
362 		if (n <= 0)
363 			continue;
364 
365 		/* don't map IRQ numbers under a cascaded 8259 controller */
366 		if (ic && device_is_compatible(ic, "chrp,iic")) {
367 			np->intrs[intrcount].line = irq[0];
368 			sense = (n > 1)? (irq[1] & 3): 3;
369 			np->intrs[intrcount].sense = map_isa_senses[sense];
370 		} else {
371 			virq = virt_irq_create_mapping(irq[0]);
372 			TRACE("virq=%d\n", virq);
373 #ifdef CONFIG_PPC64
374 			if (virq == NO_IRQ) {
375 				printk(KERN_CRIT "Could not allocate interrupt"
376 				       " number for %s\n", np->full_name);
377 				continue;
378 			}
379 #endif
380 			np->intrs[intrcount].line = irq_offset_up(virq);
381 			sense = (n > 1)? (irq[1] & 3): 1;
382 
383 			/* Apple uses bits in there in a different way, let's
384 			 * only keep the real sense bit on macs
385 			 */
386 			if (_machine == PLATFORM_POWERMAC)
387 				sense &= 0x1;
388 			np->intrs[intrcount].sense = map_mpic_senses[sense];
389 		}
390 
391 #ifdef CONFIG_PPC64
392 		/* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
393 		if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
394 			char *name = get_property(ic->parent, "name", NULL);
395 			if (name && !strcmp(name, "u3"))
396 				np->intrs[intrcount].line += 128;
397 			else if (!(name && (!strcmp(name, "mac-io") ||
398 					    !strcmp(name, "u4"))))
399 				/* ignore other cascaded controllers, such as
400 				   the k2-sata-root */
401 				break;
402 		}
403 #endif /* CONFIG_PPC64 */
404 		if (n > 2) {
405 			printk("hmmm, got %d intr cells for %s:", n,
406 			       np->full_name);
407 			for (j = 0; j < n; ++j)
408 				printk(" %d", irq[j]);
409 			printk("\n");
410 		}
411 		++intrcount;
412 	}
413 	np->n_intrs = intrcount;
414 
415 	return 0;
416 }
417 
418 static int __devinit finish_node(struct device_node *np,
419 				 unsigned long *mem_start,
420 				 int measure_only)
421 {
422 	struct device_node *child;
423 	int rc = 0;
424 
425 	rc = finish_node_interrupts(np, mem_start, measure_only);
426 	if (rc)
427 		goto out;
428 
429 	for (child = np->child; child != NULL; child = child->sibling) {
430 		rc = finish_node(child, mem_start, measure_only);
431 		if (rc)
432 			goto out;
433 	}
434 out:
435 	return rc;
436 }
437 
438 static void __init scan_interrupt_controllers(void)
439 {
440 	struct device_node *np;
441 	int n = 0;
442 	char *name, *ic;
443 	int iclen;
444 
445 	for (np = allnodes; np != NULL; np = np->allnext) {
446 		ic = get_property(np, "interrupt-controller", &iclen);
447 		name = get_property(np, "name", NULL);
448 		/* checking iclen makes sure we don't get a false
449 		   match on /chosen.interrupt_controller */
450 		if ((name != NULL
451 		     && strcmp(name, "interrupt-controller") == 0)
452 		    || (ic != NULL && iclen == 0
453 			&& strcmp(name, "AppleKiwi"))) {
454 			if (n == 0)
455 				dflt_interrupt_controller = np;
456 			++n;
457 		}
458 	}
459 	num_interrupt_controllers = n;
460 }
461 
462 /**
463  * finish_device_tree is called once things are running normally
464  * (i.e. with text and data mapped to the address they were linked at).
465  * It traverses the device tree and fills in some of the additional,
466  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
467  * mapping is also initialized at this point.
468  */
469 void __init finish_device_tree(void)
470 {
471 	unsigned long start, end, size = 0;
472 
473 	DBG(" -> finish_device_tree\n");
474 
475 #ifdef CONFIG_PPC64
476 	/* Initialize virtual IRQ map */
477 	virt_irq_init();
478 #endif
479 	scan_interrupt_controllers();
480 
481 	/*
482 	 * Finish device-tree (pre-parsing some properties etc...)
