xref: /openbmc/linux/arch/powerpc/kernel/prom.c (revision 676e2497)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 #undef DEBUG
17 
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 
33 #include <asm/prom.h>
34 #include <asm/rtas.h>
35 #include <asm/lmb.h>
36 #include <asm/page.h>
37 #include <asm/processor.h>
38 #include <asm/irq.h>
39 #include <asm/io.h>
40 #include <asm/smp.h>
41 #include <asm/system.h>
42 #include <asm/mmu.h>
43 #include <asm/pgtable.h>
44 #include <asm/pci.h>
45 #include <asm/iommu.h>
46 #include <asm/btext.h>
47 #include <asm/sections.h>
48 #include <asm/machdep.h>
49 #include <asm/pSeries_reconfig.h>
50 #include <asm/pci-bridge.h>
51 
52 #ifdef DEBUG
53 #define DBG(fmt...) printk(KERN_ERR fmt)
54 #else
55 #define DBG(fmt...)
56 #endif
57 
58 struct pci_reg_property {
59 	struct pci_address addr;
60 	u32 size_hi;
61 	u32 size_lo;
62 };
63 
64 struct isa_reg_property {
65 	u32 space;
66 	u32 address;
67 	u32 size;
68 };
69 
70 
71 typedef int interpret_func(struct device_node *, unsigned long *,
72 			   int, int, int);
73 
74 extern struct rtas_t rtas;
75 extern struct lmb lmb;
76 extern unsigned long klimit;
77 
78 static int __initdata dt_root_addr_cells;
79 static int __initdata dt_root_size_cells;
80 
81 #ifdef CONFIG_PPC64
82 static int __initdata iommu_is_off;
83 int __initdata iommu_force_on;
84 unsigned long tce_alloc_start, tce_alloc_end;
85 #endif
86 
87 typedef u32 cell_t;
88 
89 #if 0
90 static struct boot_param_header *initial_boot_params __initdata;
91 #else
92 struct boot_param_header *initial_boot_params;
93 #endif
94 
95 static struct device_node *allnodes = NULL;
96 
97 /* use when traversing tree through the allnext, child, sibling,
98  * or parent members of struct device_node.
99  */
100 static DEFINE_RWLOCK(devtree_lock);
101 
102 /* export that to outside world */
103 struct device_node *of_chosen;
104 
105 struct device_node *dflt_interrupt_controller;
106 int num_interrupt_controllers;
107 
108 /*
109  * Wrapper for allocating memory for various data that needs to be
110  * attached to device nodes as they are processed at boot or when
111  * added to the device tree later (e.g. DLPAR).  At boot there is
112  * already a region reserved so we just increment *mem_start by size;
113  * otherwise we call kmalloc.
114  */
115 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
116 {
117 	unsigned long tmp;
118 
119 	if (!mem_start)
120 		return kmalloc(size, GFP_KERNEL);
121 
122 	tmp = *mem_start;
123 	*mem_start += size;
124 	return (void *)tmp;
125 }
126 
127 /*
128  * Find the device_node with a given phandle.
129  */
130 static struct device_node * find_phandle(phandle ph)
131 {
132 	struct device_node *np;
133 
134 	for (np = allnodes; np != 0; np = np->allnext)
135 		if (np->linux_phandle == ph)
136 			return np;
137 	return NULL;
138 }
139 
140 /*
141  * Find the interrupt parent of a node.
142  */
143 static struct device_node * __devinit intr_parent(struct device_node *p)
144 {
145 	phandle *parp;
146 
147 	parp = (phandle *) get_property(p, "interrupt-parent", NULL);
148 	if (parp == NULL)
149 		return p->parent;
150 	p = find_phandle(*parp);
151 	if (p != NULL)
152 		return p;
153 	/*
154 	 * On a powermac booted with BootX, we don't get to know the
155 	 * phandles for any nodes, so find_phandle will return NULL.
156 	 * Fortunately these machines only have one interrupt controller
157 	 * so there isn't in fact any ambiguity.  -- paulus
158 	 */
159 	if (num_interrupt_controllers == 1)
160 		p = dflt_interrupt_controller;
161 	return p;
162 }
163 
164 /*
165  * Find out the size of each entry of the interrupts property
166  * for a node.
167  */
168 int __devinit prom_n_intr_cells(struct device_node *np)
169 {
170 	struct device_node *p;
171 	unsigned int *icp;
172 
173 	for (p = np; (p = intr_parent(p)) != NULL; ) {
174 		icp = (unsigned int *)
175 			get_property(p, "#interrupt-cells", NULL);
176 		if (icp != NULL)
177 			return *icp;
178 		if (get_property(p, "interrupt-controller", NULL) != NULL
179 		    || get_property(p, "interrupt-map", NULL) != NULL) {
180 			printk("oops, node %s doesn't have #interrupt-cells\n",
181 			       p->full_name);
182 			return 1;
183 		}
184 	}
185 #ifdef DEBUG_IRQ
186 	printk("prom_n_intr_cells failed for %s\n", np->full_name);
187 #endif
188 	return 1;
189 }
190 
191 /*
192  * Map an interrupt from a device up to the platform interrupt
193  * descriptor.
194  */
195 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
196 				   struct device_node *np, unsigned int *ints,
197 				   int nintrc)
198 {
199 	struct device_node *p, *ipar;
200 	unsigned int *imap, *imask, *ip;
201 	int i, imaplen, match;
202 	int newintrc = 0, newaddrc = 0;
203 	unsigned int *reg;
204 	int naddrc;
205 
206 	reg = (unsigned int *) get_property(np, "reg", NULL);
207 	naddrc = prom_n_addr_cells(np);
208 	p = intr_parent(np);
209 	while (p != NULL) {
210 		if (get_property(p, "interrupt-controller", NULL) != NULL)
211 			/* this node is an interrupt controller, stop here */
212 			break;
213 		imap = (unsigned int *)
214 			get_property(p, "interrupt-map", &imaplen);
215 		if (imap == NULL) {
216 			p = intr_parent(p);
217 			continue;
218 		}
219 		imask = (unsigned int *)
220 			get_property(p, "interrupt-map-mask", NULL);
221 		if (imask == NULL) {
222 			printk("oops, %s has interrupt-map but no mask\n",
223 			       p->full_name);
224 			return 0;
225 		}
226 		imaplen /= sizeof(unsigned int);
227 		match = 0;
228 		ipar = NULL;
229 		while (imaplen > 0 && !match) {
230 			/* check the child-interrupt field */
231 			match = 1;
232 			for (i = 0; i < naddrc && match; ++i)
233 				match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
234 			for (; i < naddrc + nintrc && match; ++i)
235 				match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
236 			imap += naddrc + nintrc;
237 			imaplen -= naddrc + nintrc;
238 			/* grab the interrupt parent */
239 			ipar = find_phandle((phandle) *imap++);
240 			--imaplen;
241 			if (ipar == NULL && num_interrupt_controllers == 1)
242 				/* cope with BootX not giving us phandles */
243 				ipar = dflt_interrupt_controller;
244 			if (ipar == NULL) {
245 				printk("oops, no int parent %x in map of %s\n",
246 				       imap[-1], p->full_name);
247 				return 0;
248 			}
249 			/* find the parent's # addr and intr cells */
250 			ip = (unsigned int *)
251 				get_property(ipar, "#interrupt-cells", NULL);
252 			if (ip == NULL) {
253 				printk("oops, no #interrupt-cells on %s\n",
254 				       ipar->full_name);
255 				return 0;
256 			}
257 			newintrc = *ip;
258 			ip = (unsigned int *)
259 				get_property(ipar, "#address-cells", NULL);
260 			newaddrc = (ip == NULL)? 0: *ip;
261 			imap += newaddrc + newintrc;
262 			imaplen -= newaddrc + newintrc;
263 		}
264 		if (imaplen < 0) {
265 			printk("oops, error decoding int-map on %s, len=%d\n",
266 			       p->full_name, imaplen);
267 			return 0;
268 		}
269 		if (!match) {
270 #ifdef DEBUG_IRQ
271 			printk("oops, no match in %s int-map for %s\n",
272 			       p->full_name, np->full_name);
273 #endif
274 			return 0;
275 		}
276 		p = ipar;
277 		naddrc = newaddrc;
278 		nintrc = newintrc;
279 		ints = imap - nintrc;
280 		reg = ints - naddrc;
281 	}
282 	if (p == NULL) {
283 #ifdef DEBUG_IRQ
284 		printk("hmmm, int tree for %s doesn't have ctrler\n",
285 		       np->full_name);
286 #endif
287 		return 0;
288 	}
289 	*irq = ints;
290 	*ictrler = p;
291 	return nintrc;
292 }
293 
294 static unsigned char map_isa_senses[4] = {
295 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
296 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
297 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
298 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
299 };
300 
301 static unsigned char map_mpic_senses[4] = {
302 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
303 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
304 	/* 2 seems to be used for the 8259 cascade... */
305 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
306 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
307 };
308 
309 static int __devinit finish_node_interrupts(struct device_node *np,
310 					    unsigned long *mem_start,
311 					    int measure_only)
312 {
313 	unsigned int *ints;
314 	int intlen, intrcells, intrcount;
315 	int i, j, n, sense;
316 	unsigned int *irq, virq;
317 	struct device_node *ic;
318 
319 	if (num_interrupt_controllers == 0) {
320 		/*
321 		 * Old machines just have a list of interrupt numbers
322 		 * and no interrupt-controller nodes.
