xref: /openbmc/linux/arch/powerpc/kernel/prom.c (revision 40472a55)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 #undef DEBUG
17 
18 #include <stdarg.h>
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/init.h>
22 #include <linux/threads.h>
23 #include <linux/spinlock.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/stringify.h>
27 #include <linux/delay.h>
28 #include <linux/initrd.h>
29 #include <linux/bitops.h>
30 #include <linux/module.h>
31 #include <linux/kexec.h>
32 #include <linux/debugfs.h>
33 #include <linux/irq.h>
34 
35 #include <asm/prom.h>
36 #include <asm/rtas.h>
37 #include <asm/lmb.h>
38 #include <asm/page.h>
39 #include <asm/processor.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
42 #include <asm/kdump.h>
43 #include <asm/smp.h>
44 #include <asm/system.h>
45 #include <asm/mmu.h>
46 #include <asm/pgtable.h>
47 #include <asm/pci.h>
48 #include <asm/iommu.h>
49 #include <asm/btext.h>
50 #include <asm/sections.h>
51 #include <asm/machdep.h>
52 #include <asm/pSeries_reconfig.h>
53 #include <asm/pci-bridge.h>
54 #include <asm/kexec.h>
55 
56 #ifdef DEBUG
57 #define DBG(fmt...) printk(KERN_ERR fmt)
58 #else
59 #define DBG(fmt...)
60 #endif
61 
62 
63 static int __initdata dt_root_addr_cells;
64 static int __initdata dt_root_size_cells;
65 
66 #ifdef CONFIG_PPC64
67 int __initdata iommu_is_off;
68 int __initdata iommu_force_on;
69 unsigned long tce_alloc_start, tce_alloc_end;
70 #endif
71 
72 typedef u32 cell_t;
73 
74 #if 0
75 static struct boot_param_header *initial_boot_params __initdata;
76 #else
77 struct boot_param_header *initial_boot_params;
78 #endif
79 
80 static struct device_node *allnodes = NULL;
81 
82 /* use when traversing tree through the allnext, child, sibling,
83  * or parent members of struct device_node.
84  */
85 static DEFINE_RWLOCK(devtree_lock);
86 
87 /* export that to outside world */
88 struct device_node *of_chosen;
89 
90 static inline char *find_flat_dt_string(u32 offset)
91 {
92 	return ((char *)initial_boot_params) +
93 		initial_boot_params->off_dt_strings + offset;
94 }
95 
96 /**
97  * This function is used to scan the flattened device-tree, it is
98  * used to extract the memory informations at boot before we can
99  * unflatten the tree
100  */
101 int __init of_scan_flat_dt(int (*it)(unsigned long node,
102 				     const char *uname, int depth,
103 				     void *data),
104 			   void *data)
105 {
106 	unsigned long p = ((unsigned long)initial_boot_params) +
107 		initial_boot_params->off_dt_struct;
108 	int rc = 0;
109 	int depth = -1;
110 
111 	do {
112 		u32 tag = *((u32 *)p);
113 		char *pathp;
114 
115 		p += 4;
116 		if (tag == OF_DT_END_NODE) {
117 			depth --;
118 			continue;
119 		}
120 		if (tag == OF_DT_NOP)
121 			continue;
122 		if (tag == OF_DT_END)
123 			break;
124 		if (tag == OF_DT_PROP) {
125 			u32 sz = *((u32 *)p);
126 			p += 8;
127 			if (initial_boot_params->version < 0x10)
128 				p = _ALIGN(p, sz >= 8 ? 8 : 4);
129 			p += sz;
130 			p = _ALIGN(p, 4);
131 			continue;
132 		}
133 		if (tag != OF_DT_BEGIN_NODE) {
134 			printk(KERN_WARNING "Invalid tag %x scanning flattened"
135 			       " device tree !\n", tag);
136 			return -EINVAL;
137 		}
138 		depth++;
139 		pathp = (char *)p;
140 		p = _ALIGN(p + strlen(pathp) + 1, 4);
141 		if ((*pathp) == '/') {
142 			char *lp, *np;
143 			for (lp = NULL, np = pathp; *np; np++)
144 				if ((*np) == '/')
145 					lp = np+1;
146 			if (lp != NULL)
147 				pathp = lp;
148 		}
149 		rc = it(p, pathp, depth, data);
150 		if (rc != 0)
151 			break;
152 	} while(1);
153 
154 	return rc;
155 }
156 
157 unsigned long __init of_get_flat_dt_root(void)
158 {
159 	unsigned long p = ((unsigned long)initial_boot_params) +
160 		initial_boot_params->off_dt_struct;
161 
162 	while(*((u32 *)p) == OF_DT_NOP)
163 		p += 4;
164 	BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE);
165 	p += 4;
166 	return _ALIGN(p + strlen((char *)p) + 1, 4);
167 }
168 
169 /**
170  * This  function can be used within scan_flattened_dt callback to get
171  * access to properties
172  */
