1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 */ 11 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/string.h> 16 #include <linux/init.h> 17 #include <linux/threads.h> 18 #include <linux/spinlock.h> 19 #include <linux/types.h> 20 #include <linux/pci.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/bitops.h> 24 #include <linux/export.h> 25 #include <linux/kexec.h> 26 #include <linux/irq.h> 27 #include <linux/memblock.h> 28 #include <linux/of.h> 29 #include <linux/of_fdt.h> 30 #include <linux/libfdt.h> 31 #include <linux/cpu.h> 32 #include <linux/pgtable.h> 33 34 #include <asm/rtas.h> 35 #include <asm/page.h> 36 #include <asm/processor.h> 37 #include <asm/irq.h> 38 #include <asm/io.h> 39 #include <asm/kdump.h> 40 #include <asm/smp.h> 41 #include <asm/mmu.h> 42 #include <asm/paca.h> 43 #include <asm/powernv.h> 44 #include <asm/iommu.h> 45 #include <asm/btext.h> 46 #include <asm/sections.h> 47 #include <asm/setup.h> 48 #include <asm/pci-bridge.h> 49 #include <asm/kexec.h> 50 #include <asm/opal.h> 51 #include <asm/fadump.h> 52 #include <asm/epapr_hcalls.h> 53 #include <asm/firmware.h> 54 #include <asm/dt_cpu_ftrs.h> 55 #include <asm/drmem.h> 56 #include <asm/ultravisor.h> 57 #include <asm/prom.h> 58 59 #include <mm/mmu_decl.h> 60 61 #ifdef DEBUG 62 #define DBG(fmt...) printk(KERN_ERR fmt) 63 #else 64 #define DBG(fmt...) 65 #endif 66 67 int *chip_id_lookup_table; 68 69 #ifdef CONFIG_PPC64 70 int __initdata iommu_is_off; 71 int __initdata iommu_force_on; 72 unsigned long tce_alloc_start, tce_alloc_end; 73 u64 ppc64_rma_size; 74 #endif 75 static phys_addr_t first_memblock_size; 76 static int __initdata boot_cpu_count; 77 78 static int __init early_parse_mem(char *p) 79 { 80 if (!p) 81 return 1; 82 83 memory_limit = PAGE_ALIGN(memparse(p, &p)); 84 DBG("memory limit = 0x%llx\n", memory_limit); 85 86 return 0; 87 } 88 early_param("mem", early_parse_mem); 89 90 /* 91 * overlaps_initrd - check for overlap with page aligned extension of 92 * initrd. 93 */ 94 static inline int overlaps_initrd(unsigned long start, unsigned long size) 95 { 96 #ifdef CONFIG_BLK_DEV_INITRD 97 if (!initrd_start) 98 return 0; 99 100 return (start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) && 101 start <= ALIGN(initrd_end, PAGE_SIZE); 102 #else 103 return 0; 104 #endif 105 } 106 107 /** 108 * move_device_tree - move tree to an unused area, if needed. 109 * 110 * The device tree may be allocated beyond our memory limit, or inside the 111 * crash kernel region for kdump, or within the page aligned range of initrd. 112 * If so, move it out of the way. 113 */ 114 static void __init move_device_tree(void) 115 { 116 unsigned long start, size; 117 void *p; 118 119 DBG("-> move_device_tree\n"); 120 121 start = __pa(initial_boot_params); 122 size = fdt_totalsize(initial_boot_params); 123 124 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || 125 !memblock_is_memory(start + size - 1) || 126 overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) { 127 p = memblock_alloc_raw(size, PAGE_SIZE); 128 if (!p) 129 panic("Failed to allocate %lu bytes to move device tree\n", 130 size); 131 memcpy(p, initial_boot_params, size); 132 initial_boot_params = p; 133 DBG("Moved device tree to 0x%px\n", p); 134 } 135 136 DBG("<- move_device_tree\n"); 137 } 138 139 /* 140 * ibm,pa-features is a per-cpu property that contains a string of 141 * attribute descriptors, each of which has a 2 byte header plus up 142 * to 254 bytes worth of processor attribute bits. First header 143 * byte specifies the number of bytes following the header. 144 * Second header byte is an "attribute-specifier" type, of which 145 * zero is the only currently-defined value. 