1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 */ 11 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/string.h> 16 #include <linux/init.h> 17 #include <linux/threads.h> 18 #include <linux/spinlock.h> 19 #include <linux/types.h> 20 #include <linux/pci.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/bitops.h> 24 #include <linux/export.h> 25 #include <linux/kexec.h> 26 #include <linux/irq.h> 27 #include <linux/memblock.h> 28 #include <linux/of.h> 29 #include <linux/of_fdt.h> 30 #include <linux/libfdt.h> 31 #include <linux/cpu.h> 32 #include <linux/pgtable.h> 33 #include <linux/seq_buf.h> 34 35 #include <asm/rtas.h> 36 #include <asm/page.h> 37 #include <asm/processor.h> 38 #include <asm/irq.h> 39 #include <asm/io.h> 40 #include <asm/kdump.h> 41 #include <asm/smp.h> 42 #include <asm/mmu.h> 43 #include <asm/paca.h> 44 #include <asm/powernv.h> 45 #include <asm/iommu.h> 46 #include <asm/btext.h> 47 #include <asm/sections.h> 48 #include <asm/setup.h> 49 #include <asm/pci-bridge.h> 50 #include <asm/kexec.h> 51 #include <asm/opal.h> 52 #include <asm/fadump.h> 53 #include <asm/epapr_hcalls.h> 54 #include <asm/firmware.h> 55 #include <asm/dt_cpu_ftrs.h> 56 #include <asm/drmem.h> 57 #include <asm/ultravisor.h> 58 #include <asm/prom.h> 59 60 #include <mm/mmu_decl.h> 61 62 #ifdef DEBUG 63 #define DBG(fmt...) printk(KERN_ERR fmt) 64 #else 65 #define DBG(fmt...) 66 #endif 67 68 int *chip_id_lookup_table; 69 70 #ifdef CONFIG_PPC64 71 int __initdata iommu_is_off; 72 int __initdata iommu_force_on; 73 unsigned long tce_alloc_start, tce_alloc_end; 74 u64 ppc64_rma_size; 75 #endif 76 static phys_addr_t first_memblock_size; 77 static int __initdata boot_cpu_count; 78 79 static int __init early_parse_mem(char *p) 80 { 81 if (!p) 82 return 1; 83 84 memory_limit = PAGE_ALIGN(memparse(p, &p)); 85 DBG("memory limit = 0x%llx\n", memory_limit); 86 87 return 0; 88 } 89 early_param("mem", early_parse_mem); 90 91 /* 92 * overlaps_initrd - check for overlap with page aligned extension of 93 * initrd. 94 */ 95 static inline int overlaps_initrd(unsigned long start, unsigned long size) 96 { 97 #ifdef CONFIG_BLK_DEV_INITRD 98 if (!initrd_start) 99 return 0; 100 101 return (start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) && 102 start <= ALIGN(initrd_end, PAGE_SIZE); 103 #else 104 return 0; 105 #endif 106 } 107 108 /** 109 * move_device_tree - move tree to an unused area, if needed. 110 * 111 * The device tree may be allocated beyond our memory limit, or inside the 112 * crash kernel region for kdump, or within the page aligned range of initrd. 113 * If so, move it out of the way. 114 */ 115 static void __init move_device_tree(void) 116 { 117 unsigned long start, size; 118 void *p; 119 120 DBG("-> move_device_tree\n"); 121 122 start = __pa(initial_boot_params); 123 size = fdt_totalsize(initial_boot_params); 124 125 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 126 !memblock_is_memory(start + size - 1) || 127 overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) { 128 p = memblock_alloc_raw(size, PAGE_SIZE); 129 if (!p) 130 panic("Failed to allocate %lu bytes to move device tree\n", 131 size); 132 memcpy(p, initial_boot_params, size); 133 initial_boot_params = p; 134 DBG("Moved device tree to 0x%px\n", p); 135 } 136 137 DBG("<- move_device_tree\n"); 138 } 139 140 /* 141 * ibm,pa/pi-features is a per-cpu property that contains a string of 142 * attribute descriptors, each of which has a 2 byte header plus up 143 * to 254 bytes worth of processor attribute bits. First header 144 * byte specifies the number of bytes following the header. 145 * Second header byte is an "attribute-specifier" type, of which 146 * zero is the only currently-defined value. 