323 		 */
324 		ints = (unsigned int *) get_property(np, "AAPL,interrupts",
325 						     &intlen);
326 		/* XXX old interpret_pci_props looked in parent too */
327 		/* XXX old interpret_macio_props looked for interrupts
328 		   before AAPL,interrupts */
329 		if (ints == NULL)
330 			ints = (unsigned int *) get_property(np, "interrupts",
331 							     &intlen);
332 		if (ints == NULL)
333 			return 0;
334 
335 		np->n_intrs = intlen / sizeof(unsigned int);
336 		np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
337 				       mem_start);
338 		if (!np->intrs)
339 			return -ENOMEM;
340 		if (measure_only)
341 			return 0;
342 
343 		for (i = 0; i < np->n_intrs; ++i) {
344 			np->intrs[i].line = *ints++;
345 			np->intrs[i].sense = IRQ_SENSE_LEVEL
346 				| IRQ_POLARITY_NEGATIVE;
347 		}
348 		return 0;
349 	}
350 
351 	ints = (unsigned int *) get_property(np, "interrupts", &intlen);
352 	if (ints == NULL)
353 		return 0;
354 	intrcells = prom_n_intr_cells(np);
355 	intlen /= intrcells * sizeof(unsigned int);
356 
357 	np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
358 	if (!np->intrs)
359 		return -ENOMEM;
360 
361 	if (measure_only)
362 		return 0;
363 
364 	intrcount = 0;
365 	for (i = 0; i < intlen; ++i, ints += intrcells) {
366 		n = map_interrupt(&irq, &ic, np, ints, intrcells);
367 		if (n <= 0)
368 			continue;
369 
370 		/* don't map IRQ numbers under a cascaded 8259 controller */
371 		if (ic && device_is_compatible(ic, "chrp,iic")) {
372 			np->intrs[intrcount].line = irq[0];
373 			sense = (n > 1)? (irq[1] & 3): 3;
374 			np->intrs[intrcount].sense = map_isa_senses[sense];
375 		} else {
376 			virq = virt_irq_create_mapping(irq[0]);
377 #ifdef CONFIG_PPC64
378 			if (virq == NO_IRQ) {
379 				printk(KERN_CRIT "Could not allocate interrupt"
380 				       " number for %s\n", np->full_name);
381 				continue;
382 			}
383 #endif
384 			np->intrs[intrcount].line = irq_offset_up(virq);
385 			sense = (n > 1)? (irq[1] & 3): 1;
386 			np->intrs[intrcount].sense = map_mpic_senses[sense];
387 		}
388 
389 #ifdef CONFIG_PPC64
390 		/* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
391 		if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
392 			char *name = get_property(ic->parent, "name", NULL);
393 			if (name && !strcmp(name, "u3"))
394 				np->intrs[intrcount].line += 128;
395 			else if (!(name && !strcmp(name, "mac-io")))
396 				/* ignore other cascaded controllers, such as
397 				   the k2-sata-root */
398 				break;
399 		}
400 #endif
401 		if (n > 2) {
402 			printk("hmmm, got %d intr cells for %s:", n,
403 			       np->full_name);
404 			for (j = 0; j < n; ++j)
405 				printk(" %d", irq[j]);
406 			printk("\n");
407 		}
408 		++intrcount;
409 	}
410 	np->n_intrs = intrcount;
411 
412 	return 0;
413 }
414 
415 static int __devinit interpret_pci_props(struct device_node *np,
416 					 unsigned long *mem_start,
417 					 int naddrc, int nsizec,
418 					 int measure_only)
419 {
420 	struct address_range *adr;
421 	struct pci_reg_property *pci_addrs;
422 	int i, l, n_addrs;
423 
424 	pci_addrs = (struct pci_reg_property *)
425 		get_property(np, "assigned-addresses", &l);
426 	if (!pci_addrs)
427 		return 0;
428 
429 	n_addrs = l / sizeof(*pci_addrs);
430 
431 	adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
432 	if (!adr)
433 		return -ENOMEM;
434 
435  	if (measure_only)
436  		return 0;
437 
438  	np->addrs = adr;
439  	np->n_addrs = n_addrs;
440 
441  	for (i = 0; i < n_addrs; i++) {
442  		adr[i].space = pci_addrs[i].addr.a_hi;
443  		adr[i].address = pci_addrs[i].addr.a_lo |
444 			((u64)pci_addrs[i].addr.a_mid << 32);
445  		adr[i].size = pci_addrs[i].size_lo;
446 	}
447 
448 	return 0;
449 }
450 
451 static int __init interpret_dbdma_props(struct device_node *np,
452 					unsigned long *mem_start,
453 					int naddrc, int nsizec,
454 					int measure_only)
455 {
456 	struct reg_property32 *rp;
457 	struct address_range *adr;
458 	unsigned long base_address;
459 	int i, l;
460 	struct device_node *db;
461 
462 	base_address = 0;
463 	if (!measure_only) {
464 		for (db = np->parent; db != NULL; db = db->parent) {
465 			if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
466 				base_address = db->addrs[0].address;
467 				break;
468 			}
469 		}
470 	}
471 
472 	rp = (struct reg_property32 *) get_property(np, "reg", &l);
473 	if (rp != 0 && l >= sizeof(struct reg_property32)) {
474 		i = 0;
475 		adr = (struct address_range *) (*mem_start);
476 		while ((l -= sizeof(struct reg_property32)) >= 0) {
477 			if (!measure_only) {
478 				adr[i].space = 2;
479 				adr[i].address = rp[i].address + base_address;
480 				adr[i].size = rp[i].size;
481 			}
482 			++i;
483 		}
484 		np->addrs = adr;
485 		np->n_addrs = i;
486 		(*mem_start) += i * sizeof(struct address_range);
487 	}
488 
489 	return 0;
490 }
491 
492 static int __init interpret_macio_props(struct device_node *np,
493 					unsigned long *mem_start,
494 					int naddrc, int nsizec,
495 					int measure_only)
496 {
497 	struct reg_property32 *rp;
498 	struct address_range *adr;
499 	unsigned long base_address;
500 	int i, l;
501 	struct device_node *db;
502 
503 	base_address = 0;
504 	if (!measure_only) {
505 		for (db = np->parent; db != NULL; db = db->parent) {
506 			if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
507 				base_address = db->addrs[0].address;
508 				break;
509 			}
510 		}
511 	}
512 
513 	rp = (struct reg_property32 *) get_property(np, "reg", &l);
514 	if (rp != 0 && l >= sizeof(struct reg_property32)) {
515 		i = 0;
516 		adr = (struct address_range *) (*mem_start);
517 		while ((l -= sizeof(struct reg_property32)) >= 0) {
518 			if (!measure_only) {
519 				adr[i].space = 2;
520 				adr[i].address = rp[i].address + base_address;
521 				adr[i].size = rp[i].size;
522 			}
523 			++i;
524 		}
525 		np->addrs = adr;
526 		np->n_addrs = i;
527 		(*mem_start) += i * sizeof(struct address_range);
528 	}
529 
530 	return 0;
531 }
532 
533 static int __init interpret_isa_props(struct device_node *np,
534 				      unsigned long *mem_start,
535 				      int naddrc, int nsizec,
536 				      int measure_only)
537 {
538 	struct isa_reg_property *rp;
539 	struct address_range *adr;
540 	int i, l;
541 
542 	rp = (struct isa_reg_property *) get_property(np, "reg", &l);
543 	if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
544 		i = 0;
545 		adr = (struct address_range *) (*mem_start);
546 		while ((l -= sizeof(struct isa_reg_property)) >= 0) {
547 			if (!measure_only) {
548 				adr[i].space = rp[i].space;
549 				adr[i].address = rp[i].address;
550 				adr[i].size = rp[i].size;
551 			}
552 			++i;
553 		}
554 		np->addrs = adr;
555 		np->n_addrs = i;
556 		(*mem_start) += i * sizeof(struct address_range);
557 	}
558 
559 	return 0;
560 }
561 
562 static int __init interpret_root_props(struct device_node *np,
563 				       unsigned long *mem_start,
564 				       int naddrc, int nsizec,
565 				       int measure_only)
566 {
567 	struct address_range *adr;
568 	int i, l;
569 	unsigned int *rp;
570 	int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
571 
572 	rp = (unsigned int *) get_property(np, "reg", &l);
573 	if (rp != 0 && l >= rpsize) {
574 		i = 0;
575 		adr = (struct address_range *) (*mem_start);
576 		while ((l -= rpsize) >= 0) {
577 			if (!measure_only) {
578 				adr[i].space = 0;
579 				adr[i].address = rp[naddrc - 1];
580 				adr[i].size = rp[naddrc + nsizec - 1];
581 			}
582 			++i;
583 			rp += naddrc + nsizec;
584 		}
585 		np->addrs = adr;
586 		np->n_addrs = i;
587 		(*mem_start) += i * sizeof(struct address_range);
588 	}
589 
590 	return 0;
591 }
592 
593 static int __devinit finish_node(struct device_node *np,