146 * Implementation: Pass in the byte and bit offset for the feature 147 * that we are interested in. The function will return -1 if the 148 * pa-features property is missing, or a 1/0 to indicate if the feature 149 * is supported/not supported. Note that the bit numbers are 150 * big-endian to match the definition in PAPR. 151 */ 152 static struct ibm_pa_feature { 153 unsigned long cpu_features; /* CPU_FTR_xxx bit */ 154 unsigned long mmu_features; /* MMU_FTR_xxx bit */ 155 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ 156 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ 157 unsigned char pabyte; /* byte number in ibm,pa-features */ 158 unsigned char pabit; /* bit number (big-endian) */ 159 unsigned char invert; /* if 1, pa bit set => clear feature */ 160 } ibm_pa_features[] __initdata = { 161 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, 162 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, 163 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, 164 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, 165 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, 166 #ifdef CONFIG_PPC_RADIX_MMU 167 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE }, 168 #endif 169 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, 170 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, 171 /* 172 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), 173 * we don't want to turn on TM here, so we use the *_COMP versions 174 * which are 0 if the kernel doesn't support TM. 175 */ 176 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, 177 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, 178 179 { .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 }, 180 }; 181 182 static void __init scan_features(unsigned long node, const unsigned char *ftrs, 183 unsigned long tablelen, 184 struct ibm_pa_feature *fp, 185 unsigned long ft_size) 186 { 187 unsigned long i, len, bit; 188 189 /* find descriptor with type == 0 */ 190 for (;;) { 191 if (tablelen < 3) 192 return; 193 len = 2 + ftrs[0]; 194 if (tablelen < len) 195 return; /* descriptor 0 not found */ 196 if (ftrs[1] == 0) 197 break; 198 tablelen -= len; 199 ftrs += len; 200 } 201 202 /* loop over bits we know about */ 203 for (i = 0; i < ft_size; ++i, ++fp) { 204 if (fp->pabyte >= ftrs[0]) 205 continue; 206 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; 207 if (bit ^ fp->invert) { 208 cur_cpu_spec->cpu_features |= fp->cpu_features; 209 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; 210 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; 211 cur_cpu_spec->mmu_features |= fp->mmu_features; 212 } else { 213 cur_cpu_spec->cpu_features &= ~fp->cpu_features; 214 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; 215 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; 216 cur_cpu_spec->mmu_features &= ~fp->mmu_features; 217 } 218 } 219 } 220 221 static void __init check_cpu_pa_features(unsigned long node) 222 { 223 const unsigned char *pa_ftrs; 224 int tablelen; 225 226 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); 227 if (pa_ftrs == NULL) 228 return; 229 230 scan_features(node, pa_ftrs, tablelen, 231 ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); 232 } 233 234 #ifdef CONFIG_PPC_64S_HASH_MMU 235 static void __init init_mmu_slb_size(unsigned long node) 236 { 237 const __be32 *slb_size_ptr; 238 239 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : 240 of_get_flat_dt_prop(node, "ibm,slb-size", NULL); 241 242 if (slb_size_ptr) 243 mmu_slb_size = be32_to_cpup(slb_size_ptr); 244 } 245 #else 246 #define init_mmu_slb_size(node) do { } while(0) 247 #endif 248 249 static struct feature_property { 250 const char *name; 251 u32 min_value; 252 unsigned long cpu_feature; 253 unsigned long cpu_user_ftr; 254 } feature_properties[] __initdata = { 255 #ifdef CONFIG_ALTIVEC 256 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 257 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, 258 #endif /* CONFIG_ALTIVEC */ 259 #ifdef CONFIG_VSX 260 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ 261 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, 262 #endif /* CONFIG_VSX */ 263 #ifdef CONFIG_PPC64 264 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, 265 {"ibm,purr", 1, CPU_FTR_PURR, 0}, 266 {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, 267 #endif /* CONFIG_PPC64 */ 268 }; 269 270 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) 271 static __init void identical_pvr_fixup(unsigned long node) 272 { 273 unsigned int pvr; 274 const char *model = of_get_flat_dt_prop(node, "model", NULL); 275 276 /* 277 * Since 440GR(x)/440EP(x) processors have the same pvr, 278 * we check the node path and set bit 28 in the cur_cpu_spec 279 * pvr for EP(x) processor version. This bit is always 0 in 280 * the "real" pvr. Then we call identify_cpu again with 281 * the new logical pvr to enable FPU support. 282 */ 283 if (model && strstr(model, "440EP")) { 284 pvr = cur_cpu_spec->pvr_value | 0x8; 285 identify_cpu(0, pvr); 286 DBG("Using logical pvr %x for %s\n", pvr, model); 287 } 288 } 289 #else 290 #define identical_pvr_fixup(node) do { } while(0) 291 #endif 292 293 static void __init check_cpu_feature_properties(unsigned long node) 294 { 295 int i; 296 struct feature_property *fp = feature_properties; 297 const __be32 *prop; 298 299 for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) { 300 prop = of_get_flat_dt_prop(node, fp->name, NULL); 301 if (prop && be32_to_cpup(prop) >= fp->min_value) { 302 cur_cpu_spec->cpu_features |= fp->cpu_feature; 303 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; 304 } 305 } 306 } 307 308 static int __init early_init_dt_scan_cpus(unsigned long node, 309 const char *uname, int depth, 310 void *data) 311 { 312 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 313 const __be32 *prop; 314 const __be32 *intserv; 315 int i, nthreads; 316 int len; 317 int found = -1; 318 int found_thread = 0; 319 320 /* We are scanning "cpu" nodes only */ 321 if (type == NULL || strcmp(type, "cpu") != 0) 322 return 0; 323 324 /* Get physical cpuid */ 325 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); 326 if (!intserv) 327 intserv = of_get_flat_dt_prop(node, "reg", &len); 328 329 nthreads = len / sizeof(int); 330 331 /* 332 * Now see if any of these threads match our boot cpu. 333 * NOTE: This must match the parsing done in smp_setup_cpu_maps. 334 */ 335 for (i = 0; i < nthreads; i++) { 336 if (be32_to_cpu(intserv[i]) == 337 fdt_boot_cpuid_phys(initial_boot_params)) { 338 found = boot_cpu_count; 339 found_thread = i; 340 } 341 #ifdef CONFIG_SMP 342 /* logical cpu id is always 0 on UP kernels */ 343 boot_cpu_count++; 344 #endif 345 } 346 347 /* Not the boot CPU */ 348 if (found < 0) 349 return 0; 350 351 DBG("boot cpu: logical %d physical %d\n", found, 352 be32_to_cpu(intserv[found_thread])); 353 boot_cpuid = found; 354 355 // Pass the boot CPU's hard CPU id back to our caller 356 *((u32 *)data) = be32_to_cpu(intserv[found_thread]); 357 358 /* 359 * PAPR defines "logical" PVR values for cpus that 360 * meet various levels of the architecture: 361 * 0x0f000001 Architecture version 2.04 362 * 0x0f000002 Architecture version 2.05 363 * If the cpu-version property in the cpu node contains 364 * such a value, we call identify_cpu again with the 365 * logical PVR value in order to use the cpu feature 366 * bits appropriate for the architecture level. 367 * 368 * A POWER6 partition in "POWER6 architected" mode 369 * uses the 0x0f000002 PVR value; in POWER5+ mode 370 * it uses 0x0f000001. 371 * 372 * If we're using device tree CPU feature discovery then we don't 373 * support the cpu-version property, and it's the responsibility of the 374 * firmware/hypervisor to provide the correct feature set for the 375 * architecture level via the ibm,powerpc-cpu-features binding. 