483 	 * We do this in 2 passes. One with "measure_only" set, which
484 	 * will only measure the amount of memory needed, then we can
485 	 * allocate that memory, and call finish_node again. However,
486 	 * we must be careful as most routines will fail nowadays when
487 	 * prom_alloc() returns 0, so we must make sure our first pass
488 	 * doesn't start at 0. We pre-initialize size to 16 for that
489 	 * reason and then remove those additional 16 bytes
490 	 */
491 	size = 16;
492 	finish_node(allnodes, &size, 1);
493 	size -= 16;
494 	end = start = (unsigned long) __va(lmb_alloc(size, 128));
495 	finish_node(allnodes, &end, 0);
496 	BUG_ON(end != start + size);
497 
498 	DBG(" <- finish_device_tree\n");
499 }
500 
501 static inline char *find_flat_dt_string(u32 offset)
502 {
503 	return ((char *)initial_boot_params) +
504 		initial_boot_params->off_dt_strings + offset;
505 }
506 
507 /**
508  * This function is used to scan the flattened device-tree, it is
509  * used to extract the memory informations at boot before we can
510  * unflatten the tree
511  */
512 int __init of_scan_flat_dt(int (*it)(unsigned long node,
513 				     const char *uname, int depth,
514 				     void *data),
515 			   void *data)
516 {
517 	unsigned long p = ((unsigned long)initial_boot_params) +
518 		initial_boot_params->off_dt_struct;
519 	int rc = 0;
520 	int depth = -1;
521 
522 	do {
523 		u32 tag = *((u32 *)p);
524 		char *pathp;
525 
526 		p += 4;
527 		if (tag == OF_DT_END_NODE) {
528 			depth --;
529 			continue;
530 		}
531 		if (tag == OF_DT_NOP)
532 			continue;
533 		if (tag == OF_DT_END)
534 			break;
535 		if (tag == OF_DT_PROP) {
536 			u32 sz = *((u32 *)p);
537 			p += 8;
538 			if (initial_boot_params->version < 0x10)
539 				p = _ALIGN(p, sz >= 8 ? 8 : 4);
540 			p += sz;
541 			p = _ALIGN(p, 4);
542 			continue;
543 		}
544 		if (tag != OF_DT_BEGIN_NODE) {
545 			printk(KERN_WARNING "Invalid tag %x scanning flattened"
546 			       " device tree !\n", tag);
547 			return -EINVAL;
548 		}
549 		depth++;
550 		pathp = (char *)p;
551 		p = _ALIGN(p + strlen(pathp) + 1, 4);
552 		if ((*pathp) == '/') {
553 			char *lp, *np;
554 			for (lp = NULL, np = pathp; *np; np++)
555 				if ((*np) == '/')
556 					lp = np+1;
557 			if (lp != NULL)
558 				pathp = lp;
559 		}
560 		rc = it(p, pathp, depth, data);
561 		if (rc != 0)
562 			break;
563 	} while(1);
564 
565 	return rc;
566 }
567 
568 /**
569  * This  function can be used within scan_flattened_dt callback to get
570  * access to properties
571  */
572 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
573 				 unsigned long *size)
574 {
575 	unsigned long p = node;
576 
577 	do {
578 		u32 tag = *((u32 *)p);
579 		u32 sz, noff;
580 		const char *nstr;
581 
582 		p += 4;
583 		if (tag == OF_DT_NOP)
584 			continue;
585 		if (tag != OF_DT_PROP)
586 			return NULL;
587 
588 		sz = *((u32 *)p);
589 		noff = *((u32 *)(p + 4));
590 		p += 8;
591 		if (initial_boot_params->version < 0x10)
592 			p = _ALIGN(p, sz >= 8 ? 8 : 4);
593 
594 		nstr = find_flat_dt_string(noff);
595 		if (nstr == NULL) {
596 			printk(KERN_WARNING "Can't find property index"
597 			       " name !\n");
598 			return NULL;
599 		}
600 		if (strcmp(name, nstr) == 0) {
601 			if (size)
602 				*size = sz;
603 			return (void *)p;
604 		}
605 		p += sz;
606 		p = _ALIGN(p, 4);
607 	} while(1);
608 }
609 
610 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
611 				       unsigned long align)
612 {
613 	void *res;
614 
615 	*mem = _ALIGN(*mem, align);
616 	res = (void *)*mem;
617 	*mem += size;
618 
619 	return res;
620 }
621 
622 static unsigned long __init unflatten_dt_node(unsigned long mem,
623 					      unsigned long *p,
624 					      struct device_node *dad,
625 					      struct device_node ***allnextpp,
626 					      unsigned long fpsize)
627 {
628 	struct device_node *np;
629 	struct property *pp, **prev_pp = NULL;
630 	char *pathp;
631 	u32 tag;
632 	unsigned int l, allocl;
633 	int has_name = 0;
634 	int new_format = 0;
635 
636 	tag = *((u32 *)(*p));
637 	if (tag != OF_DT_BEGIN_NODE) {
638 		printk("Weird tag at start of node: %x\n", tag);
639 		return mem;
640 	}
641 	*p += 4;
642 	pathp = (char *)*p;
643 	l = allocl = strlen(pathp) + 1;
644 	*p = _ALIGN(*p + l, 4);
645 
646 	/* version 0x10 has a more compact unit name here instead of the full
647 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
648 	 * it later. We detect this because the first character of the name is
649 	 * not '/'.
650 	 */
651 	if ((*pathp) != '/') {
652 		new_format = 1;
653 		if (fpsize == 0) {
654 			/* root node: special case. fpsize accounts for path
655 			 * plus terminating zero. root node only has '/', so
656 			 * fpsize should be 2, but we want to avoid the first
657 			 * level nodes to have two '/' so we use fpsize 1 here
658 			 */
659 			fpsize = 1;
660 			allocl = 2;
661 		} else {
662 			/* account for '/' and path size minus terminal 0
663 			 * already in 'l'
664 			 */
665 			fpsize += l;
666 			allocl = fpsize;
667 		}
668 	}
669 
670 
671 	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
672 				__alignof__(struct device_node));
673 	if (allnextpp) {
674 		memset(np, 0, sizeof(*np));
675 		np->full_name = ((char*)np) + sizeof(struct device_node);
676 		if (new_format) {
677 			char *p = np->full_name;
678 			/* rebuild full path for new format */
679 			if (dad && dad->parent) {
680 				strcpy(p, dad->full_name);
681 #ifdef DEBUG
682 				if ((strlen(p) + l + 1) != allocl) {
683 					DBG("%s: p: %d, l: %d, a: %d\n",
684 					    pathp, strlen(p), l, allocl);
685 				}
686 #endif
687 				p += strlen(p);
688 			}
689 			*(p++) = '/';
690 			memcpy(p, pathp, l);
691 		} else
692 			memcpy(np->full_name, pathp, l);
693 		prev_pp = &np->properties;
694 		**allnextpp = np;