594 				 unsigned long *mem_start,
595 				 interpret_func *ifunc,
596 				 int naddrc, int nsizec,
597 				 int measure_only)
598 {
599 	struct device_node *child;
600 	int *ip, rc = 0;
601 
602 	/* get the device addresses and interrupts */
603 	if (ifunc != NULL)
604 		rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
605 	if (rc)
606 		goto out;
607 
608 	rc = finish_node_interrupts(np, mem_start, measure_only);
609 	if (rc)
610 		goto out;
611 
612 	/* Look for #address-cells and #size-cells properties. */
613 	ip = (int *) get_property(np, "#address-cells", NULL);
614 	if (ip != NULL)
615 		naddrc = *ip;
616 	ip = (int *) get_property(np, "#size-cells", NULL);
617 	if (ip != NULL)
618 		nsizec = *ip;
619 
620 	if (!strcmp(np->name, "device-tree") || np->parent == NULL)
621 		ifunc = interpret_root_props;
622 	else if (np->type == 0)
623 		ifunc = NULL;
624 	else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
625 		ifunc = interpret_pci_props;
626 	else if (!strcmp(np->type, "dbdma"))
627 		ifunc = interpret_dbdma_props;
628 	else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
629 		ifunc = interpret_macio_props;
630 	else if (!strcmp(np->type, "isa"))
631 		ifunc = interpret_isa_props;
632 	else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
633 		ifunc = interpret_root_props;
634 	else if (!((ifunc == interpret_dbdma_props
635 		    || ifunc == interpret_macio_props)
636 		   && (!strcmp(np->type, "escc")
637 		       || !strcmp(np->type, "media-bay"))))
638 		ifunc = NULL;
639 
640 	for (child = np->child; child != NULL; child = child->sibling) {
641 		rc = finish_node(child, mem_start, ifunc,
642 				 naddrc, nsizec, measure_only);
643 		if (rc)
644 			goto out;
645 	}
646 out:
647 	return rc;
648 }
649 
650 static void __init scan_interrupt_controllers(void)
651 {
652 	struct device_node *np;
653 	int n = 0;
654 	char *name, *ic;
655 	int iclen;
656 
657 	for (np = allnodes; np != NULL; np = np->allnext) {
658 		ic = get_property(np, "interrupt-controller", &iclen);
659 		name = get_property(np, "name", NULL);
660 		/* checking iclen makes sure we don't get a false
661 		   match on /chosen.interrupt_controller */
662 		if ((name != NULL
663 		     && strcmp(name, "interrupt-controller") == 0)
664 		    || (ic != NULL && iclen == 0
665 			&& strcmp(name, "AppleKiwi"))) {
666 			if (n == 0)
667 				dflt_interrupt_controller = np;
668 			++n;
669 		}
670 	}
671 	num_interrupt_controllers = n;
672 }
673 
674 /**
675  * finish_device_tree is called once things are running normally
676  * (i.e. with text and data mapped to the address they were linked at).
677  * It traverses the device tree and fills in some of the additional,
678  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
679  * mapping is also initialized at this point.
680  */
681 void __init finish_device_tree(void)
682 {
683 	unsigned long start, end, size = 0;
684 
685 	DBG(" -> finish_device_tree\n");
686 
687 #ifdef CONFIG_PPC64
688 	/* Initialize virtual IRQ map */
689 	virt_irq_init();
690 #endif
691 	scan_interrupt_controllers();
692 
693 	/*
694 	 * Finish device-tree (pre-parsing some properties etc...)
695 	 * We do this in 2 passes. One with "measure_only" set, which
696 	 * will only measure the amount of memory needed, then we can
697 	 * allocate that memory, and call finish_node again. However,
698 	 * we must be careful as most routines will fail nowadays when
699 	 * prom_alloc() returns 0, so we must make sure our first pass
700 	 * doesn't start at 0. We pre-initialize size to 16 for that
701 	 * reason and then remove those additional 16 bytes
702 	 */
703 	size = 16;
704 	finish_node(allnodes, &size, NULL, 0, 0, 1);
705 	size -= 16;
706 	end = start = (unsigned long) __va(lmb_alloc(size, 128));
707 	finish_node(allnodes, &end, NULL, 0, 0, 0);
708 	BUG_ON(end != start + size);
709 
710 	DBG(" <- finish_device_tree\n");
711 }
712 
713 static inline char *find_flat_dt_string(u32 offset)
714 {
715 	return ((char *)initial_boot_params) +
716 		initial_boot_params->off_dt_strings + offset;
717 }
718 
719 /**
720  * This function is used to scan the flattened device-tree, it is
721  * used to extract the memory informations at boot before we can
722  * unflatten the tree
723  */
724 int __init of_scan_flat_dt(int (*it)(unsigned long node,
725 				     const char *uname, int depth,
726 				     void *data),
727 			   void *data)
728 {
729 	unsigned long p = ((unsigned long)initial_boot_params) +
730 		initial_boot_params->off_dt_struct;
731 	int rc = 0;
732 	int depth = -1;
733 
734 	do {
735 		u32 tag = *((u32 *)p);
736 		char *pathp;
737 
738 		p += 4;
739 		if (tag == OF_DT_END_NODE) {
740 			depth --;
741 			continue;
742 		}
743 		if (tag == OF_DT_NOP)
744 			continue;
745 		if (tag == OF_DT_END)
746 			break;
747 		if (tag == OF_DT_PROP) {
748 			u32 sz = *((u32 *)p);
749 			p += 8;
750 			if (initial_boot_params->version < 0x10)
751 				p = _ALIGN(p, sz >= 8 ? 8 : 4);
752 			p += sz;
753 			p = _ALIGN(p, 4);
754 			continue;
755 		}
756 		if (tag != OF_DT_BEGIN_NODE) {
757 			printk(KERN_WARNING "Invalid tag %x scanning flattened"
758 			       " device tree !\n", tag);
759 			return -EINVAL;
760 		}
761 		depth++;
762 		pathp = (char *)p;
763 		p = _ALIGN(p + strlen(pathp) + 1, 4);
764 		if ((*pathp) == '/') {
765 			char *lp, *np;
766 			for (lp = NULL, np = pathp; *np; np++)
767 				if ((*np) == '/')
768 					lp = np+1;
769 			if (lp != NULL)
770 				pathp = lp;
771 		}
772 		rc = it(p, pathp, depth, data);
773 		if (rc != 0)
774 			break;
775 	} while(1);
776 
777 	return rc;
778 }
779 
780 /**
781  * This  function can be used within scan_flattened_dt callback to get
782  * access to properties
783  */
784 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
785 				 unsigned long *size)
786 {
787 	unsigned long p = node;
788 
789 	do {
790 		u32 tag = *((u32 *)p);
791 		u32 sz, noff;
792 		const char *nstr;
793 
794 		p += 4;
795 		if (tag == OF_DT_NOP)
796 			continue;
797 		if (tag != OF_DT_PROP)
798 			return NULL;
799 
800 		sz = *((u32 *)p);
801 		noff = *((u32 *)(p + 4));
802 		p += 8;
803 		if (initial_boot_params->version < 0x10)
804 			p = _ALIGN(p, sz >= 8 ? 8 : 4);
805 
806 		nstr = find_flat_dt_string(noff);
807 		if (nstr == NULL) {
808 			printk(KERN_WARNING "Can't find property index"
809 			       " name !\n");
810 			return NULL;
811 		}
812 		if (strcmp(name, nstr) == 0) {
813 			if (size)
814 				*size = sz;
815 			return (void *)p;
816 		}
817 		p += sz;
818 		p = _ALIGN(p, 4);
819 	} while(1);
820 }
821 
822 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
823 				       unsigned long align)
824 {
825 	void *res;
826 
827 	*mem = _ALIGN(*mem, align);
828 	res = (void *)*mem;
829 	*mem += size;
830 
831 	return res;
832 }
833 
834 static unsigned long __init unflatten_dt_node(unsigned long mem,
835 					      unsigned long *p,
836 					      struct device_node *dad,
837 					      struct device_node ***allnextpp,
838 					      unsigned long fpsize)
839 {
840 	struct device_node *np;
841 	struct property *pp, **prev_pp = NULL;
842 	char *pathp;
843 	u32 tag;
844 	unsigned int l, allocl;
845 	int has_name = 0;
846 	int new_format = 0;
847 
848 	tag = *((u32 *)(*p));
849 	if (tag != OF_DT_BEGIN_NODE) {
850 		printk("Weird tag at start of node: %x\n", tag);
851 		return mem;
852 	}
853 	*p += 4;
854 	pathp = (char *)*p;
855 	l = allocl = strlen(pathp) + 1;
856 	*p = _ALIGN(*p + l, 4);
857 
858 	/* version 0x10 has a more compact unit name here instead of the full
859 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
860 	 * it later. We detect this because the first character of the name is
861 	 * not '/'.