376 */ 377 if (!dt_cpu_ftrs_in_use()) { 378 prop = of_get_flat_dt_prop(node, "cpu-version", NULL); 379 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) 380 identify_cpu(0, be32_to_cpup(prop)); 381 382 check_cpu_feature_properties(node); 383 check_cpu_pa_features(node); 384 } 385 386 identical_pvr_fixup(node); 387 init_mmu_slb_size(node); 388 389 #ifdef CONFIG_PPC64 390 if (nthreads == 1) 391 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; 392 else if (!dt_cpu_ftrs_in_use()) 393 cur_cpu_spec->cpu_features |= CPU_FTR_SMT; 394 #endif 395 396 return 0; 397 } 398 399 static int __init early_init_dt_scan_chosen_ppc(unsigned long node, 400 const char *uname, 401 int depth, void *data) 402 { 403 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ 404 405 /* Use common scan routine to determine if this is the chosen node */ 406 if (early_init_dt_scan_chosen(data) < 0) 407 return 0; 408 409 #ifdef CONFIG_PPC64 410 /* check if iommu is forced on or off */ 411 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) 412 iommu_is_off = 1; 413 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) 414 iommu_force_on = 1; 415 #endif 416 417 /* mem=x on the command line is the preferred mechanism */ 418 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); 419 if (lprop) 420 memory_limit = *lprop; 421 422 #ifdef CONFIG_PPC64 423 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); 424 if (lprop) 425 tce_alloc_start = *lprop; 426 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); 427 if (lprop) 428 tce_alloc_end = *lprop; 429 #endif 430 431 #ifdef CONFIG_KEXEC_CORE 432 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); 433 if (lprop) 434 crashk_res.start = *lprop; 435 436 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); 437 if (lprop) 438 crashk_res.end = crashk_res.start + *lprop - 1; 439 #endif 440 441 /* break now */ 442 return 1; 443 } 444 445 /* 446 * Compare the range against max mem limit and update 447 * size if it cross the limit. 448 */ 449 450 #ifdef CONFIG_SPARSEMEM 451 static bool __init validate_mem_limit(u64 base, u64 *size) 452 { 453 u64 max_mem = 1UL << (MAX_PHYSMEM_BITS); 454 455 if (base >= max_mem) 456 return false; 457 if ((base + *size) > max_mem) 458 *size = max_mem - base; 459 return true; 460 } 461 #else 462 static bool __init validate_mem_limit(u64 base, u64 *size) 463 { 464 return true; 465 } 466 #endif 467 468 #ifdef CONFIG_PPC_PSERIES 469 /* 470 * Interpret the ibm dynamic reconfiguration memory LMBs. 471 * This contains a list of memory blocks along with NUMA affinity 472 * information. 473 */ 474 static int __init early_init_drmem_lmb(struct drmem_lmb *lmb, 475 const __be32 **usm, 476 void *data) 477 { 478 u64 base, size; 479 int is_kexec_kdump = 0, rngs; 480 481 base = lmb->base_addr; 482 size = drmem_lmb_size(); 483 rngs = 1; 484 485 /* 486 * Skip this block if the reserved bit is set in flags 487 * or if the block is not assigned to this partition. 488 */ 489 if ((lmb->flags & DRCONF_MEM_RESERVED) || 490 !(lmb->flags & DRCONF_MEM_ASSIGNED)) 491 return 0; 492 493 if (*usm) 494 is_kexec_kdump = 1; 495 496 if (is_kexec_kdump) { 497 /* 498 * For each memblock in ibm,dynamic-memory, a 499 * corresponding entry in linux,drconf-usable-memory 500 * property contains a counter 'p' followed by 'p' 501 * (base, size) duple. Now read the counter from 502 * linux,drconf-usable-memory property 503 */ 504 rngs = dt_mem_next_cell(dt_root_size_cells, usm); 505 if (!rngs) /* there are no (base, size) duple */ 506 return 0; 507 } 508 509 do { 510 if (is_kexec_kdump) { 511 base = dt_mem_next_cell(dt_root_addr_cells, usm); 512 size = dt_mem_next_cell(dt_root_size_cells, usm); 513 } 514 515 if (iommu_is_off) { 516 if (base >= 0x80000000ul) 517 continue; 518 if ((base + size) > 0x80000000ul) 519 size = 0x80000000ul - base; 520 } 521 522 if (!validate_mem_limit(base, &size)) 523 continue; 524 525 DBG("Adding: %llx -> %llx\n", base, size); 526 memblock_add(base, size); 527 528 if (lmb->flags & DRCONF_MEM_HOTREMOVABLE) 529 memblock_mark_hotplug(base, size); 530 } while (--rngs); 531 532 return 0; 533 } 534 #endif /* CONFIG_PPC_PSERIES */ 535 536 static int __init early_init_dt_scan_memory_ppc(void) 537 { 538 #ifdef CONFIG_PPC_PSERIES 539 const void *fdt = initial_boot_params; 540 int node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory"); 541 542 if (node > 0) 543 walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb); 544 545 #endif 546 547 return early_init_dt_scan_memory(); 548 } 549 550 /* 551 * For a relocatable kernel, we need to get the memstart_addr first, 552 * then use it to calculate the virtual kernel start address. This has 553 * to happen at a very early stage (before machine_init). In this case, 554 * we just want to get the memstart_address and would not like to mess the 555 * memblock at this stage. So introduce a variable to skip the memblock_add() 556 * for this reason. 