695 		*allnextpp = &np->allnext;
696 		if (dad != NULL) {
697 			np->parent = dad;
698 			/* we temporarily use the next field as `last_child'*/
699 			if (dad->next == 0)
700 				dad->child = np;
701 			else
702 				dad->next->sibling = np;
703 			dad->next = np;
704 		}
705 		kref_init(&np->kref);
706 	}
707 	while(1) {
708 		u32 sz, noff;
709 		char *pname;
710 
711 		tag = *((u32 *)(*p));
712 		if (tag == OF_DT_NOP) {
713 			*p += 4;
714 			continue;
715 		}
716 		if (tag != OF_DT_PROP)
717 			break;
718 		*p += 4;
719 		sz = *((u32 *)(*p));
720 		noff = *((u32 *)((*p) + 4));
721 		*p += 8;
722 		if (initial_boot_params->version < 0x10)
723 			*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
724 
725 		pname = find_flat_dt_string(noff);
726 		if (pname == NULL) {
727 			printk("Can't find property name in list !\n");
728 			break;
729 		}
730 		if (strcmp(pname, "name") == 0)
731 			has_name = 1;
732 		l = strlen(pname) + 1;
733 		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
734 					__alignof__(struct property));
735 		if (allnextpp) {
736 			if (strcmp(pname, "linux,phandle") == 0) {
737 				np->node = *((u32 *)*p);
738 				if (np->linux_phandle == 0)
739 					np->linux_phandle = np->node;
740 			}
741 			if (strcmp(pname, "ibm,phandle") == 0)
742 				np->linux_phandle = *((u32 *)*p);
743 			pp->name = pname;
744 			pp->length = sz;
745 			pp->value = (void *)*p;
746 			*prev_pp = pp;
747 			prev_pp = &pp->next;
748 		}
749 		*p = _ALIGN((*p) + sz, 4);
750 	}
751 	/* with version 0x10 we may not have the name property, recreate
752 	 * it here from the unit name if absent
753 	 */
754 	if (!has_name) {
755 		char *p = pathp, *ps = pathp, *pa = NULL;
756 		int sz;
757 
758 		while (*p) {
759 			if ((*p) == '@')
760 				pa = p;
761 			if ((*p) == '/')
762 				ps = p + 1;
763 			p++;
764 		}
765 		if (pa < ps)
766 			pa = p;
767 		sz = (pa - ps) + 1;
768 		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
769 					__alignof__(struct property));
770 		if (allnextpp) {
771 			pp->name = "name";
772 			pp->length = sz;
773 			pp->value = (unsigned char *)(pp + 1);
774 			*prev_pp = pp;
775 			prev_pp = &pp->next;
776 			memcpy(pp->value, ps, sz - 1);
777 			((char *)pp->value)[sz - 1] = 0;
778 			DBG("fixed up name for %s -> %s\n", pathp, pp->value);
779 		}
780 	}
781 	if (allnextpp) {
782 		*prev_pp = NULL;
783 		np->name = get_property(np, "name", NULL);
784 		np->type = get_property(np, "device_type", NULL);
785 
786 		if (!np->name)
787 			np->name = "<NULL>";
788 		if (!np->type)
789 			np->type = "<NULL>";
790 	}
791 	while (tag == OF_DT_BEGIN_NODE) {
792 		mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
793 		tag = *((u32 *)(*p));
794 	}
795 	if (tag != OF_DT_END_NODE) {
796 		printk("Weird tag at end of node: %x\n", tag);
797 		return mem;
798 	}
799 	*p += 4;
800 	return mem;
801 }
802 
803 
804 /**
805  * unflattens the device-tree passed by the firmware, creating the
806  * tree of struct device_node. It also fills the "name" and "type"
807  * pointers of the nodes so the normal device-tree walking functions
808  * can be used (this used to be done by finish_device_tree)
809  */
810 void __init unflatten_device_tree(void)
811 {
812 	unsigned long start, mem, size;
813 	struct device_node **allnextp = &allnodes;
814 	char *p = NULL;
815 	int l = 0;
816 
817 	DBG(" -> unflatten_device_tree()\n");
818 
819 	/* First pass, scan for size */
820 	start = ((unsigned long)initial_boot_params) +
821 		initial_boot_params->off_dt_struct;
822 	size = unflatten_dt_node(0, &start, NULL, NULL, 0);
823 	size = (size | 3) + 1;
824 
825 	DBG("  size is %lx, allocating...\n", size);
826 
827 	/* Allocate memory for the expanded device tree */
828 	mem = lmb_alloc(size + 4, __alignof__(struct device_node));
829 	if (!mem) {
830 		DBG("Couldn't allocate memory with lmb_alloc()!\n");
831 		panic("Couldn't allocate memory with lmb_alloc()!\n");
832 	}
833 	mem = (unsigned long) __va(mem);
834 
835 	((u32 *)mem)[size / 4] = 0xdeadbeef;
836 
837 	DBG("  unflattening %lx...\n", mem);
838 
839 	/* Second pass, do actual unflattening */
840 	start = ((unsigned long)initial_boot_params) +
841 		initial_boot_params->off_dt_struct;
842 	unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
843 	if (*((u32 *)start) != OF_DT_END)
844 		printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
845 	if (((u32 *)mem)[size / 4] != 0xdeadbeef)
846 		printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
847 		       ((u32 *)mem)[size / 4] );
848 	*allnextp = NULL;
849 
850 	/* Get pointer to OF "/chosen" node for use everywhere */
851 	of_chosen = of_find_node_by_path("/chosen");
852 	if (of_chosen == NULL)
853 		of_chosen = of_find_node_by_path("/chosen@0");
854 
855 	/* Retreive command line */
856 	if (of_chosen != NULL) {
857 		p = (char *)get_property(of_chosen, "bootargs", &l);
858 		if (p != NULL && l > 0)
859 			strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
860 	}
861 #ifdef CONFIG_CMDLINE
862 	if (l == 0 || (l == 1 && (*p) == 0))
863 		strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
864 #endif /* CONFIG_CMDLINE */
865 
866 	DBG("Command line is: %s\n", cmd_line);
867 
868 	DBG(" <- unflatten_device_tree()\n");
869 }
870 
871 
872 static int __init early_init_dt_scan_cpus(unsigned long node,
873 					  const char *uname, int depth, void *data)
874 {
875 	u32 *prop;
876 	unsigned long size;
877 	char *type = of_get_flat_dt_prop(node, "device_type", &size);
878 
879 	/* We are scanning "cpu" nodes only */
880 	if (type == NULL || strcmp(type, "cpu") != 0)
881 		return 0;
882 
883 	boot_cpuid = 0;
884 	boot_cpuid_phys = 0;
885 	if (initial_boot_params && initial_boot_params->version >= 2) {
886 		/* version 2 of the kexec param format adds the phys cpuid
887 		 * of booted proc.
