xref: /openbmc/linux/arch/powerpc/kernel/prom.c (revision 4df20460)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 #undef DEBUG
17 
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
33 
34 #include <asm/prom.h>
35 #include <asm/rtas.h>
36 #include <asm/lmb.h>
37 #include <asm/page.h>
38 #include <asm/processor.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/smp.h>
43 #include <asm/system.h>
44 #include <asm/mmu.h>
45 #include <asm/pgtable.h>
46 #include <asm/pci.h>
47 #include <asm/iommu.h>
48 #include <asm/btext.h>
49 #include <asm/sections.h>
50 #include <asm/machdep.h>
51 #include <asm/pSeries_reconfig.h>
52 #include <asm/pci-bridge.h>
53 
54 #ifdef DEBUG
55 #define DBG(fmt...) printk(KERN_ERR fmt)
56 #else
57 #define DBG(fmt...)
58 #endif
59 
60 
61 static int __initdata dt_root_addr_cells;
62 static int __initdata dt_root_size_cells;
63 
64 #ifdef CONFIG_PPC64
65 static int __initdata iommu_is_off;
66 int __initdata iommu_force_on;
67 unsigned long tce_alloc_start, tce_alloc_end;
68 #endif
69 
70 typedef u32 cell_t;
71 
72 #if 0
73 static struct boot_param_header *initial_boot_params __initdata;
74 #else
75 struct boot_param_header *initial_boot_params;
76 #endif
77 
78 static struct device_node *allnodes = NULL;
79 
80 /* use when traversing tree through the allnext, child, sibling,
81  * or parent members of struct device_node.
82  */
83 static DEFINE_RWLOCK(devtree_lock);
84 
85 /* export that to outside world */
86 struct device_node *of_chosen;
87 
88 struct device_node *dflt_interrupt_controller;
89 int num_interrupt_controllers;
90 
91 /*
92  * Wrapper for allocating memory for various data that needs to be
93  * attached to device nodes as they are processed at boot or when
94  * added to the device tree later (e.g. DLPAR).  At boot there is
95  * already a region reserved so we just increment *mem_start by size;
96  * otherwise we call kmalloc.
97  */
98 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
99 {
100 	unsigned long tmp;
101 
102 	if (!mem_start)
103 		return kmalloc(size, GFP_KERNEL);
104 
105 	tmp = *mem_start;
106 	*mem_start += size;
107 	return (void *)tmp;
108 }
109 
110 /*
111  * Find the device_node with a given phandle.
112  */
113 static struct device_node * find_phandle(phandle ph)
114 {
115 	struct device_node *np;
116 
117 	for (np = allnodes; np != 0; np = np->allnext)
118 		if (np->linux_phandle == ph)
119 			return np;
120 	return NULL;
121 }
122 
123 /*
124  * Find the interrupt parent of a node.
125  */
126 static struct device_node * __devinit intr_parent(struct device_node *p)
127 {
128 	phandle *parp;
129 
130 	parp = (phandle *) get_property(p, "interrupt-parent", NULL);
131 	if (parp == NULL)
132 		return p->parent;
133 	p = find_phandle(*parp);
134 	if (p != NULL)
135 		return p;
136 	/*
137 	 * On a powermac booted with BootX, we don't get to know the
138 	 * phandles for any nodes, so find_phandle will return NULL.
139 	 * Fortunately these machines only have one interrupt controller
140 	 * so there isn't in fact any ambiguity.  -- paulus
141 	 */
142 	if (num_interrupt_controllers == 1)
143 		p = dflt_interrupt_controller;
144 	return p;
145 }
146 
147 /*
148  * Find out the size of each entry of the interrupts property
149  * for a node.
150  */
151 int __devinit prom_n_intr_cells(struct device_node *np)
152 {
153 	struct device_node *p;
154 	unsigned int *icp;
155 
156 	for (p = np; (p = intr_parent(p)) != NULL; ) {
157 		icp = (unsigned int *)
158 			get_property(p, "#interrupt-cells", NULL);
159 		if (icp != NULL)
160 			return *icp;
161 		if (get_property(p, "interrupt-controller", NULL) != NULL
162 		    || get_property(p, "interrupt-map", NULL) != NULL) {
163 			printk("oops, node %s doesn't have #interrupt-cells\n",
164 			       p->full_name);
165 			return 1;
166 		}
167 	}
168 #ifdef DEBUG_IRQ
169 	printk("prom_n_intr_cells failed for %s\n", np->full_name);
170 #endif
171 	return 1;
172 }
173 
174 /*
175  * Map an interrupt from a device up to the platform interrupt
176  * descriptor.
177  */
178 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
179 				   struct device_node *np, unsigned int *ints,
180 				   int nintrc)
181 {
182 	struct device_node *p, *ipar;
183 	unsigned int *imap, *imask, *ip;
184 	int i, imaplen, match;
185 	int newintrc = 0, newaddrc = 0;
186 	unsigned int *reg;
187 	int naddrc;
188 
189 	reg = (unsigned int *) get_property(np, "reg", NULL);
190 	naddrc = prom_n_addr_cells(np);
191 	p = intr_parent(np);
192 	while (p != NULL) {
193 		if (get_property(p, "interrupt-controller", NULL) != NULL)
194 			/* this node is an interrupt controller, stop here */
195 			break;
196 		imap = (unsigned int *)
197 			get_property(p, "interrupt-map", &imaplen);
198 		if (imap == NULL) {
199 			p = intr_parent(p);
200 			continue;
201 		}
202 		imask = (unsigned int *)
203 			get_property(p, "interrupt-map-mask", NULL);
204 		if (imask == NULL) {
205 			printk("oops, %s has interrupt-map but no mask\n",
206 			       p->full_name);
207 			return 0;
208 		}
209 		imaplen /= sizeof(unsigned int);
210 		match = 0;
211 		ipar = NULL;
212 		while (imaplen > 0 && !match) {
213 			/* check the child-interrupt field */
214 			match = 1;
215 			for (i = 0; i < naddrc && match; ++i)
216 				match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
217 			for (; i < naddrc + nintrc && match; ++i)
218 				match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
219 			imap += naddrc + nintrc;
220 			imaplen -= naddrc + nintrc;
221 			/* grab the interrupt parent */
222 			ipar = find_phandle((phandle) *imap++);
223 			--imaplen;
224 			if (ipar == NULL && num_interrupt_controllers == 1)
225 				/* cope with BootX not giving us phandles */
226 				ipar = dflt_interrupt_controller;
227 			if (ipar == NULL) {
228 				printk("oops, no int parent %x in map of %s\n",
229 				       imap[-1], p->full_name);
230 				return 0;
231 			}
232 			/* find the parent's # addr and intr cells */
233 			ip = (unsigned int *)
234 				get_property(ipar, "#interrupt-cells", NULL);
235 			if (ip == NULL) {
236 				printk("oops, no #interrupt-cells on %s\n",
237 				       ipar->full_name);
238 				return 0;
239 			}
240 			newintrc = *ip;
241 			ip = (unsigned int *)
242 				get_property(ipar, "#address-cells", NULL);
243 			newaddrc = (ip == NULL)? 0: *ip;
244 			imap += newaddrc + newintrc;
245 			imaplen -= newaddrc + newintrc;
246 		}
247 		if (imaplen < 0) {
248 			printk("oops, error decoding int-map on %s, len=%d\n",
249 			       p->full_name, imaplen);
250 			return 0;
251 		}
252 		if (!match) {
253 #ifdef DEBUG_IRQ
254 			printk("oops, no match in %s int-map for %s\n",
255 			       p->full_name, np->full_name);
256 #endif
257 			return 0;
258 		}
259 		p = ipar;
260 		naddrc = newaddrc;
261 		nintrc = newintrc;
262 		ints = imap - nintrc;
263 		reg = ints - naddrc;
264 	}
265 	if (p == NULL) {
266 #ifdef DEBUG_IRQ
267 		printk("hmmm, int tree for %s doesn't have ctrler\n",
268 		       np->full_name);
269 #endif
270 		return 0;
271 	}
272 	*irq = ints;
273 	*ictrler = p;
274 	return nintrc;
275 }
276 
277 static unsigned char map_isa_senses[4] = {
278 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
279 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
280 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
281 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
282 };
283 
284 static unsigned char map_mpic_senses[4] = {
285 	IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
286 	IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
287 	/* 2 seems to be used for the 8259 cascade... */
288 	IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
289 	IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
290 };
291 
292 static int __devinit finish_node_interrupts(struct device_node *np,
293 					    unsigned long *mem_start,
294 					    int measure_only)
295 {
296 	unsigned int *ints;
297 	int intlen, intrcells, intrcount;
298 	int i, j, n, sense;
299 	unsigned int *irq, virq;
300 	struct device_node *ic;
301 	int trace = 0;
302 
303 	//#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
304 #define TRACE(fmt...)