862 	 */
863 	if ((*pathp) != '/') {
864 		new_format = 1;
865 		if (fpsize == 0) {
866 			/* root node: special case. fpsize accounts for path
867 			 * plus terminating zero. root node only has '/', so
868 			 * fpsize should be 2, but we want to avoid the first
869 			 * level nodes to have two '/' so we use fpsize 1 here
870 			 */
871 			fpsize = 1;
872 			allocl = 2;
873 		} else {
874 			/* account for '/' and path size minus terminal 0
875 			 * already in 'l'
876 			 */
877 			fpsize += l;
878 			allocl = fpsize;
879 		}
880 	}
881 
882 
883 	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
884 				__alignof__(struct device_node));
885 	if (allnextpp) {
886 		memset(np, 0, sizeof(*np));
887 		np->full_name = ((char*)np) + sizeof(struct device_node);
888 		if (new_format) {
889 			char *p = np->full_name;
890 			/* rebuild full path for new format */
891 			if (dad && dad->parent) {
892 				strcpy(p, dad->full_name);
893 #ifdef DEBUG
894 				if ((strlen(p) + l + 1) != allocl) {
895 					DBG("%s: p: %d, l: %d, a: %d\n",
896 					    pathp, strlen(p), l, allocl);
897 				}
898 #endif
899 				p += strlen(p);
900 			}
901 			*(p++) = '/';
902 			memcpy(p, pathp, l);
903 		} else
904 			memcpy(np->full_name, pathp, l);
905 		prev_pp = &np->properties;
906 		**allnextpp = np;
907 		*allnextpp = &np->allnext;
908 		if (dad != NULL) {
909 			np->parent = dad;
910 			/* we temporarily use the next field as `last_child'*/
911 			if (dad->next == 0)
912 				dad->child = np;
913 			else
914 				dad->next->sibling = np;
915 			dad->next = np;
916 		}
917 		kref_init(&np->kref);
918 	}
919 	while(1) {
920 		u32 sz, noff;
921 		char *pname;
922 
923 		tag = *((u32 *)(*p));
924 		if (tag == OF_DT_NOP) {
925 			*p += 4;
926 			continue;
927 		}
928 		if (tag != OF_DT_PROP)
929 			break;
930 		*p += 4;
931 		sz = *((u32 *)(*p));
932 		noff = *((u32 *)((*p) + 4));
933 		*p += 8;
934 		if (initial_boot_params->version < 0x10)
935 			*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
936 
937 		pname = find_flat_dt_string(noff);
938 		if (pname == NULL) {
939 			printk("Can't find property name in list !\n");
940 			break;
941 		}
942 		if (strcmp(pname, "name") == 0)
943 			has_name = 1;
944 		l = strlen(pname) + 1;
945 		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
946 					__alignof__(struct property));
947 		if (allnextpp) {
948 			if (strcmp(pname, "linux,phandle") == 0) {
949 				np->node = *((u32 *)*p);
950 				if (np->linux_phandle == 0)
951 					np->linux_phandle = np->node;
952 			}
953 			if (strcmp(pname, "ibm,phandle") == 0)
954 				np->linux_phandle = *((u32 *)*p);
955 			pp->name = pname;
956 			pp->length = sz;
957 			pp->value = (void *)*p;
958 			*prev_pp = pp;
959 			prev_pp = &pp->next;
960 		}
961 		*p = _ALIGN((*p) + sz, 4);
962 	}
963 	/* with version 0x10 we may not have the name property, recreate
964 	 * it here from the unit name if absent
965 	 */
966 	if (!has_name) {
967 		char *p = pathp, *ps = pathp, *pa = NULL;
968 		int sz;
969 
970 		while (*p) {
971 			if ((*p) == '@')
972 				pa = p;
973 			if ((*p) == '/')
974 				ps = p + 1;
975 			p++;
976 		}
977 		if (pa < ps)
978 			pa = p;
979 		sz = (pa - ps) + 1;
980 		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
981 					__alignof__(struct property));
982 		if (allnextpp) {
983 			pp->name = "name";
984 			pp->length = sz;
985 			pp->value = (unsigned char *)(pp + 1);
986 			*prev_pp = pp;
987 			prev_pp = &pp->next;
988 			memcpy(pp->value, ps, sz - 1);
989 			((char *)pp->value)[sz - 1] = 0;
990 			DBG("fixed up name for %s -> %s\n", pathp, pp->value);
991 		}
992 	}
993 	if (allnextpp) {
994 		*prev_pp = NULL;
995 		np->name = get_property(np, "name", NULL);
996 		np->type = get_property(np, "device_type", NULL);
997 
998 		if (!np->name)
999 			np->name = "<NULL>";
1000 		if (!np->type)
1001 			np->type = "<NULL>";
1002 	}
1003 	while (tag == OF_DT_BEGIN_NODE) {
1004 		mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
1005 		tag = *((u32 *)(*p));
1006 	}
1007 	if (tag != OF_DT_END_NODE) {
1008 		printk("Weird tag at end of node: %x\n", tag);
1009 		return mem;
1010 	}
1011 	*p += 4;
1012 	return mem;
1013 }
1014 
1015 
1016 /**
1017  * unflattens the device-tree passed by the firmware, creating the
1018  * tree of struct device_node. It also fills the "name" and "type"
1019  * pointers of the nodes so the normal device-tree walking functions
1020  * can be used (this used to be done by finish_device_tree)
1021  */
1022 void __init unflatten_device_tree(void)
1023 {
1024 	unsigned long start, mem, size;
1025 	struct device_node **allnextp = &allnodes;
1026 	char *p = NULL;
1027 	int l = 0;
1028 
1029 	DBG(" -> unflatten_device_tree()\n");
1030 
1031 	/* First pass, scan for size */
1032 	start = ((unsigned long)initial_boot_params) +
1033 		initial_boot_params->off_dt_struct;
1034 	size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1035 	size = (size | 3) + 1;
1036 
1037 	DBG("  size is %lx, allocating...\n", size);
1038 
1039 	/* Allocate memory for the expanded device tree */
1040 	mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1041 	if (!mem) {
1042 		DBG("Couldn't allocate memory with lmb_alloc()!\n");
1043 		panic("Couldn't allocate memory with lmb_alloc()!\n");
1044 	}
1045 	mem = (unsigned long) __va(mem);
1046 
1047 	((u32 *)mem)[size / 4] = 0xdeadbeef;
1048 
1049 	DBG("  unflattening %lx...\n", mem);
1050 
1051 	/* Second pass, do actual unflattening */
1052 	start = ((unsigned long)initial_boot_params) +
1053 		initial_boot_params->off_dt_struct;
1054 	unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1055 	if (*((u32 *)start) != OF_DT_END)
1056 		printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1057 	if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1058 		printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1059 		       ((u32 *)mem)[size / 4] );
1060 	*allnextp = NULL;
1061 
1062 	/* Get pointer to OF "/chosen" node for use everywhere */
1063 	of_chosen = of_find_node_by_path("/chosen");
1064 	if (of_chosen == NULL)
1065 		of_chosen = of_find_node_by_path("/chosen@0");
1066 
1067 	/* Retreive command line */
1068 	if (of_chosen != NULL) {
1069 		p = (char *)get_property(of_chosen, "bootargs", &l);
1070 		if (p != NULL && l > 0)
1071 			strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1072 	}
1073 #ifdef CONFIG_CMDLINE
1074 	if (l == 0 || (l == 1 && (*p) == 0))
1075 		strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1076 #endif /* CONFIG_CMDLINE */
1077 
1078 	DBG("Command line is: %s\n", cmd_line);
1079 
1080 	DBG(" <- unflatten_device_tree()\n");
1081 }
1082 
1083 
1084 static int __init early_init_dt_scan_cpus(unsigned long node,
1085 					  const char *uname, int depth, void *data)
1086 {
1087 	u32 *prop;
1088 	unsigned long size;
1089 	char *type = of_get_flat_dt_prop(node, "device_type", &size);
1090 
1091 	/* We are scanning "cpu" nodes only */
1092 	if (type == NULL || strcmp(type, "cpu") != 0)
1093 		return 0;
1094 
1095 	boot_cpuid = 0;
1096 	boot_cpuid_phys = 0;
1097 	if (initial_boot_params && initial_boot_params->version >= 2) {
1098 		/* version 2 of the kexec param format adds the phys cpuid
1099 		 * of booted proc.