557 */ 558 #ifdef CONFIG_RELOCATABLE 559 static int add_mem_to_memblock = 1; 560 #else 561 #define add_mem_to_memblock 1 562 #endif 563 564 void __init early_init_dt_add_memory_arch(u64 base, u64 size) 565 { 566 #ifdef CONFIG_PPC64 567 if (iommu_is_off) { 568 if (base >= 0x80000000ul) 569 return; 570 if ((base + size) > 0x80000000ul) 571 size = 0x80000000ul - base; 572 } 573 #endif 574 /* Keep track of the beginning of memory -and- the size of 575 * the very first block in the device-tree as it represents 576 * the RMA on ppc64 server 577 */ 578 if (base < memstart_addr) { 579 memstart_addr = base; 580 first_memblock_size = size; 581 } 582 583 /* Add the chunk to the MEMBLOCK list */ 584 if (add_mem_to_memblock) { 585 if (validate_mem_limit(base, &size)) 586 memblock_add(base, size); 587 } 588 } 589 590 static void __init early_reserve_mem_dt(void) 591 { 592 unsigned long i, dt_root; 593 int len; 594 const __be32 *prop; 595 596 early_init_fdt_reserve_self(); 597 early_init_fdt_scan_reserved_mem(); 598 599 dt_root = of_get_flat_dt_root(); 600 601 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); 602 603 if (!prop) 604 return; 605 606 DBG("Found new-style reserved-ranges\n"); 607 608 /* Each reserved range is an (address,size) pair, 2 cells each, 609 * totalling 4 cells per range. */ 610 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 611 u64 base, size; 612 613 base = of_read_number(prop + (i * 4) + 0, 2); 614 size = of_read_number(prop + (i * 4) + 2, 2); 615 616 if (size) { 617 DBG("reserving: %llx -> %llx\n", base, size); 618 memblock_reserve(base, size); 619 } 620 } 621 } 622 623 static void __init early_reserve_mem(void) 624 { 625 __be64 *reserve_map; 626 627 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + 628 fdt_off_mem_rsvmap(initial_boot_params)); 629 630 /* Look for the new "reserved-regions" property in the DT */ 631 early_reserve_mem_dt(); 632 633 #ifdef CONFIG_BLK_DEV_INITRD 634 /* Then reserve the initrd, if any */ 635 if (initrd_start && (initrd_end > initrd_start)) { 636 memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), 637 ALIGN(initrd_end, PAGE_SIZE) - 638 ALIGN_DOWN(initrd_start, PAGE_SIZE)); 639 } 640 #endif /* CONFIG_BLK_DEV_INITRD */ 641 642 if (!IS_ENABLED(CONFIG_PPC32)) 643 return; 644 645 /* 646 * Handle the case where we might be booting from an old kexec 647 * image that setup the mem_rsvmap as pairs of 32-bit values 648 */ 649 if (be64_to_cpup(reserve_map) > 0xffffffffull) { 650 u32 base_32, size_32; 651 __be32 *reserve_map_32 = (__be32 *)reserve_map; 652 653 DBG("Found old 32-bit reserve map\n"); 654 655 while (1) { 656 base_32 = be32_to_cpup(reserve_map_32++); 657 size_32 = be32_to_cpup(reserve_map_32++); 658 if (size_32 == 0) 659 break; 660 DBG("reserving: %x -> %x\n", base_32, size_32); 661 memblock_reserve(base_32, size_32); 662 } 663 return; 664 } 665 } 666 667 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 668 static bool tm_disabled __initdata; 669 670 static int __init parse_ppc_tm(char *str) 671 { 672 bool res; 673 674 if (kstrtobool(str, &res)) 675 return -EINVAL; 676 677 tm_disabled = !res; 678 679 return 0; 680 } 681 early_param("ppc_tm", parse_ppc_tm); 682 683 static void __init tm_init(void) 684 { 685 if (tm_disabled) { 686 pr_info("Disabling hardware transactional memory (HTM)\n"); 687 cur_cpu_spec->cpu_user_features2 &= 688 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM); 689 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM; 690 return; 691 } 692 693 pnv_tm_init(); 694 } 695 #else 696 static void tm_init(void) { } 697 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 698 699 #ifdef CONFIG_PPC64 700 static void __init save_fscr_to_task(void) 701 { 702 /* 703 * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we 704 * have configured via the device tree features or via __init_FSCR(). 