147 * Implementation: Pass in the byte and bit offset for the feature 148 * that we are interested in. The function will return -1 if the 149 * pa-features property is missing, or a 1/0 to indicate if the feature 150 * is supported/not supported. Note that the bit numbers are 151 * big-endian to match the definition in PAPR. 152 */ 153 struct ibm_feature { 154 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 155 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 156 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 157 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ 158 unsigned char pabyte; /* byte number in ibm,pa/pi-features */ 159 unsigned char pabit; /* bit number (big-endian) */ 160 unsigned char invert; /* if 1, pa bit set => clear feature */ 161 }; 162 163 static struct ibm_feature ibm_pa_features[] __initdata = { 164 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, 165 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, 166 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, 167 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, 168 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, 169 #ifdef CONFIG_PPC_RADIX_MMU 170 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE }, 171 #endif 172 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, 173 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, 174 /* 175 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), 176 * we don't want to turn on TM here, so we use the *_COMP versions 177 * which are 0 if the kernel doesn't support TM. 178 */ 179 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, 180 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, 181 182 { .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 }, 183 }; 184 185 /* 186 * ibm,pi-features property provides the support of processor specific 187 * options not described in ibm,pa-features. Right now use byte 0, bit 3 188 * which indicates the occurrence of DSI interrupt when the paste operation 189 * on the suspended NX window. 190 */ 191 static struct ibm_feature ibm_pi_features[] __initdata = { 192 { .pabyte = 0, .pabit = 3, .mmu_features = MMU_FTR_NX_DSI }, 193 }; 194 195 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 196 unsigned long tablelen, 197 struct ibm_feature *fp, 198 unsigned long ft_size) 199 { 200 unsigned long i, len, bit; 201 202 /* find descriptor with type == 0 */ 203 for (;;) { 204 if (tablelen < 3) 205 return; 206 len = 2 + ftrs[0]; 207 if (tablelen < len) 208 return; /* descriptor 0 not found */ 209 if (ftrs[1] == 0) 210 break; 211 tablelen -= len; 212 ftrs += len; 213 } 214 215 /* loop over bits we know about */ 216 for (i = 0; i < ft_size; ++i, ++fp) { 217 if (fp->pabyte >= ftrs[0]) 218 continue; 219 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 220 if (bit ^ fp->invert) { 221 cur_cpu_spec->cpu_features |= fp->cpu_features; 222 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 223 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; 224 cur_cpu_spec->mmu_features |= fp->mmu_features; 225 } else { 226 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 227 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 228 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; 229 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 230 } 231 } 232 } 233 234 static void __init check_cpu_features(unsigned long node, char *name, 235 struct ibm_feature *fp, 236 unsigned long size) 237 { 238 const unsigned char *pa_ftrs; 239 int tablelen; 240 241 pa_ftrs = of_get_flat_dt_prop(node, name, &tablelen); 242 if (pa_ftrs == NULL) 243 return; 244 245 scan_features(node, pa_ftrs, tablelen, fp, size); 246 } 247 248 #ifdef CONFIG_PPC_64S_HASH_MMU 249 static void __init init_mmu_slb_size(unsigned long node) 250 { 251 const __be32 *slb_size_ptr; 252 253 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 254 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 255 256 if (slb_size_ptr) 257 mmu_slb_size = be32_to_cpup(slb_size_ptr); 258 } 259 #else 260 #define init_mmu_slb_size(node) do { } while(0) 261 #endif 262 263 static struct feature_property { 264 const char *name; 265 u32 min_value; 266 unsigned long cpu_feature; 267 unsigned long cpu_user_ftr; 268 } feature_properties[] __initdata = { 269 #ifdef CONFIG_ALTIVEC 270 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 271 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 272 #endif /* CONFIG_ALTIVEC */ 273 #ifdef CONFIG_VSX 274 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 275 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 276 #endif /* CONFIG_VSX */ 