305 
306 	if (!strcmp(np->name, "smu-doorbell"))
307 		trace = 1;
308 
309 	TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
310 	      num_interrupt_controllers);
311 
312 	if (num_interrupt_controllers == 0) {
313 		/*
314 		 * Old machines just have a list of interrupt numbers
315 		 * and no interrupt-controller nodes.
316 		 */
317 		ints = (unsigned int *) get_property(np, "AAPL,interrupts",
318 						     &intlen);
319 		/* XXX old interpret_pci_props looked in parent too */
320 		/* XXX old interpret_macio_props looked for interrupts
321 		   before AAPL,interrupts */
322 		if (ints == NULL)
323 			ints = (unsigned int *) get_property(np, "interrupts",
324 							     &intlen);
325 		if (ints == NULL)
326 			return 0;
327 
328 		np->n_intrs = intlen / sizeof(unsigned int);
329 		np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
330 				       mem_start);
331 		if (!np->intrs)
332 			return -ENOMEM;
333 		if (measure_only)
334 			return 0;
335 
336 		for (i = 0; i < np->n_intrs; ++i) {
337 			np->intrs[i].line = *ints++;
338 			np->intrs[i].sense = IRQ_SENSE_LEVEL
339 				| IRQ_POLARITY_NEGATIVE;
340 		}
341 		return 0;
342 	}
343 
344 	ints = (unsigned int *) get_property(np, "interrupts", &intlen);
345 	TRACE("ints=%p, intlen=%d\n", ints, intlen);
346 	if (ints == NULL)
347 		return 0;
348 	intrcells = prom_n_intr_cells(np);
349 	intlen /= intrcells * sizeof(unsigned int);
350 	TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
351 	np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
352 	if (!np->intrs)
353 		return -ENOMEM;
354 
355 	if (measure_only)
356 		return 0;
357 
358 	intrcount = 0;
359 	for (i = 0; i < intlen; ++i, ints += intrcells) {
360 		n = map_interrupt(&irq, &ic, np, ints, intrcells);
361 		TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
362 		if (n <= 0)
363 			continue;
364 
365 		/* don't map IRQ numbers under a cascaded 8259 controller */
366 		if (ic && device_is_compatible(ic, "chrp,iic")) {
367 			np->intrs[intrcount].line = irq[0];
368 			sense = (n > 1)? (irq[1] & 3): 3;
369 			np->intrs[intrcount].sense = map_isa_senses[sense];
370 		} else {
371 			virq = virt_irq_create_mapping(irq[0]);
372 			TRACE("virq=%d\n", virq);
373 #ifdef CONFIG_PPC64
374 			if (virq == NO_IRQ) {
375 				printk(KERN_CRIT "Could not allocate interrupt"
376 				       " number for %s\n", np->full_name);
377 				continue;
378 			}
379 #endif
380 			np->intrs[intrcount].line = irq_offset_up(virq);
381 			sense = (n > 1)? (irq[1] & 3): 1;
382 
383 			/* Apple uses bits in there in a different way, let's
384 			 * only keep the real sense bit on macs
385 			 */
386 			if (_machine == PLATFORM_POWERMAC)
387 				sense &= 0x1;
388 			np->intrs[intrcount].sense = map_mpic_senses[sense];
389 		}
390 
391 #ifdef CONFIG_PPC64
392 		/* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
393 		if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
394 			char *name = get_property(ic->parent, "name", NULL);
395 			if (name && !strcmp(name, "u3"))
396 				np->intrs[intrcount].line += 128;
397 			else if (!(name && (!strcmp(name, "mac-io") ||
398 					    !strcmp(name, "u4"))))
399 				/* ignore other cascaded controllers, such as
400 				   the k2-sata-root */
401 				break;
402 		}
403 #endif /* CONFIG_PPC64 */
404 		if (n > 2) {
405 			printk("hmmm, got %d intr cells for %s:", n,
406 			       np->full_name);
407 			for (j = 0; j < n; ++j)
408 				printk(" %d", irq[j]);
409 			printk("\n");
410 		}
411 		++intrcount;
412 	}
413 	np->n_intrs = intrcount;
414 
415 	return 0;
416 }
417 
418 static int __devinit finish_node(struct device_node *np,
419 				 unsigned long *mem_start,
420 				 int measure_only)
421 {
422 	struct device_node *child;
423 	int rc = 0;
424 
425 	rc = finish_node_interrupts(np, mem_start, measure_only);
426 	if (rc)
427 		goto out;
428 
429 	for (child = np->child; child != NULL; child = child->sibling) {
430 		rc = finish_node(child, mem_start, measure_only);
431 		if (rc)
432 			goto out;
433 	}
434 out:
435 	return rc;
436 }
437 
438 static void __init scan_interrupt_controllers(void)
439 {
440 	struct device_node *np;
441 	int n = 0;
442 	char *name, *ic;
443 	int iclen;
444 
445 	for (np = allnodes; np != NULL; np = np->allnext) {
446 		ic = get_property(np, "interrupt-controller", &iclen);
447 		name = get_property(np, "name", NULL);
448 		/* checking iclen makes sure we don't get a false
449 		   match on /chosen.interrupt_controller */
450 		if ((name != NULL
451 		     && strcmp(name, "interrupt-controller") == 0)
452 		    || (ic != NULL && iclen == 0
453 			&& strcmp(name, "AppleKiwi"))) {
454 			if (n == 0)
455 				dflt_interrupt_controller = np;
456 			++n;
457 		}
458 	}
459 	num_interrupt_controllers = n;
460 }
461 
462 /**
463  * finish_device_tree is called once things are running normally
464  * (i.e. with text and data mapped to the address they were linked at).
465  * It traverses the device tree and fills in some of the additional,
466  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
467  * mapping is also initialized at this point.
468  */
469 void __init finish_device_tree(void)
470 {
471 	unsigned long start, end, size = 0;
472 
473 	DBG(" -> finish_device_tree\n");
474 
475 #ifdef CONFIG_PPC64
476 	/* Initialize virtual IRQ map */
477 	virt_irq_init();
478 #endif
479 	scan_interrupt_controllers();
480 
481 	/*
482 	 * Finish device-tree (pre-parsing some properties etc...)