705 * That value will then be propagated to pid 1 (init) and all future 706 * processes. 707 */ 708 if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) 709 init_task.thread.fscr = mfspr(SPRN_FSCR); 710 } 711 #else 712 static inline void save_fscr_to_task(void) {} 713 #endif 714 715 716 void __init early_init_devtree(void *params) 717 { 718 u32 boot_cpu_hwid; 719 phys_addr_t limit; 720 721 DBG(" -> early_init_devtree(%px)\n", params); 722 723 /* Too early to BUG_ON(), do it by hand */ 724 if (!early_init_dt_verify(params)) 725 panic("BUG: Failed verifying flat device tree, bad version?"); 726 727 #ifdef CONFIG_PPC_RTAS 728 /* Some machines might need RTAS info for debugging, grab it now. */ 729 of_scan_flat_dt(early_init_dt_scan_rtas, NULL); 730 #endif 731 732 #ifdef CONFIG_PPC_POWERNV 733 /* Some machines might need OPAL info for debugging, grab it now. */ 734 of_scan_flat_dt(early_init_dt_scan_opal, NULL); 735 736 /* Scan tree for ultravisor feature */ 737 of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL); 738 #endif 739 740 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) 741 /* scan tree to see if dump is active during last boot */ 742 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); 743 #endif 744 745 /* Retrieve various informations from the /chosen node of the 746 * device-tree, including the platform type, initrd location and 747 * size, TCE reserve, and more ... 748 */ 749 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); 750 751 /* Scan memory nodes and rebuild MEMBLOCKs */ 752 early_init_dt_scan_root(); 753 early_init_dt_scan_memory_ppc(); 754 755 /* 756 * As generic code authors expect to be able to use static keys 757 * in early_param() handlers, we initialize the static keys just 758 * before parsing early params (it's fine to call jump_label_init() 759 * more than once). 760 */ 761 jump_label_init(); 762 parse_early_param(); 763 764 /* make sure we've parsed cmdline for mem= before this */ 765 if (memory_limit) 766 first_memblock_size = min_t(u64, first_memblock_size, memory_limit); 767 setup_initial_memory_limit(memstart_addr, first_memblock_size); 768 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ 769 memblock_reserve(PHYSICAL_START, __pa(_end) - PHYSICAL_START); 770 /* If relocatable, reserve first 32k for interrupt vectors etc. */ 771 if (PHYSICAL_START > MEMORY_START) 772 memblock_reserve(MEMORY_START, 0x8000); 773 reserve_kdump_trampoline(); 774 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) 775 /* 776 * If we fail to reserve memory for firmware-assisted dump then 777 * fallback to kexec based kdump. 778 */ 779 if (fadump_reserve_mem() == 0) 780 #endif 781 reserve_crashkernel(); 782 early_reserve_mem(); 783 784 /* Ensure that total memory size is page-aligned. */ 785 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE); 786 memblock_enforce_memory_limit(limit); 787 788 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_4K_PAGES) 789 if (!early_radix_enabled()) 790 memblock_cap_memory_range(0, 1UL << (H_MAX_PHYSMEM_BITS)); 791 #endif 792 793 memblock_allow_resize(); 794 memblock_dump_all(); 795 796 DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size()); 797 798 /* We may need to relocate the flat tree, do it now. 799 * FIXME .. and the initrd too? */ 800 move_device_tree(); 801 802 DBG("Scanning CPUs ...\n"); 803 804 dt_cpu_ftrs_scan(); 805 806 /* Retrieve CPU related informations from the flat tree 807 * (altivec support, boot CPU ID, ...) 808 */ 809 of_scan_flat_dt(early_init_dt_scan_cpus, &boot_cpu_hwid); 810 if (boot_cpuid < 0) { 811 printk("Failed to identify boot CPU !