1100 		 */
1101 		boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1102 	} else {
1103 		/* Check if it's the boot-cpu, set it's hw index now */
1104 		if (of_get_flat_dt_prop(node,
1105 					"linux,boot-cpu", NULL) != NULL) {
1106 			prop = of_get_flat_dt_prop(node, "reg", NULL);
1107 			if (prop != NULL)
1108 				boot_cpuid_phys = *prop;
1109 		}
1110 	}
1111 	set_hard_smp_processor_id(0, boot_cpuid_phys);
1112 
1113 #ifdef CONFIG_ALTIVEC
1114 	/* Check if we have a VMX and eventually update CPU features */
1115 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
1116 	if (prop && (*prop) > 0) {
1117 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1118 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1119 	}
1120 
1121 	/* Same goes for Apple's "altivec" property */
1122 	prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
1123 	if (prop) {
1124 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1125 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1126 	}
1127 #endif /* CONFIG_ALTIVEC */
1128 
1129 #ifdef CONFIG_PPC_PSERIES
1130 	/*
1131 	 * Check for an SMT capable CPU and set the CPU feature. We do
1132 	 * this by looking at the size of the ibm,ppc-interrupt-server#s
1133 	 * property
1134 	 */
1135 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1136 				       &size);
1137 	cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1138 	if (prop && ((size / sizeof(u32)) > 1))
1139 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1140 #endif
1141 
1142 	return 0;
1143 }
1144 
1145 static int __init early_init_dt_scan_chosen(unsigned long node,
1146 					    const char *uname, int depth, void *data)
1147 {
1148 	u32 *prop;
1149 	unsigned long *lprop;
1150 
1151 	DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1152 
1153 	if (depth != 1 ||
1154 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1155 		return 0;
1156 
1157 	/* get platform type */
1158 	prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
1159 	if (prop == NULL)
1160 		return 0;
1161 #ifdef CONFIG_PPC_MULTIPLATFORM
1162 	_machine = *prop;
1163 #endif
1164 
1165 #ifdef CONFIG_PPC64
1166 	/* check if iommu is forced on or off */
1167 	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1168 		iommu_is_off = 1;
1169 	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1170 		iommu_force_on = 1;
1171 #endif
1172 
1173  	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
1174  	if (lprop)
1175  		memory_limit = *lprop;
1176 
1177 #ifdef CONFIG_PPC64
1178  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1179  	if (lprop)
1180  		tce_alloc_start = *lprop;
1181  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1182  	if (lprop)
1183  		tce_alloc_end = *lprop;
1184 #endif
1185 
1186 #ifdef CONFIG_PPC_RTAS
1187 	/* To help early debugging via the front panel, we retreive a minimal
1188 	 * set of RTAS infos now if available
1189 	 */
1190 	{
1191 		u64 *basep, *entryp;
1192 
1193 		basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1194 		entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1195 		prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
1196 		if (basep && entryp && prop) {
1197 			rtas.base = *basep;
1198 			rtas.entry = *entryp;
1199 			rtas.size = *prop;
1200 		}
1201 	}
1202 #endif /* CONFIG_PPC_RTAS */
1203 
1204 	/* break now */
1205 	return 1;
1206 }
1207 
1208 static int __init early_init_dt_scan_root(unsigned long node,
1209 					  const char *uname, int depth, void *data)
1210 {
1211 	u32 *prop;
1212 
1213 	if (depth != 0)
1214 		return 0;
1215 
1216 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1217 	dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1218 	DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1219 
1220 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1221 	dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1222 	DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1223 
1224 	/* break now */
1225 	return 1;
1226 }
1227 
1228 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1229 {
1230 	cell_t *p = *cellp;
1231 	unsigned long r;
1232 
1233 	/* Ignore more than 2 cells */
1234 	while (s > sizeof(unsigned long) / 4) {
1235 		p++;
1236 		s--;
1237 	}
1238 	r = *p++;
1239 #ifdef CONFIG_PPC64
1240 	if (s > 1) {
1241 		r <<= 32;
1242 		r |= *(p++);
1243 		s--;
1244 	}
1245 #endif
1246 
1247 	*cellp = p;
1248 	return r;
1249 }
1250 
1251 
1252 static int __init early_init_dt_scan_memory(unsigned long node,
1253 					    const char *uname, int depth, void *data)
1254 {
1255 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1256 	cell_t *reg, *endp;
1257 	unsigned long l;
1258 
1259 	/* We are scanning "memory" nodes only */
1260 	if (type == NULL) {
1261 		/*
1262 		 * The longtrail doesn't have a device_type on the
1263 		 * /memory node, so look for the node called /memory@0.
1264 		 */
1265 		if (depth != 1 || strcmp(uname, "memory@0") != 0)
1266 			return 0;
1267 	} else if (strcmp(type, "memory") != 0)
1268 		return 0;
1269 
1270 	reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1271 	if (reg == NULL)
1272 		return 0;
1273 
1274 	endp = reg + (l / sizeof(cell_t));
1275 
1276 	DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1277 	    uname, l, reg[0], reg[1], reg[2], reg[3]);
1278 
1279 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1280 		unsigned long base, size;
1281 
1282 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1283 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1284 
1285 		if (size == 0)
1286 			continue;
1287 		DBG(" - %lx ,  %lx\n", base, size);
1288 #ifdef CONFIG_PPC64
1289 		if (iommu_is_off) {
1290 			if (base >= 0x80000000ul)
1291 				continue;
1292 			if ((base + size) > 0x80000000ul)
1293 				size = 0x80000000ul - base;
1294 		}
1295 #endif
1296 		lmb_add(base, size);
1297 	}
1298 	return 0;
1299 }
1300 
1301 static void __init early_reserve_mem(void)
1302 {
1303 	unsigned long base, size;
1304 	unsigned long *reserve_map;
1305 
1306 	reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1307 					initial_boot_params->off_mem_rsvmap);
1308 	while (1) {
1309 		base = *(reserve_map++);
1310 		size = *(reserve_map++);
1311 		if (size == 0)
1312 			break;
1313 		DBG("reserving: %lx -> %lx\n", base, size);
1314 		lmb_reserve(base, size);
1315 	}
1316 
1317 #if 0
1318 	DBG("memory reserved, lmbs :\n");
1319       	lmb_dump_all();
1320 #endif
1321 }
1322 
1323 void __init early_init_devtree(void *params)
1324 {
1325 	DBG(" -> early_init_devtree()\n");
1326 
1327 	/* Setup flat device-tree pointer */
1328 	initial_boot_params = params;
1329 
1330 	/* Retrieve various informations from the /chosen node of the
1331 	 * device-tree, including the platform type, initrd location and
1332 	 * size, TCE reserve, and more ...
1333 	 */
1334 	of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1335 
1336 	/* Scan memory nodes and rebuild LMBs */
1337 	lmb_init();
1338 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1339 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1340 	lmb_enforce_memory_limit(memory_limit);
1341 	lmb_analyze();
1342 	lmb_reserve(0, __pa(klimit));
1343 
1344 	DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1345 
1346 	/* Reserve LMB regions used by kernel, initrd, dt, etc... */
1347 	early_reserve_mem();
1348 
1349 	DBG("Scanning CPUs ...\n");
1350 
1351 	/* Retreive CPU related informations from the flat tree
1352 	 * (altivec support, boot CPU ID, ...)