483 	 * We do this in 2 passes. One with "measure_only" set, which
484 	 * will only measure the amount of memory needed, then we can
485 	 * allocate that memory, and call finish_node again. However,
486 	 * we must be careful as most routines will fail nowadays when
487 	 * prom_alloc() returns 0, so we must make sure our first pass
488 	 * doesn't start at 0. We pre-initialize size to 16 for that
489 	 * reason and then remove those additional 16 bytes
490 	 */
491 	size = 16;
492 	finish_node(allnodes, &size, 1);
493 	size -= 16;
494 
495 	if (0 == size)
496 		end = start = 0;
497 	else
498 		end = start = (unsigned long)__va(lmb_alloc(size, 128));
499 
500 	finish_node(allnodes, &end, 0);
501 	BUG_ON(end != start + size);
502 
503 	DBG(" <- finish_device_tree\n");
504 }
505 
506 static inline char *find_flat_dt_string(u32 offset)
507 {
508 	return ((char *)initial_boot_params) +
509 		initial_boot_params->off_dt_strings + offset;
510 }
511 
512 /**
513  * This function is used to scan the flattened device-tree, it is
514  * used to extract the memory informations at boot before we can
515  * unflatten the tree
516  */
517 int __init of_scan_flat_dt(int (*it)(unsigned long node,
518 				     const char *uname, int depth,
519 				     void *data),
520 			   void *data)
521 {
522 	unsigned long p = ((unsigned long)initial_boot_params) +
523 		initial_boot_params->off_dt_struct;
524 	int rc = 0;
525 	int depth = -1;
526 
527 	do {
528 		u32 tag = *((u32 *)p);
529 		char *pathp;
530 
531 		p += 4;
532 		if (tag == OF_DT_END_NODE) {
533 			depth --;
534 			continue;
535 		}
536 		if (tag == OF_DT_NOP)
537 			continue;
538 		if (tag == OF_DT_END)
539 			break;
540 		if (tag == OF_DT_PROP) {
541 			u32 sz = *((u32 *)p);
542 			p += 8;
543 			if (initial_boot_params->version < 0x10)
544 				p = _ALIGN(p, sz >= 8 ? 8 : 4);
545 			p += sz;
546 			p = _ALIGN(p, 4);
547 			continue;
548 		}
549 		if (tag != OF_DT_BEGIN_NODE) {
550 			printk(KERN_WARNING "Invalid tag %x scanning flattened"
551 			       " device tree !\n", tag);
552 			return -EINVAL;
553 		}
554 		depth++;
555 		pathp = (char *)p;
556 		p = _ALIGN(p + strlen(pathp) + 1, 4);
557 		if ((*pathp) == '/') {
558 			char *lp, *np;
559 			for (lp = NULL, np = pathp; *np; np++)
560 				if ((*np) == '/')
561 					lp = np+1;
562 			if (lp != NULL)
563 				pathp = lp;
564 		}
565 		rc = it(p, pathp, depth, data);
566 		if (rc != 0)
567 			break;
568 	} while(1);
569 
570 	return rc;
571 }
572 
573 /**
574  * This  function can be used within scan_flattened_dt callback to get
575  * access to properties
576  */
577 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
578 				 unsigned long *size)
579 {
580 	unsigned long p = node;
581 
582 	do {
583 		u32 tag = *((u32 *)p);
584 		u32 sz, noff;
585 		const char *nstr;
586 
587 		p += 4;
588 		if (tag == OF_DT_NOP)
589 			continue;
590 		if (tag != OF_DT_PROP)
591 			return NULL;
592 
593 		sz = *((u32 *)p);
594 		noff = *((u32 *)(p + 4));
595 		p += 8;
596 		if (initial_boot_params->version < 0x10)
597 			p = _ALIGN(p, sz >= 8 ? 8 : 4);
598 
599 		nstr = find_flat_dt_string(noff);
600 		if (nstr == NULL) {
601 			printk(KERN_WARNING "Can't find property index"
602 			       " name !\n");
603 			return NULL;
604 		}
605 		if (strcmp(name, nstr) == 0) {
606 			if (size)
607 				*size = sz;
608 			return (void *)p;
609 		}
610 		p += sz;
611 		p = _ALIGN(p, 4);
612 	} while(1);
613 }
614 
615 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
616 				       unsigned long align)
617 {
618 	void *res;
619 
620 	*mem = _ALIGN(*mem, align);
621 	res = (void *)*mem;
622 	*mem += size;
623 
624 	return res;
625 }
626 
627 static unsigned long __init unflatten_dt_node(unsigned long mem,
628 					      unsigned long *p,
629 					      struct device_node *dad,
630 					      struct device_node ***allnextpp,
631 					      unsigned long fpsize)
632 {
633 	struct device_node *np;
634 	struct property *pp, **prev_pp = NULL;
635 	char *pathp;
636 	u32 tag;
637 	unsigned int l, allocl;
638 	int has_name = 0;
639 	int new_format = 0;
640 
641 	tag = *((u32 *)(*p));
642 	if (tag != OF_DT_BEGIN_NODE) {
643 		printk("Weird tag at start of node: %x\n", tag);
644 		return mem;
645 	}
646 	*p += 4;
647 	pathp = (char *)*p;
648 	l = allocl = strlen(pathp) + 1;
649 	*p = _ALIGN(*p + l, 4);
650 
651 	/* version 0x10 has a more compact unit name here instead of the full
652 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
653 	 * it later. We detect this because the first character of the name is
654 	 * not '/'.
655 	 */
656 	if ((*pathp) != '/') {
657 		new_format = 1;
658 		if (fpsize == 0) {
659 			/* root node: special case. fpsize accounts for path
660 			 * plus terminating zero. root node only has '/', so
661 			 * fpsize should be 2, but we want to avoid the first
662 			 * level nodes to have two '/' so we use fpsize 1 here
663 			 */
664 			fpsize = 1;
665 			allocl = 2;
666 		} else {
667 			/* account for '/' and path size minus terminal 0
668 			 * already in 'l'
669 			 */
670 			fpsize += l;
671 			allocl = fpsize;
672 		}
673 	}
674 
675 
676 	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
677 				__alignof__(struct device_node));
678 	if (allnextpp) {
679 		memset(np, 0, sizeof(*np));
680 		np->full_name = ((char*)np) + sizeof(struct device_node);
681 		if (new_format) {
682 			char *p = np->full_name;
683 			/* rebuild full path for new format */
684 			if (dad && dad->parent) {
685 				strcpy(p, dad->full_name);
686 #ifdef DEBUG
687 				if ((strlen(p) + l + 1) != allocl) {
688 					DBG("%s: p: %d, l: %d, a: %d\n",
689 					    pathp, strlen(p), l, allocl);
690 				}
691 #endif
692 				p += strlen(p);
693 			}
694 			*(p++) = '/';
695 			memcpy(p, pathp, l);
696 		} else
697 			memcpy(np->full_name, pathp, l);
698 		prev_pp = &np->properties;
699 		**allnextpp = np;
700 		*allnextpp = &np->allnext;
701 		if (dad != NULL) {
702 			np->parent = dad;
703 			/* we temporarily use the next field as `last_child'*/
704 			if (dad->next == 0)
705 				dad->child = np;
706 			else
707 				dad->next->sibling = np;
708 			dad->next = np;
709 		}
710 		kref_init(&np->kref);
711 	}
712 	while(1) {
713 		u32 sz, noff;
714 		char *pname;
715 
716 		tag = *((u32 *)(*p));
717 		if (tag == OF_DT_NOP) {
718 			*p += 4;
719 			continue;
720 		}
721 		if (tag != OF_DT_PROP)
722 			break;
723 		*p += 4;
724 		sz = *((u32 *)(*p));
725 		noff = *((u32 *)((*p) + 4));
726 		*p += 8;
727 		if (initial_boot_params->version < 0x10)
728 			*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
729 
730 		pname = find_flat_dt_string(noff);
731 		if (pname == NULL) {
732 			printk("Can't find property name in list !\n");
733 			break;
734 		}
735 		if (strcmp(pname, "name") == 0)
736 			has_name = 1;
737 		l = strlen(pname) + 1;
738 		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
739 					__alignof__(struct property));
740 		if (allnextpp) {
741 			if (strcmp(pname, "linux,phandle") == 0) {
742 				np->node = *((u32 *)*p);
743 				if (np->linux_phandle == 0)
744 					np->linux_phandle = np->node;
745 			}
746 			if (strcmp(pname, "ibm,phandle") == 0)
747 				np->linux_phandle = *((u32 *)*p);
748 			pp->name = pname;
749 			pp->length = sz;
750 			pp->value = (void *)*p;
751 			*prev_pp = pp;
752 			prev_pp = &pp->next;
753 		}
754 		*p = _ALIGN((*p) + sz, 4);
755 	}
756 	/* with version 0x10 we may not have the name property, recreate