888 		 */
889 		boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
890 	} else {
891 		/* Check if it's the boot-cpu, set it's hw index now */
892 		if (of_get_flat_dt_prop(node,
893 					"linux,boot-cpu", NULL) != NULL) {
894 			prop = of_get_flat_dt_prop(node, "reg", NULL);
895 			if (prop != NULL)
896 				boot_cpuid_phys = *prop;
897 		}
898 	}
899 	set_hard_smp_processor_id(0, boot_cpuid_phys);
900 
901 #ifdef CONFIG_ALTIVEC
902 	/* Check if we have a VMX and eventually update CPU features */
903 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
904 	if (prop && (*prop) > 0) {
905 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
906 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
907 	}
908 
909 	/* Same goes for Apple's "altivec" property */
910 	prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
911 	if (prop) {
912 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
913 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
914 	}
915 #endif /* CONFIG_ALTIVEC */
916 
917 #ifdef CONFIG_PPC_PSERIES
918 	/*
919 	 * Check for an SMT capable CPU and set the CPU feature. We do
920 	 * this by looking at the size of the ibm,ppc-interrupt-server#s
921 	 * property
922 	 */
923 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
924 				       &size);
925 	cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
926 	if (prop && ((size / sizeof(u32)) > 1))
927 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
928 #endif
929 
930 	return 0;
931 }
932 
933 static int __init early_init_dt_scan_chosen(unsigned long node,
934 					    const char *uname, int depth, void *data)
935 {
936 	u32 *prop;
937 	unsigned long *lprop;
938 
939 	DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
940 
941 	if (depth != 1 ||
942 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
943 		return 0;
944 
945 	/* get platform type */
946 	prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
947 	if (prop == NULL)
948 		return 0;
949 #ifdef CONFIG_PPC_MULTIPLATFORM
950 	_machine = *prop;
951 #endif
952 
953 #ifdef CONFIG_PPC64
954 	/* check if iommu is forced on or off */
955 	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
956 		iommu_is_off = 1;
957 	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
958 		iommu_force_on = 1;
959 #endif
960 
961  	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
962  	if (lprop)
963  		memory_limit = *lprop;
964 
965 #ifdef CONFIG_PPC64
966  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
967  	if (lprop)
968  		tce_alloc_start = *lprop;
969  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
970  	if (lprop)
971  		tce_alloc_end = *lprop;
972 #endif
973 
974 #ifdef CONFIG_PPC_RTAS
975 	/* To help early debugging via the front panel, we retrieve a minimal
976 	 * set of RTAS infos now if available
977 	 */
978 	{
979 		u64 *basep, *entryp;
980 
981 		basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
982 		entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
983 		prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
984 		if (basep && entryp && prop) {
985 			rtas.base = *basep;
986 			rtas.entry = *entryp;
987 			rtas.size = *prop;
988 		}
989 	}
990 #endif /* CONFIG_PPC_RTAS */
991 
992 #ifdef CONFIG_KEXEC
993        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
994        if (lprop)
995                crashk_res.start = *lprop;
996 
997        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
998        if (lprop)
999                crashk_res.end = crashk_res.start + *lprop - 1;
1000 #endif
1001 
1002 	/* break now */
1003 	return 1;
1004 }
1005 
1006 static int __init early_init_dt_scan_root(unsigned long node,
1007 					  const char *uname, int depth, void *data)
1008 {
1009 	u32 *prop;
1010 
1011 	if (depth != 0)
1012 		return 0;
1013 
1014 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1015 	dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1016 	DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1017 
1018 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1019 	dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1020 	DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1021 
1022 	/* break now */
1023 	return 1;
1024 }
1025 
1026 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1027 {
1028 	cell_t *p = *cellp;
1029 	unsigned long r;
1030 
1031 	/* Ignore more than 2 cells */
1032 	while (s > sizeof(unsigned long) / 4) {
1033 		p++;
1034 		s--;
1035 	}
1036 	r = *p++;
1037 #ifdef CONFIG_PPC64
1038 	if (s > 1) {
1039 		r <<= 32;
1040 		r |= *(p++);
1041 		s--;
1042 	}
1043 #endif
1044 
1045 	*cellp = p;
1046 	return r;
1047 }
1048 
1049 
1050 static int __init early_init_dt_scan_memory(unsigned long node,
1051 					    const char *uname, int depth, void *data)
1052 {
1053 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1054 	cell_t *reg, *endp;
1055 	unsigned long l;
1056 
1057 	/* We are scanning "memory" nodes only */
1058 	if (type == NULL) {
1059 		/*
1060 		 * The longtrail doesn't have a device_type on the
1061 		 * /memory node, so look for the node called /memory@0.