173 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
174 				 unsigned long *size)
175 {
176 	unsigned long p = node;
177 
178 	do {
179 		u32 tag = *((u32 *)p);
180 		u32 sz, noff;
181 		const char *nstr;
182 
183 		p += 4;
184 		if (tag == OF_DT_NOP)
185 			continue;
186 		if (tag != OF_DT_PROP)
187 			return NULL;
188 
189 		sz = *((u32 *)p);
190 		noff = *((u32 *)(p + 4));
191 		p += 8;
192 		if (initial_boot_params->version < 0x10)
193 			p = _ALIGN(p, sz >= 8 ? 8 : 4);
194 
195 		nstr = find_flat_dt_string(noff);
196 		if (nstr == NULL) {
197 			printk(KERN_WARNING "Can't find property index"
198 			       " name !\n");
199 			return NULL;
200 		}
201 		if (strcmp(name, nstr) == 0) {
202 			if (size)
203 				*size = sz;
204 			return (void *)p;
205 		}
206 		p += sz;
207 		p = _ALIGN(p, 4);
208 	} while(1);
209 }
210 
211 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
212 {
213 	const char* cp;
214 	unsigned long cplen, l;
215 
216 	cp = of_get_flat_dt_prop(node, "compatible", &cplen);
217 	if (cp == NULL)
218 		return 0;
219 	while (cplen > 0) {
220 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
221 			return 1;
222 		l = strlen(cp) + 1;
223 		cp += l;
224 		cplen -= l;
225 	}
226 
227 	return 0;
228 }
229 
230 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
231 				       unsigned long align)
232 {
233 	void *res;
234 
235 	*mem = _ALIGN(*mem, align);
236 	res = (void *)*mem;
237 	*mem += size;
238 
239 	return res;
240 }
241 
242 static unsigned long __init unflatten_dt_node(unsigned long mem,
243 					      unsigned long *p,
244 					      struct device_node *dad,
245 					      struct device_node ***allnextpp,
246 					      unsigned long fpsize)
247 {
248 	struct device_node *np;
249 	struct property *pp, **prev_pp = NULL;
250 	char *pathp;
251 	u32 tag;
252 	unsigned int l, allocl;
253 	int has_name = 0;
254 	int new_format = 0;
255 
256 	tag = *((u32 *)(*p));
257 	if (tag != OF_DT_BEGIN_NODE) {
258 		printk("Weird tag at start of node: %x\n", tag);
259 		return mem;
260 	}
261 	*p += 4;
262 	pathp = (char *)*p;
263 	l = allocl = strlen(pathp) + 1;
264 	*p = _ALIGN(*p + l, 4);
265 
266 	/* version 0x10 has a more compact unit name here instead of the full
267 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
268 	 * it later. We detect this because the first character of the name is
269 	 * not '/'.
270 	 */
271 	if ((*pathp) != '/') {
272 		new_format = 1;
273 		if (fpsize == 0) {
274 			/* root node: special case. fpsize accounts for path
275 			 * plus terminating zero. root node only has '/', so
276 			 * fpsize should be 2, but we want to avoid the first
277 			 * level nodes to have two '/' so we use fpsize 1 here
278 			 */
279 			fpsize = 1;
280 			allocl = 2;
281 		} else {
282 			/* account for '/' and path size minus terminal 0
283 			 * already in 'l'
284 			 */
285 			fpsize += l;
286 			allocl = fpsize;
287 		}
288 	}
289 
290 
291 	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
292 				__alignof__(struct device_node));
293 	if (allnextpp) {
294 		memset(np, 0, sizeof(*np));
295 		np->full_name = ((char*)np) + sizeof(struct device_node);
296 		if (new_format) {
297 			char *p = np->full_name;
298 			/* rebuild full path for new format */
299 			if (dad && dad->parent) {
300 				strcpy(p, dad->full_name);
301 #ifdef DEBUG
302 				if ((strlen(p) + l + 1) != allocl) {
303 					DBG("%s: p: %d, l: %d, a: %d\n",
304 					    pathp, (int)strlen(p), l, allocl);
305 				}
306 #endif
307 				p += strlen(p);
308 			}
309 			*(p++) = '/';
310 			memcpy(p, pathp, l);
311 		} else
312 			memcpy(np->full_name, pathp, l);
313 		prev_pp = &np->properties;
314 		**allnextpp = np;
315 		*allnextpp = &np->allnext;
316 		if (dad != NULL) {
317 			np->parent = dad;
318 			/* we temporarily use the next field as `last_child'*/
319 			if (dad->next == 0)
320 				dad->child = np;
321 			else
322 				dad->next->sibling = np;
323 			dad->next = np;
324 		}
325 		kref_init(&np->kref);
326 	}
327 	while(1) {
328 		u32 sz, noff;
329 		char *pname;
330 
331 		tag = *((u32 *)(*p));