277 #ifdef CONFIG_PPC64 278 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 279 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 280 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 281 #endif /* CONFIG_PPC64 */ 282 }; 283 284 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 285 static __init void identical_pvr_fixup(unsigned long node) 286 { 287 unsigned int pvr; 288 const char *model = of_get_flat_dt_prop(node, "model", NULL); 289 290 /* 291 * Since 440GR(x)/440EP(x) processors have the same pvr, 292 * we check the node path and set bit 28 in the cur_cpu_spec 293 * pvr for EP(x) processor version. This bit is always 0 in 294 * the "real" pvr. Then we call identify_cpu again with 295 * the new logical pvr to enable FPU support. 296 */ 297 if (model && strstr(model, "440EP")) { 298 pvr = cur_cpu_spec->pvr_value | 0x8; 299 identify_cpu(0, pvr); 300 DBG("Using logical pvr %x for %s\n", pvr, model); 301 } 302 } 303 #else 304 #define identical_pvr_fixup(node) do { } while(0) 305 #endif 306 307 static void __init check_cpu_feature_properties(unsigned long node) 308 { 309 int i; 310 struct feature_property *fp = feature_properties; 311 const __be32 *prop; 312 313 for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) { 314 prop = of_get_flat_dt_prop(node, fp->name, NULL); 315 if (prop && be32_to_cpup(prop) >= fp->min_value) { 316 cur_cpu_spec->cpu_features |= fp->cpu_feature; 317 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 318 } 319 } 320 } 321 322 static int __init early_init_dt_scan_cpus(unsigned long node, 323 const char *uname, int depth, 324 void *data) 325 { 326 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 327 const __be32 *prop; 328 const __be32 *intserv; 329 int i, nthreads; 330 int len; 331 int found = -1; 332 int found_thread = 0; 333 334 /* We are scanning "cpu" nodes only */ 335 if (type == NULL || strcmp(type, "cpu") != 0) 336 return 0; 337 338 /* Get physical cpuid */ 339 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 340 if (!intserv) 341 intserv = of_get_flat_dt_prop(node, "reg", &len); 342 343 nthreads = len / sizeof(int); 344 345 /* 346 * Now see if any of these threads match our boot cpu. 347 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 348 */ 349 for (i = 0; i < nthreads; i++) { 350 if (be32_to_cpu(intserv[i]) == 351 fdt_boot_cpuid_phys(initial_boot_params)) { 352 found = boot_cpu_count; 353 found_thread = i; 354 } 355 #ifdef CONFIG_SMP 356 /* logical cpu id is always 0 on UP kernels */ 357 boot_cpu_count++; 358 #endif 359 } 360 361 /* Not the boot CPU */ 362 if (found < 0) 363 return 0; 364 365 DBG("boot cpu: logical %d physical %d\n", found, 366 be32_to_cpu(intserv[found_thread])); 367 boot_cpuid = found; 368 369 // Pass the boot CPU's hard CPU id back to our caller 370 *((u32 *)data) = be32_to_cpu(intserv[found_thread]); 371 372 /* 373 * PAPR defines "logical" PVR values for cpus that 374 * meet various levels of the architecture: 375 * 0x0f000001 Architecture version 2.04 376 * 0x0f000002 Architecture version 2.05 377 * If the cpu-version property in the cpu node contains 378 * such a value, we call identify_cpu again with the 379 * logical PVR value in order to use the cpu feature 380 * bits appropriate for the architecture level. 381 * 382 * A POWER6 partition in "POWER6 architected" mode 383 * uses the 0x0f000002 PVR value; in POWER5+ mode 384 * it uses 0x0f000001. 385 * 386 * If we're using device tree CPU feature discovery then we don't 387 * support the cpu-version property, and it's the responsibility of the 388 * firmware/hypervisor to provide the correct feature set for the 389 * architecture level via the ibm,powerpc-cpu-features binding. 