1353 	 */
1354 	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1355 
1356 	DBG(" <- early_init_devtree()\n");
1357 }
1358 
1359 #undef printk
1360 
1361 int
1362 prom_n_addr_cells(struct device_node* np)
1363 {
1364 	int* ip;
1365 	do {
1366 		if (np->parent)
1367 			np = np->parent;
1368 		ip = (int *) get_property(np, "#address-cells", NULL);
1369 		if (ip != NULL)
1370 			return *ip;
1371 	} while (np->parent);
1372 	/* No #address-cells property for the root node, default to 1 */
1373 	return 1;
1374 }
1375 
1376 int
1377 prom_n_size_cells(struct device_node* np)
1378 {
1379 	int* ip;
1380 	do {
1381 		if (np->parent)
1382 			np = np->parent;
1383 		ip = (int *) get_property(np, "#size-cells", NULL);
1384 		if (ip != NULL)
1385 			return *ip;
1386 	} while (np->parent);
1387 	/* No #size-cells property for the root node, default to 1 */
1388 	return 1;
1389 }
1390 
1391 /**
1392  * Work out the sense (active-low level / active-high edge)
1393  * of each interrupt from the device tree.
1394  */
1395 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1396 {
1397 	struct device_node *np;
1398 	int i, j;
1399 
1400 	/* default to level-triggered */
1401 	memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1402 
1403 	for (np = allnodes; np != 0; np = np->allnext) {
1404 		for (j = 0; j < np->n_intrs; j++) {
1405 			i = np->intrs[j].line;
1406 			if (i >= off && i < max)
1407 				senses[i-off] = np->intrs[j].sense;
1408 		}
1409 	}
1410 }
1411 
1412 /**
1413  * Construct and return a list of the device_nodes with a given name.
1414  */
1415 struct device_node *find_devices(const char *name)
1416 {
1417 	struct device_node *head, **prevp, *np;
1418 
1419 	prevp = &head;
1420 	for (np = allnodes; np != 0; np = np->allnext) {
1421 		if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1422 			*prevp = np;
1423 			prevp = &np->next;
1424 		}
1425 	}
1426 	*prevp = NULL;
1427 	return head;
1428 }
1429 EXPORT_SYMBOL(find_devices);
1430 
1431 /**
1432  * Construct and return a list of the device_nodes with a given type.
1433  */
1434 struct device_node *find_type_devices(const char *type)
1435 {
1436 	struct device_node *head, **prevp, *np;
1437 
1438 	prevp = &head;
1439 	for (np = allnodes; np != 0; np = np->allnext) {
1440 		if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1441 			*prevp = np;
1442 			prevp = &np->next;
1443 		}
1444 	}
1445 	*prevp = NULL;
1446 	return head;
1447 }
1448 EXPORT_SYMBOL(find_type_devices);
1449 
1450 /**
1451  * Returns all nodes linked together
1452  */
1453 struct device_node *find_all_nodes(void)
1454 {
1455 	struct device_node *head, **prevp, *np;
1456 
1457 	prevp = &head;
1458 	for (np = allnodes; np != 0; np = np->allnext) {
1459 		*prevp = np;
1460 		prevp = &np->next;
1461 	}
1462 	*prevp = NULL;
1463 	return head;
1464 }
1465 EXPORT_SYMBOL(find_all_nodes);
1466 
1467 /** Checks if the given "compat" string matches one of the strings in
1468  * the device's "compatible" property
1469  */
1470 int device_is_compatible(struct device_node *device, const char *compat)
1471 {
1472 	const char* cp;
1473 	int cplen, l;
1474 
1475 	cp = (char *) get_property(device, "compatible", &cplen);
1476 	if (cp == NULL)
1477 		return 0;
1478 	while (cplen > 0) {
1479 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
1480 			return 1;
1481 		l = strlen(cp) + 1;
1482 		cp += l;
1483 		cplen -= l;
1484 	}
1485 
1486 	return 0;
1487 }
1488 EXPORT_SYMBOL(device_is_compatible);
1489 
1490 
1491 /**
1492  * Indicates whether the root node has a given value in its
1493  * compatible property.
1494  */
1495 int machine_is_compatible(const char *compat)
1496 {
1497 	struct device_node *root;
1498 	int rc = 0;
1499 
1500 	root = of_find_node_by_path("/");
1501 	if (root) {
1502 		rc = device_is_compatible(root, compat);
1503 		of_node_put(root);
1504 	}
1505 	return rc;
1506 }
1507 EXPORT_SYMBOL(machine_is_compatible);
1508 
1509 /**
1510  * Construct and return a list of the device_nodes with a given type
1511  * and compatible property.
1512  */
1513 struct device_node *find_compatible_devices(const char *type,
1514 					    const char *compat)
1515 {
1516 	struct device_node *head, **prevp, *np;
1517 
1518 	prevp = &head;
1519 	for (np = allnodes; np != 0; np = np->allnext) {
1520 		if (type != NULL
1521 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1522 			continue;
1523 		if (device_is_compatible(np, compat)) {
1524 			*prevp = np;
1525 			prevp = &np->next;
1526 		}
1527 	}
1528 	*prevp = NULL;
1529 	return head;
1530 }
1531 EXPORT_SYMBOL(find_compatible_devices);
1532 
1533 /**
1534  * Find the device_node with a given full_name.
1535  */
1536 struct device_node *find_path_device(const char *path)
1537 {
1538 	struct device_node *np;
1539 
1540 	for (np = allnodes; np != 0; np = np->allnext)
1541 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1542 			return np;
1543 	return NULL;
1544 }
1545 EXPORT_SYMBOL(find_path_device);
1546 
1547 /*******
1548  *
1549  * New implementation of the OF "find" APIs, return a refcounted
1550  * object, call of_node_put() when done.  The device tree and list
1551  * are protected by a rw_lock.
1552  *
1553  * Note that property management will need some locking as well,
1554  * this isn't dealt with yet.
1555  *
1556  *******/
1557 
1558 /**
1559  *	of_find_node_by_name - Find a node by its "name" property
1560  *	@from:	The node to start searching from or NULL, the node
1561  *		you pass will not be searched, only the next one
1562  *		will; typically, you pass what the previous call
1563  *		returned. of_node_put() will be called on it
1564  *	@name:	The name string to match against
1565  *
1566  *	Returns a node pointer with refcount incremented, use
1567  *	of_node_put() on it when done.
1568  */
1569 struct device_node *of_find_node_by_name(struct device_node *from,
1570 	const char *name)
1571 {
1572 	struct device_node *np;
1573 
1574 	read_lock(&devtree_lock);
1575 	np = from ? from->allnext : allnodes;
1576 	for (; np != 0; np = np->allnext)
1577 		if (np->name != 0 && strcasecmp(np->name, name) == 0
1578 		    && of_node_get(np))
1579 			break;
1580 	if (from)
1581 		of_node_put(from);
1582 	read_unlock(&devtree_lock);
1583 	return np;
1584 }
1585 EXPORT_SYMBOL(of_find_node_by_name);
1586 
1587 /**
1588  *	of_find_node_by_type - Find a node by its "device_type" property
1589  *	@from:	The node to start searching from or NULL, the node
1590  *		you pass will not be searched, only the next one
1591  *		will; typically, you pass what the previous call
1592  *		returned. of_node_put() will be called on it
1593  *	@name:	The type string to match against
1594  *
1595  *	Returns a node pointer with refcount incremented, use
1596  *	of_node_put() on it when done.
1597  */
1598 struct device_node *of_find_node_by_type(struct device_node *from,
1599 	const char *type)
1600 {
1601 	struct device_node *np;
1602 
1603 	read_lock(&devtree_lock);
1604 	np = from ? from->allnext : allnodes;
1605 	for (; np != 0; np = np->allnext)
1606 		if (np->type != 0 && strcasecmp(np->type, type) == 0
1607 		    && of_node_get(np))
1608 			break;
1609 	if (from)
1610 		of_node_put(from);
1611 	read_unlock(&devtree_lock);
1612 	return np;
1613 }
1614 EXPORT_SYMBOL(of_find_node_by_type);
1615 
1616 /**
1617  *	of_find_compatible_node - Find a node based on type and one of the
1618  *                                tokens in its "compatible" property
1619  *	@from:		The node to start searching from or NULL, the node
1620  *			you pass will not be searched, only the next one
1621  *			will; typically, you pass what the previous call
1622  *			returned. of_node_put() will be called on it
1623  *	@type:		The type string to match "device_type" or NULL to ignore
1624  *	@compatible:	The string to match to one of the tokens in the device
1625  *			"compatible" list.
1626  *
1627  *	Returns a node pointer with refcount incremented, use
1628  *	of_node_put() on it when done.