757 	 * it here from the unit name if absent
758 	 */
759 	if (!has_name) {
760 		char *p = pathp, *ps = pathp, *pa = NULL;
761 		int sz;
762 
763 		while (*p) {
764 			if ((*p) == '@')
765 				pa = p;
766 			if ((*p) == '/')
767 				ps = p + 1;
768 			p++;
769 		}
770 		if (pa < ps)
771 			pa = p;
772 		sz = (pa - ps) + 1;
773 		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
774 					__alignof__(struct property));
775 		if (allnextpp) {
776 			pp->name = "name";
777 			pp->length = sz;
778 			pp->value = (unsigned char *)(pp + 1);
779 			*prev_pp = pp;
780 			prev_pp = &pp->next;
781 			memcpy(pp->value, ps, sz - 1);
782 			((char *)pp->value)[sz - 1] = 0;
783 			DBG("fixed up name for %s -> %s\n", pathp, pp->value);
784 		}
785 	}
786 	if (allnextpp) {
787 		*prev_pp = NULL;
788 		np->name = get_property(np, "name", NULL);
789 		np->type = get_property(np, "device_type", NULL);
790 
791 		if (!np->name)
792 			np->name = "<NULL>";
793 		if (!np->type)
794 			np->type = "<NULL>";
795 	}
796 	while (tag == OF_DT_BEGIN_NODE) {
797 		mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
798 		tag = *((u32 *)(*p));
799 	}
800 	if (tag != OF_DT_END_NODE) {
801 		printk("Weird tag at end of node: %x\n", tag);
802 		return mem;
803 	}
804 	*p += 4;
805 	return mem;
806 }
807 
808 
809 /**
810  * unflattens the device-tree passed by the firmware, creating the
811  * tree of struct device_node. It also fills the "name" and "type"
812  * pointers of the nodes so the normal device-tree walking functions
813  * can be used (this used to be done by finish_device_tree)
814  */
815 void __init unflatten_device_tree(void)
816 {
817 	unsigned long start, mem, size;
818 	struct device_node **allnextp = &allnodes;
819 
820 	DBG(" -> unflatten_device_tree()\n");
821 
822 	/* First pass, scan for size */
823 	start = ((unsigned long)initial_boot_params) +
824 		initial_boot_params->off_dt_struct;
825 	size = unflatten_dt_node(0, &start, NULL, NULL, 0);
826 	size = (size | 3) + 1;
827 
828 	DBG("  size is %lx, allocating...\n", size);
829 
830 	/* Allocate memory for the expanded device tree */
831 	mem = lmb_alloc(size + 4, __alignof__(struct device_node));
832 	mem = (unsigned long) __va(mem);
833 
834 	((u32 *)mem)[size / 4] = 0xdeadbeef;
835 
836 	DBG("  unflattening %lx...\n", mem);
837 
838 	/* Second pass, do actual unflattening */
839 	start = ((unsigned long)initial_boot_params) +
840 		initial_boot_params->off_dt_struct;
841 	unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
842 	if (*((u32 *)start) != OF_DT_END)
843 		printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
844 	if (((u32 *)mem)[size / 4] != 0xdeadbeef)
845 		printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
846 		       ((u32 *)mem)[size / 4] );
847 	*allnextp = NULL;
848 
849 	/* Get pointer to OF "/chosen" node for use everywhere */
850 	of_chosen = of_find_node_by_path("/chosen");
851 	if (of_chosen == NULL)
852 		of_chosen = of_find_node_by_path("/chosen@0");
853 
854 	DBG(" <- unflatten_device_tree()\n");
855 }
856 
857 static int __init early_init_dt_scan_cpus(unsigned long node,
858 					  const char *uname, int depth,
859 					  void *data)
860 {
861 	static int logical_cpuid = 0;
862 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
863 	u32 *prop, *intserv;
864 	int i, nthreads;
865 	unsigned long len;
866 	int found = 0;
867 
868 	/* We are scanning "cpu" nodes only */
869 	if (type == NULL || strcmp(type, "cpu") != 0)
870 		return 0;
871 
872 	/* Get physical cpuid */
873 	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
874 	if (intserv) {
875 		nthreads = len / sizeof(int);
876 	} else {
877 		intserv = of_get_flat_dt_prop(node, "reg", NULL);
878 		nthreads = 1;
879 	}
880 
881 	/*
882 	 * Now see if any of these threads match our boot cpu.
883 	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
884 	 */
885 	for (i = 0; i < nthreads; i++) {
886 		/*
887 		 * version 2 of the kexec param format adds the phys cpuid of
888 		 * booted proc.
889 		 */
890 		if (initial_boot_params && initial_boot_params->version >= 2) {
891 			if (intserv[i] ==
892 					initial_boot_params->boot_cpuid_phys) {
893 				found = 1;
894 				break;
895 			}
896 		} else {
897 			/*
898 			 * Check if it's the boot-cpu, set it's hw index now,
899 			 * unfortunately this format did not support booting
900 			 * off secondary threads.
901 			 */
902 			if (of_get_flat_dt_prop(node,
903 					"linux,boot-cpu", NULL) != NULL) {
904 				found = 1;
905 				break;
906 			}
907 		}
908 
909 #ifdef CONFIG_SMP
910 		/* logical cpu id is always 0 on UP kernels */
911 		logical_cpuid++;
912 #endif
913 	}
914 
915 	if (found) {
916 		DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
917 			intserv[i]);
918 		boot_cpuid = logical_cpuid;
919 		set_hard_smp_processor_id(boot_cpuid, intserv[i]);
920 	}
921 
922 #ifdef CONFIG_ALTIVEC
923 	/* Check if we have a VMX and eventually update CPU features */
924 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
925 	if (prop && (*prop) > 0) {
926 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
927 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
928 	}
929 
930 	/* Same goes for Apple's "altivec" property */
931 	prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
932 	if (prop) {
933 		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
934 		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
935 	}
936 #endif /* CONFIG_ALTIVEC */
937 
938 #ifdef CONFIG_PPC_PSERIES
939 	if (nthreads > 1)
940 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
941 	else
942 		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
943 #endif
944 
945 	return 0;
946 }
947 
948 static int __init early_init_dt_scan_chosen(unsigned long node,
949 					    const char *uname, int depth, void *data)
950 {
951 	u32 *prop;
952 	unsigned long *lprop;
953 	unsigned long l;
954 	char *p;
955 
956 	DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
957 
958 	if (depth != 1 ||
959 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
960 		return 0;
961 
962 	/* get platform type */
963 	prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
964 	if (prop == NULL)
965 		return 0;
966 #ifdef CONFIG_PPC_MULTIPLATFORM
967 	_machine = *prop;
968 #endif
969 
970 #ifdef CONFIG_PPC64
971 	/* check if iommu is forced on or off */
972 	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
973 		iommu_is_off = 1;
974 	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
975 		iommu_force_on = 1;
976 #endif
977 
978  	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
979  	if (lprop)
980  		memory_limit = *lprop;
981 
982 #ifdef CONFIG_PPC64
983  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
984  	if (lprop)
985  		tce_alloc_start = *lprop;
986  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
987  	if (lprop)
988  		tce_alloc_end = *lprop;
989 #endif
990 
991 #ifdef CONFIG_PPC_RTAS
992 	/* To help early debugging via the front panel, we retrieve a minimal
993 	 * set of RTAS infos now if available
994 	 */
995 	{
996 		u64 *basep, *entryp;
997 
998 		basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
999 		entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1000 		prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
1001 		if (basep && entryp && prop) {
1002 			rtas.base = *basep;
1003 			rtas.entry = *entryp;