\n"); 812 BUG(); 813 } 814 815 save_fscr_to_task(); 816 817 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) 818 /* We'll later wait for secondaries to check in; there are 819 * NCPUS-1 non-boot CPUs :-) 820 */ 821 spinning_secondaries = boot_cpu_count - 1; 822 #endif 823 824 mmu_early_init_devtree(); 825 826 // NB. paca is not installed until later in early_setup() 827 allocate_paca_ptrs(); 828 allocate_paca(boot_cpuid); 829 set_hard_smp_processor_id(boot_cpuid, boot_cpu_hwid); 830 831 #ifdef CONFIG_PPC_POWERNV 832 /* Scan and build the list of machine check recoverable ranges */ 833 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); 834 #endif 835 epapr_paravirt_early_init(); 836 837 /* Now try to figure out if we are running on LPAR and so on */ 838 pseries_probe_fw_features(); 839 840 /* 841 * Initialize pkey features and default AMR/IAMR values 842 */ 843 pkey_early_init_devtree(); 844 845 #ifdef CONFIG_PPC_PS3 846 /* Identify PS3 firmware */ 847 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) 848 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; 849 #endif 850 851 tm_init(); 852 853 DBG(" <- early_init_devtree()\n"); 854 } 855 856 #ifdef CONFIG_RELOCATABLE 857 /* 858 * This function run before early_init_devtree, so we have to init 859 * initial_boot_params. 860 */ 861 void __init early_get_first_memblock_info(void *params, phys_addr_t *size) 862 { 863 /* Setup flat device-tree pointer */ 864 initial_boot_params = params; 865 866 /* 867 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid 868 * mess the memblock. 869 */ 870 add_mem_to_memblock = 0; 871 early_init_dt_scan_root(); 872 early_init_dt_scan_memory_ppc(); 873 add_mem_to_memblock = 1; 874 875 if (size) 876 *size = first_memblock_size; 877 } 878 #endif 879 880 /******* 881 * 882 * New implementation of the OF "find" APIs, return a refcounted 883 * object, call of_node_put() when done. The device tree and list 884 * are protected by a rw_lock. 885 * 886 * Note that property management will need some locking as well, 887 * this isn't dealt with yet. 888 * 889 *******/ 890 891 /** 892 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device 893 * @np: device node of the device 894 * 895 * This looks for a property "ibm,chip-id" in the node or any 896 * of its parents and returns its content, or -1 if it cannot 897 * be found. 898 */ 899 int of_get_ibm_chip_id(struct device_node *np) 900 { 901 of_node_get(np); 902 while (np) { 903 u32 chip_id; 904 905 /* 906 * Skiboot may produce memory nodes that contain more than one 907 * cell in chip-id, we only read the first one here. 908 */ 909 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { 910 of_node_put(np); 911 return chip_id; 912 } 913 914 np = of_get_next_parent(np); 915 } 916 return -1; 917 } 918 EXPORT_SYMBOL(of_get_ibm_chip_id); 919 920 /** 921 * cpu_to_chip_id - Return the cpus chip-id 922 * @cpu: The logical cpu number. 923 * 924 * Return the value of the ibm,chip-id property corresponding to the given 925 * logical cpu number. If the chip-id can not be found, returns -1. 926 */ 927 int cpu_to_chip_id(int cpu) 928 { 929 struct device_node *np; 930 int ret = -1, idx; 931 932 idx = cpu / threads_per_core; 933 if (chip_id_lookup_table && chip_id_lookup_table[idx] != -1) 934 return chip_id_lookup_table[idx]; 935 936 np = of_get_cpu_node(cpu, NULL); 937 if (np) { 938 ret = of_get_ibm_chip_id(np); 939 of_node_put(np); 940 941 if (chip_id_lookup_table) 942 chip_id_lookup_table[idx] = ret; 943 } 944 945 return ret; 946 } 947 EXPORT_SYMBOL(cpu_to_chip_id); 948 949 bool arch_match_cpu_phys_id(int cpu, u64 phys_id) 950 { 951 #ifdef CONFIG_SMP 952 /* 953 * Early firmware scanning must use this rather than 954 * get_hard_smp_processor_id because we don't have pacas allocated 955 * until memory topology is discovered. 956 */ 957 if (cpu_to_phys_id != NULL) 958 return (int)phys_id == cpu_to_phys_id[cpu]; 959 #endif 960 961 return (int)phys_id == get_hard_smp_processor_id(cpu); 962 } 963