390 */ 391 if (!dt_cpu_ftrs_in_use()) { 392 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 393 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) { 394 identify_cpu(0, be32_to_cpup(prop)); 395 seq_buf_printf(&ppc_hw_desc, "0x%04x ", be32_to_cpup(prop)); 396 } 397 398 check_cpu_feature_properties(node); 399 check_cpu_features(node, "ibm,pa-features", ibm_pa_features, 400 ARRAY_SIZE(ibm_pa_features)); 401 check_cpu_features(node, "ibm,pi-features", ibm_pi_features, 402 ARRAY_SIZE(ibm_pi_features)); 403 } 404 405 identical_pvr_fixup(node); 406 init_mmu_slb_size(node); 407 408 #ifdef CONFIG_PPC64 409 if (nthreads == 1) 410 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 411 else if (!dt_cpu_ftrs_in_use()) 412 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 413 #endif 414 415 return 0; 416 } 417 418 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 419 const char *uname, 420 int depth, void *data) 421 { 422 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 423 424 /* Use common scan routine to determine if this is the chosen node */ 425 if (early_init_dt_scan_chosen(data) < 0) 426 return 0; 427 428 #ifdef CONFIG_PPC64 429 /* check if iommu is forced on or off */ 430 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 431 iommu_is_off = 1; 432 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 433 iommu_force_on = 1; 434 #endif 435 436 /* mem=x on the command line is the preferred mechanism */ 437 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 438 if (lprop) 439 memory_limit = *lprop; 440 441 #ifdef CONFIG_PPC64 442 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 443 if (lprop) 444 tce_alloc_start = *lprop; 445 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 446 if (lprop) 447 tce_alloc_end = *lprop; 448 #endif 449 450 #ifdef CONFIG_KEXEC_CORE 451 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 452 if (lprop) 453 crashk_res.start = *lprop; 454 455 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 456 if (lprop) 457 crashk_res.end = crashk_res.start + *lprop - 1; 458 #endif 459 460 /* break now */ 461 return 1; 462 } 463 464 /* 465 * Compare the range against max mem limit and update 466 * size if it cross the limit. 467 */ 468 469 #ifdef CONFIG_SPARSEMEM 470 static bool __init validate_mem_limit(u64 base, u64 *size) 471 { 472 u64 max_mem = 1UL << (MAX_PHYSMEM_BITS); 473 474 if (base >= max_mem) 475 return false; 476 if ((base + *size) > max_mem) 477 *size = max_mem - base; 478 return true; 479 } 480 #else 481 static bool __init validate_mem_limit(u64 base, u64 *size) 482 { 483 return true; 484 } 485 #endif 486 487 #ifdef CONFIG_PPC_PSERIES 488 /* 489 * Interpret the ibm dynamic reconfiguration memory LMBs. 490 * This contains a list of memory blocks along with NUMA affinity 491 * information. 492 */ 493 static int __init early_init_drmem_lmb(struct drmem_lmb *lmb, 494 const __be32 **usm, 495 void *data) 496 { 497 u64 base, size; 498 int is_kexec_kdump = 0, rngs; 499 500 base = lmb->base_addr; 501 size = drmem_lmb_size(); 502 rngs = 1; 503 504 /* 505 * Skip this block if the reserved bit is set in flags 506 * or if the block is not assigned to this partition. 507 */ 508 if ((lmb->flags & DRCONF_MEM_RESERVED) || 509 !(lmb->flags & DRCONF_MEM_ASSIGNED)) 510 return 0; 511 512 if (*usm) 513 is_kexec_kdump = 1; 514 515 if (is_kexec_kdump) { 516 /* 517 * For each memblock in ibm,dynamic-memory, a 518 * corresponding entry in linux,drconf-usable-memory 519 * property contains a counter 'p' followed by 'p' 520 * (base, size) duple. Now read the counter from 521 * linux,drconf-usable-memory property 522 */ 523 rngs = dt_mem_next_cell(dt_root_size_cells, usm); 524 if (!rngs) /* there are no (base, size) duple */ 525 return 0; 526 } 527 528 do { 529 if (is_kexec_kdump) { 530 base = dt_mem_next_cell(dt_root_addr_cells, usm); 531 size = dt_mem_next_cell(dt_root_size_cells, usm); 532 } 533 534 if (iommu_is_off) { 535 if (base >= 0x80000000ul) 536 continue; 537 if ((base + size) > 0x80000000ul) 538 size = 0x80000000ul - base; 539 } 540 541 if (!validate_mem_limit(base, &size)) 542 continue; 543 544 DBG("Adding: %llx -> %llx\n", base, size); 545 memblock_add(base, size); 546 547 if (lmb->flags & DRCONF_MEM_HOTREMOVABLE) 548 memblock_mark_hotplug(base, size); 549 } while (--rngs); 550 551 return 0; 552 } 553 #endif /* CONFIG_PPC_PSERIES */ 554 555 static int __init early_init_dt_scan_memory_ppc(void) 556 { 557 #ifdef CONFIG_PPC_PSERIES 558 const void *fdt = initial_boot_params; 559 int node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory"); 560 561 if (node > 0) 562 walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb); 563 564 #endif 565 566 return early_init_dt_scan_memory(); 567 } 568 569 /* 570 * For a relocatable kernel, we need to get the memstart_addr first, 571 * then use it to calculate the virtual kernel start address. This has 572 * to happen at a very early stage (before machine_init). In this case, 573 * we just want to get the memstart_address and would not like to mess the 574 * memblock at this stage. So introduce a variable to skip the memblock_add() 575 * for this reason. 