1062 		 */
1063 		if (depth != 1 || strcmp(uname, "memory@0") != 0)
1064 			return 0;
1065 	} else if (strcmp(type, "memory") != 0)
1066 		return 0;
1067 
1068 	reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1069 	if (reg == NULL)
1070 		reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1071 	if (reg == NULL)
1072 		return 0;
1073 
1074 	endp = reg + (l / sizeof(cell_t));
1075 
1076 	DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1077 	    uname, l, reg[0], reg[1], reg[2], reg[3]);
1078 
1079 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1080 		unsigned long base, size;
1081 
1082 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1083 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1084 
1085 		if (size == 0)
1086 			continue;
1087 		DBG(" - %lx ,  %lx\n", base, size);
1088 #ifdef CONFIG_PPC64
1089 		if (iommu_is_off) {
1090 			if (base >= 0x80000000ul)
1091 				continue;
1092 			if ((base + size) > 0x80000000ul)
1093 				size = 0x80000000ul - base;
1094 		}
1095 #endif
1096 		lmb_add(base, size);
1097 	}
1098 	return 0;
1099 }
1100 
1101 static void __init early_reserve_mem(void)
1102 {
1103 	unsigned long base, size;
1104 	unsigned long *reserve_map;
1105 
1106 	reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1107 					initial_boot_params->off_mem_rsvmap);
1108 	while (1) {
1109 		base = *(reserve_map++);
1110 		size = *(reserve_map++);
1111 		if (size == 0)
1112 			break;
1113 		DBG("reserving: %lx -> %lx\n", base, size);
1114 		lmb_reserve(base, size);
1115 	}
1116 
1117 #if 0
1118 	DBG("memory reserved, lmbs :\n");
1119       	lmb_dump_all();
1120 #endif
1121 }
1122 
1123 void __init early_init_devtree(void *params)
1124 {
1125 	DBG(" -> early_init_devtree()\n");
1126 
1127 	/* Setup flat device-tree pointer */
1128 	initial_boot_params = params;
1129 
1130 	/* Retrieve various informations from the /chosen node of the
1131 	 * device-tree, including the platform type, initrd location and
1132 	 * size, TCE reserve, and more ...
1133 	 */
1134 	of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1135 
1136 	/* Scan memory nodes and rebuild LMBs */
1137 	lmb_init();
1138 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1139 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1140 	lmb_enforce_memory_limit(memory_limit);
1141 	lmb_analyze();
1142 
1143 	DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1144 
1145 	/* Reserve LMB regions used by kernel, initrd, dt, etc... */
1146 	lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1147 #ifdef CONFIG_CRASH_DUMP
1148 	lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1149 #endif
1150 	early_reserve_mem();
1151 
1152 	DBG("Scanning CPUs ...\n");
1153 
1154 	/* Retreive CPU related informations from the flat tree
1155 	 * (altivec support, boot CPU ID, ...)
1156 	 */
1157 	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1158 
1159 	DBG(" <- early_init_devtree()\n");
1160 }
1161 
1162 #undef printk
1163 
1164 int
1165 prom_n_addr_cells(struct device_node* np)
1166 {
1167 	int* ip;
1168 	do {
1169 		if (np->parent)
1170 			np = np->parent;
1171 		ip = (int *) get_property(np, "#address-cells", NULL);
1172 		if (ip != NULL)
1173 			return *ip;
1174 	} while (np->parent);
1175 	/* No #address-cells property for the root node, default to 1 */
1176 	return 1;
1177 }
1178 EXPORT_SYMBOL(prom_n_addr_cells);
1179 
1180 int
1181 prom_n_size_cells(struct device_node* np)
1182 {
1183 	int* ip;
1184 	do {
1185 		if (np->parent)
1186 			np = np->parent;
1187 		ip = (int *) get_property(np, "#size-cells", NULL);
1188 		if (ip != NULL)
1189 			return *ip;
1190 	} while (np->parent);
1191 	/* No #size-cells property for the root node, default to 1 */
1192 	return 1;
1193 }
1194 EXPORT_SYMBOL(prom_n_size_cells);
1195 
1196 /**
1197  * Work out the sense (active-low level / active-high edge)
1198  * of each interrupt from the device tree.
1199  */
1200 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1201 {
1202 	struct device_node *np;
1203 	int i, j;
1204 
1205 	/* default to level-triggered */
1206 	memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1207 
1208 	for (np = allnodes; np != 0; np = np->allnext) {
1209 		for (j = 0; j < np->n_intrs; j++) {
1210 			i = np->intrs[j].line;
1211 			if (i >= off && i < max)
1212 				senses[i-off] = np->intrs[j].sense;
1213 		}
1214 	}
1215 }
1216 
1217 /**
1218  * Construct and return a list of the device_nodes with a given name.
1219  */
1220 struct device_node *find_devices(const char *name)
1221 {
1222 	struct device_node *head, **prevp, *np;
1223 
1224 	prevp = &head;
1225 	for (np = allnodes; np != 0; np = np->allnext) {
1226 		if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1227 			*prevp = np;
1228 			prevp = &np->next;
1229 		}
1230 	}
1231 	*prevp = NULL;
1232 	return head;
1233 }
1234 EXPORT_SYMBOL(find_devices);
1235 
1236 /**
1237  * Construct and return a list of the device_nodes with a given type.
1238  */
1239 struct device_node *find_type_devices(const char *type)
1240 {
1241 	struct device_node *head, **prevp, *np;
1242 
1243 	prevp = &head;
1244 	for (np = allnodes; np != 0; np = np->allnext) {
1245 		if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1246 			*prevp = np;
1247 			prevp = &np->next;
1248 		}
1249 	}
1250 	*prevp = NULL;
1251 	return head;
1252 }
1253 EXPORT_SYMBOL(find_type_devices);
1254 
1255 /**
1256  * Returns all nodes linked together
1257  */
1258 struct device_node *find_all_nodes(void)
1259 {
1260 	struct device_node *head, **prevp, *np;
1261 
1262 	prevp = &head;
1263 	for (np = allnodes; np != 0; np = np->allnext) {
1264 		*prevp = np;
1265 		prevp = &np->next;
1266 	}
1267 	*prevp = NULL;
1268 	return head;
1269 }
1270 EXPORT_SYMBOL(find_all_nodes);
1271 
1272 /** Checks if the given "compat" string matches one of the strings in
1273  * the device's "compatible" property
1274  */
1275 int device_is_compatible(struct device_node *device, const char *compat)
1276 {
1277 	const char* cp;
1278 	int cplen, l;
1279 
1280 	cp = (char *) get_property(device, "compatible", &cplen);
1281 	if (cp == NULL)
1282 		return 0;
1283 	while (cplen > 0) {
1284 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
1285 			return 1;
1286 		l = strlen(cp) + 1;
1287 		cp += l;
1288 		cplen -= l;
1289 	}
1290 
1291 	return 0;
1292 }
1293 EXPORT_SYMBOL(device_is_compatible);
1294 
1295 
1296 /**
1297  * Indicates whether the root node has a given value in its
1298  * compatible property.