1004 			rtas.size = *prop;
1005 		}
1006 	}
1007 #endif /* CONFIG_PPC_RTAS */
1008 
1009 #ifdef CONFIG_KEXEC
1010        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
1011        if (lprop)
1012                crashk_res.start = *lprop;
1013 
1014        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
1015        if (lprop)
1016                crashk_res.end = crashk_res.start + *lprop - 1;
1017 #endif
1018 
1019 	/* Retreive command line */
1020  	p = of_get_flat_dt_prop(node, "bootargs", &l);
1021 	if (p != NULL && l > 0)
1022 		strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
1023 
1024 #ifdef CONFIG_CMDLINE
1025 	if (l == 0 || (l == 1 && (*p) == 0))
1026 		strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1027 #endif /* CONFIG_CMDLINE */
1028 
1029 	DBG("Command line is: %s\n", cmd_line);
1030 
1031 	if (strstr(cmd_line, "mem=")) {
1032 		char *p, *q;
1033 		unsigned long maxmem = 0;
1034 
1035 		for (q = cmd_line; (p = strstr(q, "mem=")) != 0; ) {
1036 			q = p + 4;
1037 			if (p > cmd_line && p[-1] != ' ')
1038 				continue;
1039 			maxmem = simple_strtoul(q, &q, 0);
1040 			if (*q == 'k' || *q == 'K') {
1041 				maxmem <<= 10;
1042 				++q;
1043 			} else if (*q == 'm' || *q == 'M') {
1044 				maxmem <<= 20;
1045 				++q;
1046 			} else if (*q == 'g' || *q == 'G') {
1047 				maxmem <<= 30;
1048 				++q;
1049 			}
1050 		}
1051 		memory_limit = maxmem;
1052 	}
1053 
1054 	/* break now */
1055 	return 1;
1056 }
1057 
1058 static int __init early_init_dt_scan_root(unsigned long node,
1059 					  const char *uname, int depth, void *data)
1060 {
1061 	u32 *prop;
1062 
1063 	if (depth != 0)
1064 		return 0;
1065 
1066 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1067 	dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1068 	DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1069 
1070 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1071 	dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1072 	DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1073 
1074 	/* break now */
1075 	return 1;
1076 }
1077 
1078 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1079 {
1080 	cell_t *p = *cellp;
1081 	unsigned long r;
1082 
1083 	/* Ignore more than 2 cells */
1084 	while (s > sizeof(unsigned long) / 4) {
1085 		p++;
1086 		s--;
1087 	}
1088 	r = *p++;
1089 #ifdef CONFIG_PPC64
1090 	if (s > 1) {
1091 		r <<= 32;
1092 		r |= *(p++);
1093 		s--;
1094 	}
1095 #endif
1096 
1097 	*cellp = p;
1098 	return r;
1099 }
1100 
1101 
1102 static int __init early_init_dt_scan_memory(unsigned long node,
1103 					    const char *uname, int depth, void *data)
1104 {
1105 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1106 	cell_t *reg, *endp;
1107 	unsigned long l;
1108 
1109 	/* We are scanning "memory" nodes only */
1110 	if (type == NULL) {
1111 		/*
1112 		 * The longtrail doesn't have a device_type on the
1113 		 * /memory node, so look for the node called /memory@0.
1114 		 */
1115 		if (depth != 1 || strcmp(uname, "memory@0") != 0)
1116 			return 0;
1117 	} else if (strcmp(type, "memory") != 0)
1118 		return 0;
1119 
1120 	reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1121 	if (reg == NULL)
1122 		reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1123 	if (reg == NULL)
1124 		return 0;
1125 
1126 	endp = reg + (l / sizeof(cell_t));
1127 
1128 	DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1129 	    uname, l, reg[0], reg[1], reg[2], reg[3]);
1130 
1131 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1132 		unsigned long base, size;
1133 
1134 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1135 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1136 
1137 		if (size == 0)
1138 			continue;
1139 		DBG(" - %lx ,  %lx\n", base, size);
1140 #ifdef CONFIG_PPC64
1141 		if (iommu_is_off) {
1142 			if (base >= 0x80000000ul)
1143 				continue;
1144 			if ((base + size) > 0x80000000ul)
1145 				size = 0x80000000ul - base;
1146 		}
1147 #endif
1148 		lmb_add(base, size);
1149 	}
1150 	return 0;
1151 }
1152 
1153 static void __init early_reserve_mem(void)
1154 {
1155 	u64 base, size;
1156 	u64 *reserve_map;
1157 
1158 	reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1159 					initial_boot_params->off_mem_rsvmap);
1160 #ifdef CONFIG_PPC32
1161 	/*
1162 	 * Handle the case where we might be booting from an old kexec
1163 	 * image that setup the mem_rsvmap as pairs of 32-bit values
1164 	 */
1165 	if (*reserve_map > 0xffffffffull) {
1166 		u32 base_32, size_32;
1167 		u32 *reserve_map_32 = (u32 *)reserve_map;
1168 
1169 		while (1) {
1170 			base_32 = *(reserve_map_32++);
1171 			size_32 = *(reserve_map_32++);
1172 			if (size_32 == 0)
1173 				break;
1174 			DBG("reserving: %x -> %x\n", base_32, size_32);
1175 			lmb_reserve(base_32, size_32);
1176 		}
1177 		return;
1178 	}
1179 #endif
1180 	while (1) {
1181 		base = *(reserve_map++);
1182 		size = *(reserve_map++);
1183 		if (size == 0)
1184 			break;
1185 		DBG("reserving: %llx -> %llx\n", base, size);
1186 		lmb_reserve(base, size);
1187 	}
1188 
1189 #if 0
1190 	DBG("memory reserved, lmbs :\n");
1191       	lmb_dump_all();
1192 #endif
1193 }
1194 
1195 void __init early_init_devtree(void *params)
1196 {
1197 	DBG(" -> early_init_devtree()\n");
1198 
1199 	/* Setup flat device-tree pointer */
1200 	initial_boot_params = params;
1201 
1202 	/* Retrieve various informations from the /chosen node of the
1203 	 * device-tree, including the platform type, initrd location and
1204 	 * size, TCE reserve, and more ...
1205 	 */
1206 	of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1207 
1208 	/* Scan memory nodes and rebuild LMBs */
1209 	lmb_init();
1210 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1211 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1212 	lmb_enforce_memory_limit(memory_limit);
1213 	lmb_analyze();
1214 
1215 	DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1216 
1217 	/* Reserve LMB regions used by kernel, initrd, dt, etc... */
1218 	lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1219 #ifdef CONFIG_CRASH_DUMP
1220 	lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1221 #endif
1222 	early_reserve_mem();
1223 
1224 	DBG("Scanning CPUs ...\n");
1225 
1226 	/* Retreive CPU related informations from the flat tree
1227 	 * (altivec support, boot CPU ID, ...)
1228 	 */
1229 	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1230 
1231 	DBG(" <- early_init_devtree()\n");
1232 }
1233 
1234 #undef printk
1235 
1236 int
1237 prom_n_addr_cells(struct device_node* np)
1238 {
1239 	int* ip;
1240 	do {
1241 		if (np->parent)
1242 			np = np->parent;
1243 		ip = (int *) get_property(np, "#address-cells", NULL);
1244 		if (ip != NULL)
1245 			return *ip;
1246 	} while (np->parent);
1247 	/* No #address-cells property for the root node, default to 1 */
1248 	return 1;
1249 }
1250 EXPORT_SYMBOL(prom_n_addr_cells);
1251 
1252 int
1253 prom_n_size_cells(struct device_node* np)
1254 {
1255 	int* ip;
1256 	do {
1257 		if (np->parent)
1258 			np = np->parent;
1259 		ip = (int *) get_property(np, "#size-cells", NULL);
1260 		if (ip != NULL)
1261 			return *ip;
1262 	} while (np->parent);
1263 	/* No #size-cells property for the root node, default to 1 */
1264 	return 1;
1265 }
1266 EXPORT_SYMBOL(prom_n_size_cells);
1267 
1268 /**
1269  * Work out the sense (active-low level / active-high edge)
1270  * of each interrupt from the device tree.