576 */ 577 #ifdef CONFIG_RELOCATABLE 578 static int add_mem_to_memblock = 1; 579 #else 580 #define add_mem_to_memblock 1 581 #endif 582 583 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 584 { 585 #ifdef CONFIG_PPC64 586 if (iommu_is_off) { 587 if (base >= 0x80000000ul) 588 return; 589 if ((base + size) > 0x80000000ul) 590 size = 0x80000000ul - base; 591 } 592 #endif 593 /* Keep track of the beginning of memory -and- the size of 594 * the very first block in the device-tree as it represents 595 * the RMA on ppc64 server 596 */ 597 if (base < memstart_addr) { 598 memstart_addr = base; 599 first_memblock_size = size; 600 } 601 602 /* Add the chunk to the MEMBLOCK list */ 603 if (add_mem_to_memblock) { 604 if (validate_mem_limit(base, &size)) 605 memblock_add(base, size); 606 } 607 } 608 609 static void __init early_reserve_mem_dt(void) 610 { 611 unsigned long i, dt_root; 612 int len; 613 const __be32 *prop; 614 615 early_init_fdt_reserve_self(); 616 early_init_fdt_scan_reserved_mem(); 617 618 dt_root = of_get_flat_dt_root(); 619 620 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 621 622 if (!prop) 623 return; 624 625 DBG("Found new-style reserved-ranges\n"); 626 627 /* Each reserved range is an (address,size) pair, 2 cells each, 628 * totalling 4 cells per range. */ 629 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 630 u64 base, size; 631 632 base = of_read_number(prop + (i * 4) + 0, 2); 633 size = of_read_number(prop + (i * 4) + 2, 2); 634 635 if (size) { 636 DBG("reserving: %llx -> %llx\n", base, size); 637 memblock_reserve(base, size); 638 } 639 } 640 } 641 642 static void __init early_reserve_mem(void) 643 { 644 __be64 *reserve_map; 645 646 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 647 fdt_off_mem_rsvmap(initial_boot_params)); 648 649 /* Look for the new "reserved-regions" property in the DT */ 650 early_reserve_mem_dt(); 651 652 #ifdef CONFIG_BLK_DEV_INITRD 653 /* Then reserve the initrd, if any */ 654 if (initrd_start && (initrd_end > initrd_start)) { 655 memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 656 ALIGN(initrd_end, PAGE_SIZE) - 657 ALIGN_DOWN(initrd_start, PAGE_SIZE)); 658 } 659 #endif /* CONFIG_BLK_DEV_INITRD */ 660 661 if (!IS_ENABLED(CONFIG_PPC32)) 662 return; 663 664 /* 665 * Handle the case where we might be booting from an old kexec 666 * image that setup the mem_rsvmap as pairs of 32-bit values 667 */ 668 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 669 u32 base_32, size_32; 670 __be32 *reserve_map_32 = (__be32 *)reserve_map; 671 672 DBG("Found old 32-bit reserve map\n"); 673 674 while (1) { 675 base_32 = be32_to_cpup(reserve_map_32++); 676 size_32 = be32_to_cpup(reserve_map_32++); 677 if (size_32 == 0) 678 break; 679 DBG("reserving: %x -> %x\n", base_32, size_32); 680 memblock_reserve(base_32, size_32); 681 } 682 return; 683 } 684 } 685 686 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 687 static bool tm_disabled __initdata; 688 689 static int __init parse_ppc_tm(char *str) 690 { 691 bool res; 692 693 if (kstrtobool(str, &res)) 694 return -EINVAL; 695 696 tm_disabled = !res; 697 698 return 0; 699 } 700 early_param("ppc_tm", parse_ppc_tm); 701 702 static void __init tm_init(void) 703 { 704 if (tm_disabled) { 705 pr_info("Disabling hardware transactional memory (HTM)\n"); 706 cur_cpu_spec->cpu_user_features2 &= 707 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM); 708 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM; 709 return; 710 } 711 712 pnv_tm_init(); 713 } 714 #else 715 static void tm_init(void) { } 716 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 717 718 static int __init 719 early_init_dt_scan_model(unsigned long node, const char *uname, 720 int depth, void *data) 721 { 722 const char *prop; 723 724 if (depth != 0) 725 return 0; 726 727 prop = of_get_flat_dt_prop(node, "model", NULL); 728 if (prop) 729 seq_buf_printf(&ppc_hw_desc, "%s ", prop); 730 731 /* break now */ 732 return 1; 733 } 734 735 #ifdef CONFIG_PPC64 736 static void __init save_fscr_to_task(void) 737 { 738 /* 739 * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we 740 * have configured via the device tree features or via __init_FSCR(). 