1299  */
1300 int machine_is_compatible(const char *compat)
1301 {
1302 	struct device_node *root;
1303 	int rc = 0;
1304 
1305 	root = of_find_node_by_path("/");
1306 	if (root) {
1307 		rc = device_is_compatible(root, compat);
1308 		of_node_put(root);
1309 	}
1310 	return rc;
1311 }
1312 EXPORT_SYMBOL(machine_is_compatible);
1313 
1314 /**
1315  * Construct and return a list of the device_nodes with a given type
1316  * and compatible property.
1317  */
1318 struct device_node *find_compatible_devices(const char *type,
1319 					    const char *compat)
1320 {
1321 	struct device_node *head, **prevp, *np;
1322 
1323 	prevp = &head;
1324 	for (np = allnodes; np != 0; np = np->allnext) {
1325 		if (type != NULL
1326 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1327 			continue;
1328 		if (device_is_compatible(np, compat)) {
1329 			*prevp = np;
1330 			prevp = &np->next;
1331 		}
1332 	}
1333 	*prevp = NULL;
1334 	return head;
1335 }
1336 EXPORT_SYMBOL(find_compatible_devices);
1337 
1338 /**
1339  * Find the device_node with a given full_name.
1340  */
1341 struct device_node *find_path_device(const char *path)
1342 {
1343 	struct device_node *np;
1344 
1345 	for (np = allnodes; np != 0; np = np->allnext)
1346 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1347 			return np;
1348 	return NULL;
1349 }
1350 EXPORT_SYMBOL(find_path_device);
1351 
1352 /*******
1353  *
1354  * New implementation of the OF "find" APIs, return a refcounted
1355  * object, call of_node_put() when done.  The device tree and list
1356  * are protected by a rw_lock.
1357  *
1358  * Note that property management will need some locking as well,
1359  * this isn't dealt with yet.
1360  *
1361  *******/
1362 
1363 /**
1364  *	of_find_node_by_name - Find a node by its "name" property
1365  *	@from:	The node to start searching from or NULL, the node
1366  *		you pass will not be searched, only the next one
1367  *		will; typically, you pass what the previous call
1368  *		returned. of_node_put() will be called on it
1369  *	@name:	The name string to match against
1370  *
1371  *	Returns a node pointer with refcount incremented, use
1372  *	of_node_put() on it when done.
1373  */
1374 struct device_node *of_find_node_by_name(struct device_node *from,
1375 	const char *name)
1376 {
1377 	struct device_node *np;
1378 
1379 	read_lock(&devtree_lock);
1380 	np = from ? from->allnext : allnodes;
1381 	for (; np != 0; np = np->allnext)
1382 		if (np->name != 0 && strcasecmp(np->name, name) == 0
1383 		    && of_node_get(np))
1384 			break;
1385 	if (from)
1386 		of_node_put(from);
1387 	read_unlock(&devtree_lock);
1388 	return np;
1389 }
1390 EXPORT_SYMBOL(of_find_node_by_name);
1391 
1392 /**
1393  *	of_find_node_by_type - Find a node by its "device_type" property
1394  *	@from:	The node to start searching from or NULL, the node
1395  *		you pass will not be searched, only the next one
1396  *		will; typically, you pass what the previous call
1397  *		returned. of_node_put() will be called on it
1398  *	@name:	The type string to match against
1399  *
1400  *	Returns a node pointer with refcount incremented, use
1401  *	of_node_put() on it when done.
1402  */
1403 struct device_node *of_find_node_by_type(struct device_node *from,
1404 	const char *type)
1405 {
1406 	struct device_node *np;
1407 
1408 	read_lock(&devtree_lock);
1409 	np = from ? from->allnext : allnodes;
1410 	for (; np != 0; np = np->allnext)
1411 		if (np->type != 0 && strcasecmp(np->type, type) == 0
1412 		    && of_node_get(np))
1413 			break;
1414 	if (from)
1415 		of_node_put(from);
1416 	read_unlock(&devtree_lock);
1417 	return np;
1418 }
1419 EXPORT_SYMBOL(of_find_node_by_type);
1420 
1421 /**
1422  *	of_find_compatible_node - Find a node based on type and one of the
1423  *                                tokens in its "compatible" property
1424  *	@from:		The node to start searching from or NULL, the node
1425  *			you pass will not be searched, only the next one
1426  *			will; typically, you pass what the previous call
1427  *			returned. of_node_put() will be called on it
1428  *	@type:		The type string to match "device_type" or NULL to ignore
1429  *	@compatible:	The string to match to one of the tokens in the device
1430  *			"compatible" list.
1431  *
1432  *	Returns a node pointer with refcount incremented, use
1433  *	of_node_put() on it when done.