1629  */
1630 struct device_node *of_find_compatible_node(struct device_node *from,
1631 	const char *type, const char *compatible)
1632 {
1633 	struct device_node *np;
1634 
1635 	read_lock(&devtree_lock);
1636 	np = from ? from->allnext : allnodes;
1637 	for (; np != 0; np = np->allnext) {
1638 		if (type != NULL
1639 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1640 			continue;
1641 		if (device_is_compatible(np, compatible) && of_node_get(np))
1642 			break;
1643 	}
1644 	if (from)
1645 		of_node_put(from);
1646 	read_unlock(&devtree_lock);
1647 	return np;
1648 }
1649 EXPORT_SYMBOL(of_find_compatible_node);
1650 
1651 /**
1652  *	of_find_node_by_path - Find a node matching a full OF path
1653  *	@path:	The full path to match
1654  *
1655  *	Returns a node pointer with refcount incremented, use
1656  *	of_node_put() on it when done.
1657  */
1658 struct device_node *of_find_node_by_path(const char *path)
1659 {
1660 	struct device_node *np = allnodes;
1661 
1662 	read_lock(&devtree_lock);
1663 	for (; np != 0; np = np->allnext) {
1664 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1665 		    && of_node_get(np))
1666 			break;
1667 	}
1668 	read_unlock(&devtree_lock);
1669 	return np;
1670 }
1671 EXPORT_SYMBOL(of_find_node_by_path);
1672 
1673 /**
1674  *	of_find_node_by_phandle - Find a node given a phandle
1675  *	@handle:	phandle of the node to find
1676  *
1677  *	Returns a node pointer with refcount incremented, use
1678  *	of_node_put() on it when done.
1679  */
1680 struct device_node *of_find_node_by_phandle(phandle handle)
1681 {
1682 	struct device_node *np;
1683 
1684 	read_lock(&devtree_lock);
1685 	for (np = allnodes; np != 0; np = np->allnext)
1686 		if (np->linux_phandle == handle)
1687 			break;
1688 	if (np)
1689 		of_node_get(np);
1690 	read_unlock(&devtree_lock);
1691 	return np;
1692 }
1693 EXPORT_SYMBOL(of_find_node_by_phandle);
1694 
1695 /**
1696  *	of_find_all_nodes - Get next node in global list
1697  *	@prev:	Previous node or NULL to start iteration
1698  *		of_node_put() will be called on it
1699  *
1700  *	Returns a node pointer with refcount incremented, use
1701  *	of_node_put() on it when done.
1702  */
1703 struct device_node *of_find_all_nodes(struct device_node *prev)
1704 {
1705 	struct device_node *np;
1706 
1707 	read_lock(&devtree_lock);
1708 	np = prev ? prev->allnext : allnodes;
1709 	for (; np != 0; np = np->allnext)
1710 		if (of_node_get(np))
1711 			break;
1712 	if (prev)
1713 		of_node_put(prev);
1714 	read_unlock(&devtree_lock);
1715 	return np;
1716 }
1717 EXPORT_SYMBOL(of_find_all_nodes);
1718 
1719 /**
1720  *	of_get_parent - Get a node's parent if any
1721  *	@node:	Node to get parent
1722  *
1723  *	Returns a node pointer with refcount incremented, use
1724  *	of_node_put() on it when done.
1725  */
1726 struct device_node *of_get_parent(const struct device_node *node)
1727 {
1728 	struct device_node *np;
1729 
1730 	if (!node)
1731 		return NULL;
1732 
1733 	read_lock(&devtree_lock);
1734 	np = of_node_get(node->parent);
1735 	read_unlock(&devtree_lock);
1736 	return np;
1737 }
1738 EXPORT_SYMBOL(of_get_parent);
1739 
1740 /**
1741  *	of_get_next_child - Iterate a node childs
1742  *	@node:	parent node
1743  *	@prev:	previous child of the parent node, or NULL to get first
1744  *
1745  *	Returns a node pointer with refcount incremented, use
1746  *	of_node_put() on it when done.
1747  */
1748 struct device_node *of_get_next_child(const struct device_node *node,
1749 	struct device_node *prev)
1750 {
1751 	struct device_node *next;
1752 
1753 	read_lock(&devtree_lock);
1754 	next = prev ? prev->sibling : node->child;
1755 	for (; next != 0; next = next->sibling)
1756 		if (of_node_get(next))
1757 			break;
1758 	if (prev)
1759 		of_node_put(prev);
1760 	read_unlock(&devtree_lock);
1761 	return next;
1762 }
1763 EXPORT_SYMBOL(of_get_next_child);
1764 
1765 /**
1766  *	of_node_get - Increment refcount of a node
1767  *	@node:	Node to inc refcount, NULL is supported to
1768  *		simplify writing of callers
1769  *
1770  *	Returns node.
1771  */
1772 struct device_node *of_node_get(struct device_node *node)
1773 {
1774 	if (node)
1775 		kref_get(&node->kref);
1776 	return node;
1777 }
1778 EXPORT_SYMBOL(of_node_get);
1779 
1780 static inline struct device_node * kref_to_device_node(struct kref *kref)
1781 {
1782 	return container_of(kref, struct device_node, kref);
1783 }
1784 
1785 /**
1786  *	of_node_release - release a dynamically allocated node
1787  *	@kref:  kref element of the node to be released
1788  *
1789  *	In of_node_put() this function is passed to kref_put()
1790  *	as the destructor.
1791  */
1792 static void of_node_release(struct kref *kref)
1793 {
1794 	struct device_node *node = kref_to_device_node(kref);
1795 	struct property *prop = node->properties;
1796 
1797 	if (!OF_IS_DYNAMIC(node))
1798 		return;
1799 	while (prop) {
1800 		struct property *next = prop->next;
1801 		kfree(prop->name);
1802 		kfree(prop->value);
1803 		kfree(prop);
1804 		prop = next;
1805 	}
1806 	kfree(node->intrs);
1807 	kfree(node->addrs);
1808 	kfree(node->full_name);
1809 	kfree(node->data);
1810 	kfree(node);
1811 }
1812 
1813 /**
1814  *	of_node_put - Decrement refcount of a node
1815  *	@node:	Node to dec refcount, NULL is supported to
1816  *		simplify writing of callers
1817  *
1818  */
1819 void of_node_put(struct device_node *node)
1820 {
1821 	if (node)
1822 		kref_put(&node->kref, of_node_release);
1823 }
1824 EXPORT_SYMBOL(of_node_put);
1825 
1826 /*
1827  * Plug a device node into the tree and global list.
1828  */
1829 void of_attach_node(struct device_node *np)
1830 {
1831 	write_lock(&devtree_lock);
1832 	np->sibling = np->parent->child;
1833 	np->allnext = allnodes;
1834 	np->parent->child = np;
1835 	allnodes = np;
1836 	write_unlock(&devtree_lock);
1837 }
1838 
1839 /*
1840  * "Unplug" a node from the device tree.  The caller must hold
1841  * a reference to the node.  The memory associated with the node
1842  * is not freed until its refcount goes to zero.
1843  */
1844 void of_detach_node(const struct device_node *np)
1845 {
1846 	struct device_node *parent;
1847 
1848 	write_lock(&devtree_lock);
1849 
1850 	parent = np->parent;
1851 
1852 	if (allnodes == np)
1853 		allnodes = np->allnext;
1854 	else {
1855 		struct device_node *prev;
1856 		for (prev = allnodes;
1857 		     prev->allnext != np;
1858 		     prev = prev->allnext)
1859 			;
1860 		prev->allnext = np->allnext;
1861 	}
1862 
1863 	if (parent->child == np)
1864 		parent->child = np->sibling;
1865 	else {
1866 		struct device_node *prevsib;
1867 		for (prevsib = np->parent->child;
1868 		     prevsib->sibling != np;
1869 		     prevsib = prevsib->sibling)
1870 			;
1871 		prevsib->sibling = np->sibling;
1872 	}
1873 
1874 	write_unlock(&devtree_lock);
1875 }
1876 
1877 #ifdef CONFIG_PPC_PSERIES
1878 /*
1879  * Fix up the uninitialized fields in a new device node:
1880  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1881  *
1882  * A lot of boot-time code is duplicated here, because functions such
1883  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1884  * slab allocator.
1885  *
1886  * This should probably be split up into smaller chunks.