1271  */
1272 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1273 {
1274 	struct device_node *np;
1275 	int i, j;
1276 
1277 	/* default to level-triggered */
1278 	memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1279 
1280 	for (np = allnodes; np != 0; np = np->allnext) {
1281 		for (j = 0; j < np->n_intrs; j++) {
1282 			i = np->intrs[j].line;
1283 			if (i >= off && i < max)
1284 				senses[i-off] = np->intrs[j].sense;
1285 		}
1286 	}
1287 }
1288 
1289 /**
1290  * Construct and return a list of the device_nodes with a given name.
1291  */
1292 struct device_node *find_devices(const char *name)
1293 {
1294 	struct device_node *head, **prevp, *np;
1295 
1296 	prevp = &head;
1297 	for (np = allnodes; np != 0; np = np->allnext) {
1298 		if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1299 			*prevp = np;
1300 			prevp = &np->next;
1301 		}
1302 	}
1303 	*prevp = NULL;
1304 	return head;
1305 }
1306 EXPORT_SYMBOL(find_devices);
1307 
1308 /**
1309  * Construct and return a list of the device_nodes with a given type.
1310  */
1311 struct device_node *find_type_devices(const char *type)
1312 {
1313 	struct device_node *head, **prevp, *np;
1314 
1315 	prevp = &head;
1316 	for (np = allnodes; np != 0; np = np->allnext) {
1317 		if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1318 			*prevp = np;
1319 			prevp = &np->next;
1320 		}
1321 	}
1322 	*prevp = NULL;
1323 	return head;
1324 }
1325 EXPORT_SYMBOL(find_type_devices);
1326 
1327 /**
1328  * Returns all nodes linked together
1329  */
1330 struct device_node *find_all_nodes(void)
1331 {
1332 	struct device_node *head, **prevp, *np;
1333 
1334 	prevp = &head;
1335 	for (np = allnodes; np != 0; np = np->allnext) {
1336 		*prevp = np;
1337 		prevp = &np->next;
1338 	}
1339 	*prevp = NULL;
1340 	return head;
1341 }
1342 EXPORT_SYMBOL(find_all_nodes);
1343 
1344 /** Checks if the given "compat" string matches one of the strings in
1345  * the device's "compatible" property
1346  */
1347 int device_is_compatible(struct device_node *device, const char *compat)
1348 {
1349 	const char* cp;
1350 	int cplen, l;
1351 
1352 	cp = (char *) get_property(device, "compatible", &cplen);
1353 	if (cp == NULL)
1354 		return 0;
1355 	while (cplen > 0) {
1356 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
1357 			return 1;
1358 		l = strlen(cp) + 1;
1359 		cp += l;
1360 		cplen -= l;
1361 	}
1362 
1363 	return 0;
1364 }
1365 EXPORT_SYMBOL(device_is_compatible);
1366 
1367 
1368 /**
1369  * Indicates whether the root node has a given value in its
1370  * compatible property.
1371  */
1372 int machine_is_compatible(const char *compat)
1373 {
1374 	struct device_node *root;
1375 	int rc = 0;
1376 
1377 	root = of_find_node_by_path("/");
1378 	if (root) {
1379 		rc = device_is_compatible(root, compat);
1380 		of_node_put(root);
1381 	}
1382 	return rc;
1383 }
1384 EXPORT_SYMBOL(machine_is_compatible);
1385 
1386 /**
1387  * Construct and return a list of the device_nodes with a given type
1388  * and compatible property.
1389  */
1390 struct device_node *find_compatible_devices(const char *type,
1391 					    const char *compat)
1392 {
1393 	struct device_node *head, **prevp, *np;
1394 
1395 	prevp = &head;
1396 	for (np = allnodes; np != 0; np = np->allnext) {
1397 		if (type != NULL
1398 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1399 			continue;
1400 		if (device_is_compatible(np, compat)) {
1401 			*prevp = np;
1402 			prevp = &np->next;
1403 		}
1404 	}
1405 	*prevp = NULL;
1406 	return head;
1407 }
1408 EXPORT_SYMBOL(find_compatible_devices);
1409 
1410 /**
1411  * Find the device_node with a given full_name.
1412  */
1413 struct device_node *find_path_device(const char *path)
1414 {
1415 	struct device_node *np;
1416 
1417 	for (np = allnodes; np != 0; np = np->allnext)
1418 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1419 			return np;
1420 	return NULL;
1421 }
1422 EXPORT_SYMBOL(find_path_device);
1423 
1424 /*******
1425  *
1426  * New implementation of the OF "find" APIs, return a refcounted
1427  * object, call of_node_put() when done.  The device tree and list
1428  * are protected by a rw_lock.
1429  *
1430  * Note that property management will need some locking as well,
1431  * this isn't dealt with yet.
1432  *
1433  *******/
1434 
1435 /**
1436  *	of_find_node_by_name - Find a node by its "name" property
1437  *	@from:	The node to start searching from or NULL, the node
1438  *		you pass will not be searched, only the next one
1439  *		will; typically, you pass what the previous call
1440  *		returned. of_node_put() will be called on it
1441  *	@name:	The name string to match against
1442  *
1443  *	Returns a node pointer with refcount incremented, use
1444  *	of_node_put() on it when done.
1445  */
1446 struct device_node *of_find_node_by_name(struct device_node *from,
1447 	const char *name)
1448 {
1449 	struct device_node *np;
1450 
1451 	read_lock(&devtree_lock);
1452 	np = from ? from->allnext : allnodes;
1453 	for (; np != NULL; np = np->allnext)
1454 		if (np->name != NULL && strcasecmp(np->name, name) == 0
1455 		    && of_node_get(np))
1456 			break;
1457 	if (from)
1458 		of_node_put(from);
1459 	read_unlock(&devtree_lock);
1460 	return np;
1461 }
1462 EXPORT_SYMBOL(of_find_node_by_name);
1463 
1464 /**
1465  *	of_find_node_by_type - Find a node by its "device_type" property
1466  *	@from:	The node to start searching from or NULL, the node
1467  *		you pass will not be searched, only the next one
1468  *		will; typically, you pass what the previous call
1469  *		returned. of_node_put() will be called on it
1470  *	@name:	The type string to match against
1471  *
1472  *	Returns a node pointer with refcount incremented, use
1473  *	of_node_put() on it when done.
1474  */
1475 struct device_node *of_find_node_by_type(struct device_node *from,
1476 	const char *type)
1477 {
1478 	struct device_node *np;
1479 
1480 	read_lock(&devtree_lock);
1481 	np = from ? from->allnext : allnodes;
1482 	for (; np != 0; np = np->allnext)
1483 		if (np->type != 0 && strcasecmp(np->type, type) == 0
1484 		    && of_node_get(np))
1485 			break;
1486 	if (from)
1487 		of_node_put(from);
1488 	read_unlock(&devtree_lock);
1489 	return np;
1490 }
1491 EXPORT_SYMBOL(of_find_node_by_type);
1492 
1493 /**
1494  *	of_find_compatible_node - Find a node based on type and one of the
1495  *                                tokens in its "compatible" property
1496  *	@from:		The node to start searching from or NULL, the node
1497  *			you pass will not be searched, only the next one
1498  *			will; typically, you pass what the previous call
1499  *			returned. of_node_put() will be called on it
1500  *	@type:		The type string to match "device_type" or NULL to ignore
1501  *	@compatible:	The string to match to one of the tokens in the device
1502  *			"compatible" list.
1503  *
1504  *	Returns a node pointer with refcount incremented, use
1505  *	of_node_put() on it when done.