1434  */
1435 struct device_node *of_find_compatible_node(struct device_node *from,
1436 	const char *type, const char *compatible)
1437 {
1438 	struct device_node *np;
1439 
1440 	read_lock(&devtree_lock);
1441 	np = from ? from->allnext : allnodes;
1442 	for (; np != 0; np = np->allnext) {
1443 		if (type != NULL
1444 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1445 			continue;
1446 		if (device_is_compatible(np, compatible) && of_node_get(np))
1447 			break;
1448 	}
1449 	if (from)
1450 		of_node_put(from);
1451 	read_unlock(&devtree_lock);
1452 	return np;
1453 }
1454 EXPORT_SYMBOL(of_find_compatible_node);
1455 
1456 /**
1457  *	of_find_node_by_path - Find a node matching a full OF path
1458  *	@path:	The full path to match
1459  *
1460  *	Returns a node pointer with refcount incremented, use
1461  *	of_node_put() on it when done.
1462  */
1463 struct device_node *of_find_node_by_path(const char *path)
1464 {
1465 	struct device_node *np = allnodes;
1466 
1467 	read_lock(&devtree_lock);
1468 	for (; np != 0; np = np->allnext) {
1469 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1470 		    && of_node_get(np))
1471 			break;
1472 	}
1473 	read_unlock(&devtree_lock);
1474 	return np;
1475 }
1476 EXPORT_SYMBOL(of_find_node_by_path);
1477 
1478 /**
1479  *	of_find_node_by_phandle - Find a node given a phandle
1480  *	@handle:	phandle of the node to find
1481  *
1482  *	Returns a node pointer with refcount incremented, use
1483  *	of_node_put() on it when done.
1484  */
1485 struct device_node *of_find_node_by_phandle(phandle handle)
1486 {
1487 	struct device_node *np;
1488 
1489 	read_lock(&devtree_lock);
1490 	for (np = allnodes; np != 0; np = np->allnext)
1491 		if (np->linux_phandle == handle)
1492 			break;
1493 	if (np)
1494 		of_node_get(np);
1495 	read_unlock(&devtree_lock);
1496 	return np;
1497 }
1498 EXPORT_SYMBOL(of_find_node_by_phandle);
1499 
1500 /**
1501  *	of_find_all_nodes - Get next node in global list
1502  *	@prev:	Previous node or NULL to start iteration
1503  *		of_node_put() will be called on it
1504  *
1505  *	Returns a node pointer with refcount incremented, use
1506  *	of_node_put() on it when done.
1507  */
1508 struct device_node *of_find_all_nodes(struct device_node *prev)
1509 {
1510 	struct device_node *np;
1511 
1512 	read_lock(&devtree_lock);
1513 	np = prev ? prev->allnext : allnodes;
1514 	for (; np != 0; np = np->allnext)
1515 		if (of_node_get(np))
1516 			break;
1517 	if (prev)
1518 		of_node_put(prev);
1519 	read_unlock(&devtree_lock);
1520 	return np;
1521 }
1522 EXPORT_SYMBOL(of_find_all_nodes);
1523 
1524 /**
1525  *	of_get_parent - Get a node's parent if any
1526  *	@node:	Node to get parent
1527  *
1528  *	Returns a node pointer with refcount incremented, use
1529  *	of_node_put() on it when done.
1530  */
1531 struct device_node *of_get_parent(const struct device_node *node)
1532 {
1533 	struct device_node *np;
1534 
1535 	if (!node)
1536 		return NULL;
1537 
1538 	read_lock(&devtree_lock);
1539 	np = of_node_get(node->parent);
1540 	read_unlock(&devtree_lock);
1541 	return np;
1542 }
1543 EXPORT_SYMBOL(of_get_parent);
1544 
1545 /**
1546  *	of_get_next_child - Iterate a node childs
1547  *	@node:	parent node
1548  *	@prev:	previous child of the parent node, or NULL to get first
1549  *
1550  *	Returns a node pointer with refcount incremented, use
1551  *	of_node_put() on it when done.
1552  */
1553 struct device_node *of_get_next_child(const struct device_node *node,
1554 	struct device_node *prev)
1555 {
1556 	struct device_node *next;
1557 
1558 	read_lock(&devtree_lock);
1559 	next = prev ? prev->sibling : node->child;
1560 	for (; next != 0; next = next->sibling)
1561 		if (of_node_get(next))
1562 			break;
1563 	if (prev)
1564 		of_node_put(prev);
1565 	read_unlock(&devtree_lock);
1566 	return next;
1567 }
1568 EXPORT_SYMBOL(of_get_next_child);
1569 
1570 /**
1571  *	of_node_get - Increment refcount of a node
1572  *	@node:	Node to inc refcount, NULL is supported to
1573  *		simplify writing of callers
1574  *
1575  *	Returns node.
1576  */
1577 struct device_node *of_node_get(struct device_node *node)
1578 {
1579 	if (node)
1580 		kref_get(&node->kref);
1581 	return node;
1582 }
1583 EXPORT_SYMBOL(of_node_get);
1584 
1585 static inline struct device_node * kref_to_device_node(struct kref *kref)
1586 {
1587 	return container_of(kref, struct device_node, kref);
1588 }
1589 
1590 /**
1591  *	of_node_release - release a dynamically allocated node
1592  *	@kref:  kref element of the node to be released
1593  *
1594  *	In of_node_put() this function is passed to kref_put()
1595  *	as the destructor.
1596  */
1597 static void of_node_release(struct kref *kref)
1598 {
1599 	struct device_node *node = kref_to_device_node(kref);
1600 	struct property *prop = node->properties;
1601 
1602 	if (!OF_IS_DYNAMIC(node))
1603 		return;
1604 	while (prop) {
1605 		struct property *next = prop->next;
1606 		kfree(prop->name);
1607 		kfree(prop->value);
1608 		kfree(prop);
1609 		prop = next;
1610 	}
1611 	kfree(node->intrs);
1612 	kfree(node->full_name);
1613 	kfree(node->data);
1614 	kfree(node);
1615 }
1616 
1617 /**
1618  *	of_node_put - Decrement refcount of a node
1619  *	@node:	Node to dec refcount, NULL is supported to
1620  *		simplify writing of callers
1621  *
1622  */
1623 void of_node_put(struct device_node *node)
1624 {
1625 	if (node)
1626 		kref_put(&node->kref, of_node_release);
1627 }
1628 EXPORT_SYMBOL(of_node_put);
1629 
1630 /*
1631  * Plug a device node into the tree and global list.