1887  */
1888 
1889 static int of_finish_dynamic_node(struct device_node *node,
1890 				  unsigned long *unused1, int unused2,
1891 				  int unused3, int unused4)
1892 {
1893 	struct device_node *parent = of_get_parent(node);
1894 	int err = 0;
1895 	phandle *ibm_phandle;
1896 
1897 	node->name = get_property(node, "name", NULL);
1898 	node->type = get_property(node, "device_type", NULL);
1899 
1900 	if (!parent) {
1901 		err = -ENODEV;
1902 		goto out;
1903 	}
1904 
1905 	/* We don't support that function on PowerMac, at least
1906 	 * not yet
1907 	 */
1908 	if (_machine == PLATFORM_POWERMAC)
1909 		return -ENODEV;
1910 
1911 	/* fix up new node's linux_phandle field */
1912 	if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1913 		node->linux_phandle = *ibm_phandle;
1914 
1915 out:
1916 	of_node_put(parent);
1917 	return err;
1918 }
1919 
1920 static int prom_reconfig_notifier(struct notifier_block *nb,
1921 				  unsigned long action, void *node)
1922 {
1923 	int err;
1924 
1925 	switch (action) {
1926 	case PSERIES_RECONFIG_ADD:
1927 		err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1928 		if (err < 0) {
1929 			printk(KERN_ERR "finish_node returned %d\n", err);
1930 			err = NOTIFY_BAD;
1931 		}
1932 		break;
1933 	default:
1934 		err = NOTIFY_DONE;
1935 		break;
1936 	}
1937 	return err;
1938 }
1939 
1940 static struct notifier_block prom_reconfig_nb = {
1941 	.notifier_call = prom_reconfig_notifier,
1942 	.priority = 10, /* This one needs to run first */
1943 };
1944 
1945 static int __init prom_reconfig_setup(void)
1946 {
1947 	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1948 }
1949 __initcall(prom_reconfig_setup);
1950 #endif
1951 
1952 /*
1953  * Find a property with a given name for a given node
1954  * and return the value.
1955  */
1956 unsigned char *get_property(struct device_node *np, const char *name,
1957 			    int *lenp)
1958 {
1959 	struct property *pp;
1960 
1961 	for (pp = np->properties; pp != 0; pp = pp->next)
1962 		if (strcmp(pp->name, name) == 0) {
1963 			if (lenp != 0)
1964 				*lenp = pp->length;
1965 			return pp->value;
1966 		}
1967 	return NULL;
1968 }
1969 EXPORT_SYMBOL(get_property);
1970 
1971 /*
1972  * Add a property to a node
1973  */
1974 int prom_add_property(struct device_node* np, struct property* prop)
1975 {
1976 	struct property **next;
1977 
1978 	prop->next = NULL;
1979 	write_lock(&devtree_lock);
1980 	next = &np->properties;
1981 	while (*next) {
1982 		if (strcmp(prop->name, (*next)->name) == 0) {
1983 			/* duplicate ! don't insert it */
1984 			write_unlock(&devtree_lock);
1985 			return -1;
1986 		}
1987 		next = &(*next)->next;
1988 	}
1989 	*next = prop;
1990 	write_unlock(&devtree_lock);
1991 
1992 #ifdef CONFIG_PROC_DEVICETREE
1993 	/* try to add to proc as well if it was initialized */
1994 	if (np->pde)
1995 		proc_device_tree_add_prop(np->pde, prop);
1996 #endif /* CONFIG_PROC_DEVICETREE */
1997 
1998 	return 0;
1999 }
2000 
2001 /* I quickly hacked that one, check against spec ! */
2002 static inline unsigned long
2003 bus_space_to_resource_flags(unsigned int bus_space)
2004 {
2005 	u8 space = (bus_space >> 24) & 0xf;
2006 	if (space == 0)
2007 		space = 0x02;
2008 	if (space == 0x02)
2009 		return IORESOURCE_MEM;
2010 	else if (space == 0x01)
2011 		return IORESOURCE_IO;
2012 	else {
2013 		printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2014 		    	bus_space);
2015 		return 0;
2016 	}
2017 }
2018 
2019 #ifdef CONFIG_PCI
2020 static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2021 						 struct address_range *range)
2022 {
2023 	unsigned long mask;
2024 	int i;
2025 
2026 	/* Check this one */
2027 	mask = bus_space_to_resource_flags(range->space);
2028 	for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2029 		if ((pdev->resource[i].flags & mask) == mask &&
2030 			pdev->resource[i].start <= range->address &&
2031 			pdev->resource[i].end > range->address) {
2032 				if ((range->address + range->size - 1) > pdev->resource[i].end) {
2033 					/* Add better message */
2034 					printk(KERN_WARNING "PCI/OF resource overlap !\n");
2035 					return NULL;
2036 				}
2037 				break;
2038 			}
2039 	}
2040 	if (i == DEVICE_COUNT_RESOURCE)
2041 		return NULL;
2042 	return &pdev->resource[i];
2043 }
2044 
2045 /*
2046  * Request an OF device resource. Currently handles child of PCI devices,
2047  * or other nodes attached to the root node. Ultimately, put some
2048  * link to resources in the OF node.
2049  */
2050 struct resource *request_OF_resource(struct device_node* node, int index,
2051 				     const char* name_postfix)
2052 {
2053 	struct pci_dev* pcidev;
2054 	u8 pci_bus, pci_devfn;
2055 	unsigned long iomask;
2056 	struct device_node* nd;
2057 	struct resource* parent;
2058 	struct resource *res = NULL;
2059 	int nlen, plen;
2060 
2061 	if (index >= node->n_addrs)
2062 		goto fail;
2063 
2064 	/* Sanity check on bus space */
2065 	iomask = bus_space_to_resource_flags(node->addrs[index].space);
2066 	if (iomask & IORESOURCE_MEM)
2067 		parent = &iomem_resource;
2068 	else if (iomask & IORESOURCE_IO)
2069 		parent = &ioport_resource;
2070 	else
2071 		goto fail;
2072 
2073 	/* Find a PCI parent if any */
2074 	nd = node;
2075 	pcidev = NULL;
2076 	while (nd) {
2077 		if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2078 			pcidev = pci_find_slot(pci_bus, pci_devfn);
2079 		if (pcidev) break;
2080 		nd = nd->parent;
2081 	}
2082 	if (pcidev)
2083 		parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2084 	if (!parent) {
2085 		printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2086 			node->name);
2087 		goto fail;
2088 	}
2089 
2090 	res = __request_region(parent, node->addrs[index].address,
2091 			       node->addrs[index].size, NULL);
2092 	if (!res)
2093 		goto fail;
2094 	nlen = strlen(node->name);
2095 	plen = name_postfix ? strlen(name_postfix) : 0;
2096 	res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2097 	if (res->name) {
2098 		strcpy((char *)res->name, node->name);
2099 		if (plen)
2100 			strcpy((char *)res->name+nlen, name_postfix);
2101 	}
2102 	return res;
2103 fail:
2104 	return NULL;
2105 }
2106 EXPORT_SYMBOL(request_OF_resource);
2107 
2108 int release_OF_resource(struct device_node *node, int index)
2109 {
2110 	struct pci_dev* pcidev;
2111 	u8 pci_bus, pci_devfn;
2112 	unsigned long iomask, start, end;
2113 	struct device_node* nd;
2114 	struct resource* parent;
2115 	struct resource *res = NULL;
2116 
2117 	if (index >= node->n_addrs)
2118 		return -EINVAL;
2119 
2120 	/* Sanity check on bus space */
2121 	iomask = bus_space_to_resource_flags(node->addrs[index].space);
2122 	if (iomask & IORESOURCE_MEM)
2123 		parent = &iomem_resource;
2124 	else if (iomask & IORESOURCE_IO)
2125 		parent = &ioport_resource;
2126 	else
2127 		return -EINVAL;
2128 
2129 	/* Find a PCI parent if any */
2130 	nd = node;
2131 	pcidev = NULL;
2132 	while(nd) {
2133 		if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2134 			pcidev = pci_find_slot(pci_bus, pci_devfn);
2135 		if (pcidev) break;
2136 		nd = nd->parent;
2137 	}
2138 	if (pcidev)
2139 		parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2140 	if (!parent) {
2141 		printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2142 			node->name);
2143 		return -ENODEV;
2144 	}
2145 
2146 	/* Find us in the parent and its childs */
2147 	res = parent->child;
2148 	start = node->addrs[index].address;
2149 	end = start + node->addrs[index].size - 1;
2150 	while (res) {
2151 		if (res->start == start && res->end == end &&
2152 		    (res->flags & IORESOURCE_BUSY))
2153 		    	break;
2154 		if (res->start <= start && res->end >= end)
2155 			res = res->child;
2156 		else
2157 			res = res->sibling;
2158 	}
2159 	if (!res)
2160 		return -ENODEV;
2161 
2162 	if (res->name) {
2163 		kfree(res->name);
2164 		res->name = NULL;
2165 	}
2166 	release_resource(res);
2167 	kfree(res);
2168 
2169 	return 0;
2170 }
2171 EXPORT_SYMBOL(release_OF_resource);
2172 #endif /* CONFIG_PCI */
2173