1506  */
1507 struct device_node *of_find_compatible_node(struct device_node *from,
1508 	const char *type, const char *compatible)
1509 {
1510 	struct device_node *np;
1511 
1512 	read_lock(&devtree_lock);
1513 	np = from ? from->allnext : allnodes;
1514 	for (; np != 0; np = np->allnext) {
1515 		if (type != NULL
1516 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1517 			continue;
1518 		if (device_is_compatible(np, compatible) && of_node_get(np))
1519 			break;
1520 	}
1521 	if (from)
1522 		of_node_put(from);
1523 	read_unlock(&devtree_lock);
1524 	return np;
1525 }
1526 EXPORT_SYMBOL(of_find_compatible_node);
1527 
1528 /**
1529  *	of_find_node_by_path - Find a node matching a full OF path
1530  *	@path:	The full path to match
1531  *
1532  *	Returns a node pointer with refcount incremented, use
1533  *	of_node_put() on it when done.
1534  */
1535 struct device_node *of_find_node_by_path(const char *path)
1536 {
1537 	struct device_node *np = allnodes;
1538 
1539 	read_lock(&devtree_lock);
1540 	for (; np != 0; np = np->allnext) {
1541 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1542 		    && of_node_get(np))
1543 			break;
1544 	}
1545 	read_unlock(&devtree_lock);
1546 	return np;
1547 }
1548 EXPORT_SYMBOL(of_find_node_by_path);
1549 
1550 /**
1551  *	of_find_node_by_phandle - Find a node given a phandle
1552  *	@handle:	phandle of the node to find
1553  *
1554  *	Returns a node pointer with refcount incremented, use
1555  *	of_node_put() on it when done.
1556  */
1557 struct device_node *of_find_node_by_phandle(phandle handle)
1558 {
1559 	struct device_node *np;
1560 
1561 	read_lock(&devtree_lock);
1562 	for (np = allnodes; np != 0; np = np->allnext)
1563 		if (np->linux_phandle == handle)
1564 			break;
1565 	if (np)
1566 		of_node_get(np);
1567 	read_unlock(&devtree_lock);
1568 	return np;
1569 }
1570 EXPORT_SYMBOL(of_find_node_by_phandle);
1571 
1572 /**
1573  *	of_find_all_nodes - Get next node in global list
1574  *	@prev:	Previous node or NULL to start iteration
1575  *		of_node_put() will be called on it
1576  *
1577  *	Returns a node pointer with refcount incremented, use
1578  *	of_node_put() on it when done.
1579  */
1580 struct device_node *of_find_all_nodes(struct device_node *prev)
1581 {
1582 	struct device_node *np;
1583 
1584 	read_lock(&devtree_lock);
1585 	np = prev ? prev->allnext : allnodes;
1586 	for (; np != 0; np = np->allnext)
1587 		if (of_node_get(np))
1588 			break;
1589 	if (prev)
1590 		of_node_put(prev);
1591 	read_unlock(&devtree_lock);
1592 	return np;
1593 }
1594 EXPORT_SYMBOL(of_find_all_nodes);
1595 
1596 /**
1597  *	of_get_parent - Get a node's parent if any
1598  *	@node:	Node to get parent
1599  *
1600  *	Returns a node pointer with refcount incremented, use
1601  *	of_node_put() on it when done.
1602  */
1603 struct device_node *of_get_parent(const struct device_node *node)
1604 {
1605 	struct device_node *np;
1606 
1607 	if (!node)
1608 		return NULL;
1609 
1610 	read_lock(&devtree_lock);
1611 	np = of_node_get(node->parent);
1612 	read_unlock(&devtree_lock);
1613 	return np;
1614 }
1615 EXPORT_SYMBOL(of_get_parent);
1616 
1617 /**
1618  *	of_get_next_child - Iterate a node childs
1619  *	@node:	parent node
1620  *	@prev:	previous child of the parent node, or NULL to get first
1621  *
1622  *	Returns a node pointer with refcount incremented, use
1623  *	of_node_put() on it when done.
1624  */
1625 struct device_node *of_get_next_child(const struct device_node *node,
1626 	struct device_node *prev)
1627 {
1628 	struct device_node *next;
1629 
1630 	read_lock(&devtree_lock);
1631 	next = prev ? prev->sibling : node->child;
1632 	for (; next != 0; next = next->sibling)
1633 		if (of_node_get(next))
1634 			break;
1635 	if (prev)
1636 		of_node_put(prev);
1637 	read_unlock(&devtree_lock);
1638 	return next;
1639 }
1640 EXPORT_SYMBOL(of_get_next_child);
1641 
1642 /**
1643  *	of_node_get - Increment refcount of a node
1644  *	@node:	Node to inc refcount, NULL is supported to
1645  *		simplify writing of callers
1646  *
1647  *	Returns node.
1648  */
1649 struct device_node *of_node_get(struct device_node *node)
1650 {
1651 	if (node)
1652 		kref_get(&node->kref);
1653 	return node;
1654 }
1655 EXPORT_SYMBOL(of_node_get);
1656 
1657 static inline struct device_node * kref_to_device_node(struct kref *kref)
1658 {
1659 	return container_of(kref, struct device_node, kref);
1660 }
1661 
1662 /**
1663  *	of_node_release - release a dynamically allocated node
1664  *	@kref:  kref element of the node to be released
1665  *
1666  *	In of_node_put() this function is passed to kref_put()
1667  *	as the destructor.
1668  */
1669 static void of_node_release(struct kref *kref)
1670 {
1671 	struct device_node *node = kref_to_device_node(kref);
1672 	struct property *prop = node->properties;
1673 
1674 	if (!OF_IS_DYNAMIC(node))
1675 		return;
1676 	while (prop) {
1677 		struct property *next = prop->next;
1678 		kfree(prop->name);
1679 		kfree(prop->value);
1680 		kfree(prop);
1681 		prop = next;
1682 
1683 		if (!prop) {
1684 			prop = node->deadprops;
1685 			node->deadprops = NULL;
1686 		}
1687 	}
1688 	kfree(node->intrs);
1689 	kfree(node->full_name);
1690 	kfree(node->data);
1691 	kfree(node);
1692 }
1693 
1694 /**
1695  *	of_node_put - Decrement refcount of a node
1696  *	@node:	Node to dec refcount, NULL is supported to
1697  *		simplify writing of callers
1698  *
1699  */
1700 void of_node_put(struct device_node *node)
1701 {
1702 	if (node)
1703 		kref_put(&node->kref, of_node_release);
1704 }
1705 EXPORT_SYMBOL(of_node_put);
1706 
1707 /*
1708  * Plug a device node into the tree and global list.
1709  */
1710 void of_attach_node(struct device_node *np)
1711 {
1712 	write_lock(&devtree_lock);
1713 	np->sibling = np->parent->child;
1714 	np->allnext = allnodes;
1715 	np->parent->child = np;
1716 	allnodes = np;
1717 	write_unlock(&devtree_lock);
1718 }
1719 
1720 /*
1721  * "Unplug" a node from the device tree.  The caller must hold
1722  * a reference to the node.  The memory associated with the node
1723  * is not freed until its refcount goes to zero.
1724  */
1725 void of_detach_node(const struct device_node *np)
1726 {
1727 	struct device_node *parent;
1728 
1729 	write_lock(&devtree_lock);
1730 
1731 	parent = np->parent;
1732 
1733 	if (allnodes == np)
1734 		allnodes = np->allnext;
1735 	else {
1736 		struct device_node *prev;
1737 		for (prev = allnodes;
1738 		     prev->allnext != np;
1739 		     prev = prev->allnext)
1740 			;
1741 		prev->allnext = np->allnext;
1742 	}
1743 
1744 	if (parent->child == np)
1745 		parent->child = np->sibling;
1746 	else {
1747 		struct device_node *prevsib;
1748 		for (prevsib = np->parent->child;
1749 		     prevsib->sibling != np;
1750 		     prevsib = prevsib->sibling)
1751 			;
1752 		prevsib->sibling = np->sibling;
1753 	}
1754 
1755 	write_unlock(&devtree_lock);
1756 }
1757 
1758 #ifdef CONFIG_PPC_PSERIES
1759 /*
1760  * Fix up the uninitialized fields in a new device node:
1761  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1762  *
1763  * A lot of boot-time code is duplicated here, because functions such
1764  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1765  * slab allocator.