1632  */
1633 void of_attach_node(struct device_node *np)
1634 {
1635 	write_lock(&devtree_lock);
1636 	np->sibling = np->parent->child;
1637 	np->allnext = allnodes;
1638 	np->parent->child = np;
1639 	allnodes = np;
1640 	write_unlock(&devtree_lock);
1641 }
1642 
1643 /*
1644  * "Unplug" a node from the device tree.  The caller must hold
1645  * a reference to the node.  The memory associated with the node
1646  * is not freed until its refcount goes to zero.
1647  */
1648 void of_detach_node(const struct device_node *np)
1649 {
1650 	struct device_node *parent;
1651 
1652 	write_lock(&devtree_lock);
1653 
1654 	parent = np->parent;
1655 
1656 	if (allnodes == np)
1657 		allnodes = np->allnext;
1658 	else {
1659 		struct device_node *prev;
1660 		for (prev = allnodes;
1661 		     prev->allnext != np;
1662 		     prev = prev->allnext)
1663 			;
1664 		prev->allnext = np->allnext;
1665 	}
1666 
1667 	if (parent->child == np)
1668 		parent->child = np->sibling;
1669 	else {
1670 		struct device_node *prevsib;
1671 		for (prevsib = np->parent->child;
1672 		     prevsib->sibling != np;
1673 		     prevsib = prevsib->sibling)
1674 			;
1675 		prevsib->sibling = np->sibling;
1676 	}
1677 
1678 	write_unlock(&devtree_lock);
1679 }
1680 
1681 #ifdef CONFIG_PPC_PSERIES
1682 /*
1683  * Fix up the uninitialized fields in a new device node:
1684  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1685  *
1686  * A lot of boot-time code is duplicated here, because functions such
1687  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1688  * slab allocator.
1689  *
1690  * This should probably be split up into smaller chunks.
1691  */
1692 
1693 static int of_finish_dynamic_node(struct device_node *node)
1694 {
1695 	struct device_node *parent = of_get_parent(node);
1696 	int err = 0;
1697 	phandle *ibm_phandle;
1698 
1699 	node->name = get_property(node, "name", NULL);
1700 	node->type = get_property(node, "device_type", NULL);
1701 
1702 	if (!parent) {
1703 		err = -ENODEV;
1704 		goto out;
1705 	}
1706 
1707 	/* We don't support that function on PowerMac, at least
1708 	 * not yet
1709 	 */
1710 	if (_machine == PLATFORM_POWERMAC)
1711 		return -ENODEV;
1712 
1713 	/* fix up new node's linux_phandle field */
1714 	if ((ibm_phandle = (unsigned int *)get_property(node,
1715 							"ibm,phandle", NULL)))
1716 		node->linux_phandle = *ibm_phandle;
1717 
1718 out:
1719 	of_node_put(parent);
1720 	return err;
1721 }
1722 
1723 static int prom_reconfig_notifier(struct notifier_block *nb,
1724 				  unsigned long action, void *node)
1725 {
1726 	int err;
1727 
1728 	switch (action) {
1729 	case PSERIES_RECONFIG_ADD:
1730 		err = of_finish_dynamic_node(node);
1731 		if (!err)
1732 			finish_node(node, NULL, 0);
1733 		if (err < 0) {
1734 			printk(KERN_ERR "finish_node returned %d\n", err);
1735 			err = NOTIFY_BAD;
1736 		}
1737 		break;
1738 	default:
1739 		err = NOTIFY_DONE;
1740 		break;
1741 	}
1742 	return err;
1743 }
1744 
1745 static struct notifier_block prom_reconfig_nb = {
1746 	.notifier_call = prom_reconfig_notifier,
1747 	.priority = 10, /* This one needs to run first */
1748 };
1749 
1750 static int __init prom_reconfig_setup(void)
1751 {
1752 	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1753 }
1754 __initcall(prom_reconfig_setup);
1755 #endif
1756 
1757 /*
1758  * Find a property with a given name for a given node
1759  * and return the value.
1760  */
1761 unsigned char *get_property(struct device_node *np, const char *name,
1762 			    int *lenp)
1763 {
1764 	struct property *pp;
1765 
1766 	for (pp = np->properties; pp != 0; pp = pp->next)
1767 		if (strcmp(pp->name, name) == 0) {
1768 			if (lenp != 0)
1769 				*lenp = pp->length;
1770 			return pp->value;
1771 		}
1772 	return NULL;
1773 }
1774 EXPORT_SYMBOL(get_property);
1775 
1776 /*
1777  * Add a property to a node
1778  */
1779 int prom_add_property(struct device_node* np, struct property* prop)
1780 {
1781 	struct property **next;
1782 
1783 	prop->next = NULL;
1784 	write_lock(&devtree_lock);
1785 	next = &np->properties;
1786 	while (*next) {
1787 		if (strcmp(prop->name, (*next)->name) == 0) {
1788 			/* duplicate ! don't insert it */
1789 			write_unlock(&devtree_lock);
1790 			return -1;
1791 		}
1792 		next = &(*next)->next;
1793 	}
1794 	*next = prop;
1795 	write_unlock(&devtree_lock);
1796 
1797 #ifdef CONFIG_PROC_DEVICETREE
1798 	/* try to add to proc as well if it was initialized */
1799 	if (np->pde)
1800 		proc_device_tree_add_prop(np->pde, prop);
1801 #endif /* CONFIG_PROC_DEVICETREE */
1802 
1803 	return 0;
1804 }
1805 
1806 
1807