741 * That value will then be propagated to pid 1 (init) and all future 742 * processes. 743 */ 744 if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) 745 init_task.thread.fscr = mfspr(SPRN_FSCR); 746 } 747 #else 748 static inline void save_fscr_to_task(void) {} 749 #endif 750 751 752 void __init early_init_devtree(void *params) 753 { 754 u32 boot_cpu_hwid; 755 phys_addr_t limit; 756 757 DBG(" -> early_init_devtree(%px)\n", params); 758 759 /* Too early to BUG_ON(), do it by hand */ 760 if (!early_init_dt_verify(params)) 761 panic("BUG: Failed verifying flat device tree, bad version?"); 762 763 of_scan_flat_dt(early_init_dt_scan_model, NULL); 764 765 #ifdef CONFIG_PPC_RTAS 766 /* Some machines might need RTAS info for debugging, grab it now. */ 767 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 768 #endif 769 770 #ifdef CONFIG_PPC_POWERNV 771 /* Some machines might need OPAL info for debugging, grab it now. */ 772 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 773 774 /* Scan tree for ultravisor feature */ 775 of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL); 776 #endif 777 778 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) 779 /* scan tree to see if dump is active during last boot */ 780 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 781 #endif 782 783 /* Retrieve various informations from the /chosen node of the 784 * device-tree, including the platform type, initrd location and 785 * size, TCE reserve, and more ... 786 */ 787 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 788 789 /* Scan memory nodes and rebuild MEMBLOCKs */ 790 early_init_dt_scan_root(); 791 early_init_dt_scan_memory_ppc(); 792 793 /* 794 * As generic code authors expect to be able to use static keys 795 * in early_param() handlers, we initialize the static keys just 796 * before parsing early params (it's fine to call jump_label_init() 797 * more than once). 798 */ 799 jump_label_init(); 800 parse_early_param(); 801 802 /* make sure we've parsed cmdline for mem= before this */ 803 if (memory_limit) 804 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 805 setup_initial_memory_limit(memstart_addr, first_memblock_size); 806 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 807 memblock_reserve(PHYSICAL_START, __pa(_end) - PHYSICAL_START); 808 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 809 if (PHYSICAL_START > MEMORY_START) 810 memblock_reserve(MEMORY_START, 0x8000); 811 reserve_kdump_trampoline(); 812 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) 813 /* 814 * If we fail to reserve memory for firmware-assisted dump then 815 * fallback to kexec based kdump. 816 */ 817 if (fadump_reserve_mem() == 0) 818 #endif 819 reserve_crashkernel(); 820 early_reserve_mem(); 821 822 /* Ensure that total memory size is page-aligned. */ 823 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); 824 memblock_enforce_memory_limit(limit); 825 826 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_4K_PAGES) 827 if (!early_radix_enabled()) 828 memblock_cap_memory_range(0, 1UL << (H_MAX_PHYSMEM_BITS)); 829 #endif 830 831 memblock_allow_resize(); 832 memblock_dump_all(); 833 834 DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size()); 835 836 /* We may need to relocate the flat tree, do it now. 837 * FIXME .. and the initrd too? */ 838 move_device_tree(); 839 840 DBG("Scanning CPUs ...\n"); 841 842 dt_cpu_ftrs_scan(); 843 844 // We can now add the CPU name & PVR to the hardware description 845 seq_buf_printf(&ppc_hw_desc, "%s 0x%04lx ", cur_cpu_spec->cpu_name, mfspr(SPRN_PVR)); 846 847 /* Retrieve CPU related informations from the flat tree 848 * (altivec support, boot CPU ID, ...) 