1766  *
1767  * This should probably be split up into smaller chunks.
1768  */
1769 
1770 static int of_finish_dynamic_node(struct device_node *node)
1771 {
1772 	struct device_node *parent = of_get_parent(node);
1773 	int err = 0;
1774 	phandle *ibm_phandle;
1775 
1776 	node->name = get_property(node, "name", NULL);
1777 	node->type = get_property(node, "device_type", NULL);
1778 
1779 	if (!parent) {
1780 		err = -ENODEV;
1781 		goto out;
1782 	}
1783 
1784 	/* We don't support that function on PowerMac, at least
1785 	 * not yet
1786 	 */
1787 	if (_machine == PLATFORM_POWERMAC)
1788 		return -ENODEV;
1789 
1790 	/* fix up new node's linux_phandle field */
1791 	if ((ibm_phandle = (unsigned int *)get_property(node,
1792 							"ibm,phandle", NULL)))
1793 		node->linux_phandle = *ibm_phandle;
1794 
1795 out:
1796 	of_node_put(parent);
1797 	return err;
1798 }
1799 
1800 static int prom_reconfig_notifier(struct notifier_block *nb,
1801 				  unsigned long action, void *node)
1802 {
1803 	int err;
1804 
1805 	switch (action) {
1806 	case PSERIES_RECONFIG_ADD:
1807 		err = of_finish_dynamic_node(node);
1808 		if (!err)
1809 			finish_node(node, NULL, 0);
1810 		if (err < 0) {
1811 			printk(KERN_ERR "finish_node returned %d\n", err);
1812 			err = NOTIFY_BAD;
1813 		}
1814 		break;
1815 	default:
1816 		err = NOTIFY_DONE;
1817 		break;
1818 	}
1819 	return err;
1820 }
1821 
1822 static struct notifier_block prom_reconfig_nb = {
1823 	.notifier_call = prom_reconfig_notifier,
1824 	.priority = 10, /* This one needs to run first */
1825 };
1826 
1827 static int __init prom_reconfig_setup(void)
1828 {
1829 	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1830 }
1831 __initcall(prom_reconfig_setup);
1832 #endif
1833 
1834 struct property *of_find_property(struct device_node *np, const char *name,
1835 				  int *lenp)
1836 {
1837 	struct property *pp;
1838 
1839 	read_lock(&devtree_lock);
1840 	for (pp = np->properties; pp != 0; pp = pp->next)
1841 		if (strcmp(pp->name, name) == 0) {
1842 			if (lenp != 0)
1843 				*lenp = pp->length;
1844 			break;
1845 		}
1846 	read_unlock(&devtree_lock);
1847 
1848 	return pp;
1849 }
1850 
1851 /*
1852  * Find a property with a given name for a given node
1853  * and return the value.
1854  */
1855 unsigned char *get_property(struct device_node *np, const char *name,
1856 			    int *lenp)
1857 {
1858 	struct property *pp = of_find_property(np,name,lenp);
1859 	return pp ? pp->value : NULL;
1860 }
1861 EXPORT_SYMBOL(get_property);
1862 
1863 /*
1864  * Add a property to a node
1865  */
1866 int prom_add_property(struct device_node* np, struct property* prop)
1867 {
1868 	struct property **next;
1869 
1870 	prop->next = NULL;
1871 	write_lock(&devtree_lock);
1872 	next = &np->properties;
1873 	while (*next) {
1874 		if (strcmp(prop->name, (*next)->name) == 0) {
1875 			/* duplicate ! don't insert it */
1876 			write_unlock(&devtree_lock);
1877 			return -1;
1878 		}
1879 		next = &(*next)->next;
1880 	}
1881 	*next = prop;
1882 	write_unlock(&devtree_lock);
1883 
1884 #ifdef CONFIG_PROC_DEVICETREE
1885 	/* try to add to proc as well if it was initialized */
1886 	if (np->pde)
1887 		proc_device_tree_add_prop(np->pde, prop);
1888 #endif /* CONFIG_PROC_DEVICETREE */
1889 
1890 	return 0;
1891 }
1892 
1893 /*
1894  * Remove a property from a node.  Note that we don't actually
1895  * remove it, since we have given out who-knows-how-many pointers
1896  * to the data using get-property.  Instead we just move the property
1897  * to the "dead properties" list, so it won't be found any more.
1898  */
1899 int prom_remove_property(struct device_node *np, struct property *prop)
1900 {
1901 	struct property **next;
1902 	int found = 0;
1903 
1904 	write_lock(&devtree_lock);
1905 	next = &np->properties;
1906 	while (*next) {
1907 		if (*next == prop) {
1908 			/* found the node */
1909 			*next = prop->next;
1910 			prop->next = np->deadprops;
1911 			np->deadprops = prop;
1912 			found = 1;
1913 			break;
1914 		}
1915 		next = &(*next)->next;
1916 	}
1917 	write_unlock(&devtree_lock);
1918 
1919 	if (!found)
1920 		return -ENODEV;
1921 
1922 #ifdef CONFIG_PROC_DEVICETREE
1923 	/* try to remove the proc node as well */
1924 	if (np->pde)
1925 		proc_device_tree_remove_prop(np->pde, prop);
1926 #endif /* CONFIG_PROC_DEVICETREE */
1927 
1928 	return 0;
1929 }
1930 
1931 /*
1932  * Update a property in a node.  Note that we don't actually
1933  * remove it, since we have given out who-knows-how-many pointers
1934  * to the data using get-property.  Instead we just move the property
1935  * to the "dead properties" list, and add the new property to the
1936  * property list
1937  */
1938 int prom_update_property(struct device_node *np,
1939 			 struct property *newprop,
1940 			 struct property *oldprop)
1941 {
1942 	struct property **next;
1943 	int found = 0;
1944 
1945 	write_lock(&devtree_lock);
1946 	next = &np->properties;
1947 	while (*next) {
1948 		if (*next == oldprop) {
1949 			/* found the node */
1950 			newprop->next = oldprop->next;
1951 			*next = newprop;
1952 			oldprop->next = np->deadprops;
1953 			np->deadprops = oldprop;
1954 			found = 1;
1955 			break;
1956 		}
1957 		next = &(*next)->next;
1958 	}
1959 	write_unlock(&devtree_lock);
1960 
1961 	if (!found)
1962 		return -ENODEV;
1963 
1964 #ifdef CONFIG_PROC_DEVICETREE
1965 	/* try to add to proc as well if it was initialized */
1966 	if (np->pde)
1967 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1968 #endif /* CONFIG_PROC_DEVICETREE */
1969 
1970 	return 0;
1971 }
1972 
1973 #ifdef CONFIG_KEXEC
1974 /* We may have allocated the flat device tree inside the crash kernel region
1975  * in prom_init. If so we need to move it out into regular memory. */
1976 void kdump_move_device_tree(void)
1977 {
1978 	unsigned long start, end;
1979 	struct boot_param_header *new;
1980 
1981 	start = __pa((unsigned long)initial_boot_params);
1982 	end = start + initial_boot_params->totalsize;
1983 
1984 	if (end < crashk_res.start || start > crashk_res.end)
1985 		return;
1986 
1987 	new = (struct boot_param_header*)
1988 		__va(lmb_alloc(initial_boot_params->totalsize, PAGE_SIZE));
1989 
1990 	memcpy(new, initial_boot_params, initial_boot_params->totalsize);
1991 
1992 	initial_boot_params = new;
1993 
1994 	DBG("Flat device tree blob moved to %p\n", initial_boot_params);
1995 
1996 	/* XXX should we unreserve the old DT? */
1997 }
1998 #endif /* CONFIG_KEXEC */
1999