849 */ 850 of_scan_flat_dt(early_init_dt_scan_cpus, &boot_cpu_hwid); 851 if (boot_cpuid < 0) { 852 printk("Failed to identify boot CPU !\n"); 853 BUG(); 854 } 855 856 save_fscr_to_task(); 857 858 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 859 /* We'll later wait for secondaries to check in; there are 860 * NCPUS-1 non-boot CPUs :-) 861 */ 862 spinning_secondaries = boot_cpu_count - 1; 863 #endif 864 865 mmu_early_init_devtree(); 866 867 // NB. paca is not installed until later in early_setup() 868 allocate_paca_ptrs(); 869 allocate_paca(boot_cpuid); 870 set_hard_smp_processor_id(boot_cpuid, boot_cpu_hwid); 871 872 #ifdef CONFIG_PPC_POWERNV 873 /* Scan and build the list of machine check recoverable ranges */ 874 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 875 #endif 876 epapr_paravirt_early_init(); 877 878 /* Now try to figure out if we are running on LPAR and so on */ 879 pseries_probe_fw_features(); 880 881 /* 882 * Initialize pkey features and default AMR/IAMR values 883 */ 884 pkey_early_init_devtree(); 885 886 #ifdef CONFIG_PPC_PS3 887 /* Identify PS3 firmware */ 888 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) 889 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; 890 #endif 891 892 tm_init(); 893 894 DBG(" <- early_init_devtree()\n"); 895 } 896 897 #ifdef CONFIG_RELOCATABLE 898 /* 899 * This function run before early_init_devtree, so we have to init 900 * initial_boot_params. 901 */ 902 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 903 { 904 /* Setup flat device-tree pointer */ 905 initial_boot_params = params; 906 907 /* 908 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 909 * mess the memblock. 910 */ 911 add_mem_to_memblock = 0; 912 early_init_dt_scan_root(); 913 early_init_dt_scan_memory_ppc(); 914 add_mem_to_memblock = 1; 915 916 if (size) 917 *size = first_memblock_size; 918 } 919 #endif 920 921 /******* 922 * 923 * New implementation of the OF "find" APIs, return a refcounted 924 * object, call of_node_put() when done. The device tree and list 925 * are protected by a rw_lock. 926 * 927 * Note that property management will need some locking as well, 928 * this isn't dealt with yet. 929 * 930 *******/ 931 932 /** 933 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 934 * @np: device node of the device 935 * 936 * This looks for a property "ibm,chip-id" in the node or any 937 * of its parents and returns its content, or -1 if it cannot 938 * be found. 939 */ 940 int of_get_ibm_chip_id(struct device_node *np) 941 { 942 of_node_get(np); 943 while (np) { 944 u32 chip_id; 945 946 /* 947 * Skiboot may produce memory nodes that contain more than one 948 * cell in chip-id, we only read the first one here. 949 */ 950 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { 951 of_node_put(np); 952 return chip_id; 953 } 954 955 np = of_get_next_parent(np); 956 } 957 return -1; 958 } 959 EXPORT_SYMBOL(of_get_ibm_chip_id); 960 961 /** 962 * cpu_to_chip_id - Return the cpus chip-id 963 * @cpu: The logical cpu number. 964 * 965 * Return the value of the ibm,chip-id property corresponding to the given 966 * logical cpu number. If the chip-id can not be found, returns -1. 967 */ 968 int cpu_to_chip_id(int cpu) 969 { 970 struct device_node *np; 971 int ret = -1, idx; 972 973 idx = cpu / threads_per_core; 974 if (chip_id_lookup_table && chip_id_lookup_table[idx] != -1) 975 return chip_id_lookup_table[idx]; 976 977 np = of_get_cpu_node(cpu, NULL); 978 if (np) { 979 ret = of_get_ibm_chip_id(np); 980 of_node_put(np); 981 982 if (chip_id_lookup_table) 983 chip_id_lookup_table[idx] = ret; 984 } 985 986 return ret; 987 } 988 EXPORT_SYMBOL(cpu_to_chip_id); 989 990 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 991 { 992 #ifdef CONFIG_SMP 993 /* 994 * Early firmware scanning must use this rather than 995 * get_hard_smp_processor_id because we don't have pacas allocated 996 * until memory topology is discovered. 997 */ 998 if (cpu_to_phys_id != NULL) 999 return (int)phys_id == cpu_to_phys_id[cpu]; 1000 #endif 1001 1002 return (int)phys_id == get_hard_smp_processor_id(cpu); 1003 } 1004