332 		if (tag == OF_DT_NOP) {
333 			*p += 4;
334 			continue;
335 		}
336 		if (tag != OF_DT_PROP)
337 			break;
338 		*p += 4;
339 		sz = *((u32 *)(*p));
340 		noff = *((u32 *)((*p) + 4));
341 		*p += 8;
342 		if (initial_boot_params->version < 0x10)
343 			*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
344 
345 		pname = find_flat_dt_string(noff);
346 		if (pname == NULL) {
347 			printk("Can't find property name in list !\n");
348 			break;
349 		}
350 		if (strcmp(pname, "name") == 0)
351 			has_name = 1;
352 		l = strlen(pname) + 1;
353 		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
354 					__alignof__(struct property));
355 		if (allnextpp) {
356 			if (strcmp(pname, "linux,phandle") == 0) {
357 				np->node = *((u32 *)*p);
358 				if (np->linux_phandle == 0)
359 					np->linux_phandle = np->node;
360 			}
361 			if (strcmp(pname, "ibm,phandle") == 0)
362 				np->linux_phandle = *((u32 *)*p);
363 			pp->name = pname;
364 			pp->length = sz;
365 			pp->value = (void *)*p;
366 			*prev_pp = pp;
367 			prev_pp = &pp->next;
368 		}
369 		*p = _ALIGN((*p) + sz, 4);
370 	}
371 	/* with version 0x10 we may not have the name property, recreate
372 	 * it here from the unit name if absent
373 	 */
374 	if (!has_name) {
375 		char *p = pathp, *ps = pathp, *pa = NULL;
376 		int sz;
377 
378 		while (*p) {
379 			if ((*p) == '@')
380 				pa = p;
381 			if ((*p) == '/')
382 				ps = p + 1;
383 			p++;
384 		}
385 		if (pa < ps)
386 			pa = p;
387 		sz = (pa - ps) + 1;
388 		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
389 					__alignof__(struct property));
390 		if (allnextpp) {
391 			pp->name = "name";
392 			pp->length = sz;
393 			pp->value = pp + 1;
394 			*prev_pp = pp;
395 			prev_pp = &pp->next;
396 			memcpy(pp->value, ps, sz - 1);
397 			((char *)pp->value)[sz - 1] = 0;
398 			DBG("fixed up name for %s -> %s\n", pathp,
399 				(char *)pp->value);
400 		}
401 	}
402 	if (allnextpp) {
403 		*prev_pp = NULL;
404 		np->name = of_get_property(np, "name", NULL);
405 		np->type = of_get_property(np, "device_type", NULL);
406 
407 		if (!np->name)
408 			np->name = "<NULL>";
409 		if (!np->type)
410 			np->type = "<NULL>";
411 	}
412 	while (tag == OF_DT_BEGIN_NODE) {
413 		mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
414 		tag = *((u32 *)(*p));
415 	}
416 	if (tag != OF_DT_END_NODE) {
417 		printk("Weird tag at end of node: %x\n", tag);
418 		return mem;
419 	}
420 	*p += 4;
421 	return mem;
422 }
423 
424 static int __init early_parse_mem(char *p)
425 {
426 	if (!p)
427 		return 1;
428 
429 	memory_limit = PAGE_ALIGN(memparse(p, &p));
430 	DBG("memory limit = 0x%lx\n", memory_limit);
431 
432 	return 0;
433 }
434 early_param("mem", early_parse_mem);
435 
436 /*
437  * The device tree may be allocated below our memory limit, or inside the
438  * crash kernel region for kdump. If so, move it out now.
439  */
440 static void move_device_tree(void)
441 {
442 	unsigned long start, size;
443 	void *p;
444 
445 	DBG("-> move_device_tree\n");
446 
447 	start = __pa(initial_boot_params);
448 	size = initial_boot_params->totalsize;
449 
450 	if ((memory_limit && (start + size) > memory_limit) ||
451 			overlaps_crashkernel(start, size)) {
452 		p = __va(lmb_alloc_base(size, PAGE_SIZE, lmb.rmo_size));
453 		memcpy(p, initial_boot_params, size);
454 		initial_boot_params = (struct boot_param_header *)p;
455 		DBG("Moved device tree to 0x%p\n", p);
456 	}
457 
458 	DBG("<- move_device_tree\n");
459 }
460 
461 /**
462  * unflattens the device-tree passed by the firmware, creating the
463  * tree of struct device_node. It also fills the "name" and "type"
464  * pointers of the nodes so the normal device-tree walking functions
465  * can be used (this used to be done by finish_device_tree)
466  */
467 void __init unflatten_device_tree(void)
468 {
469 	unsigned long start, mem, size;
470 	struct device_node **allnextp = &allnodes;
471 
472 	DBG(" -> unflatten_device_tree()\n");
473 
474 	/* First pass, scan for size */
475 	start = ((unsigned long)initial_boot_params) +
476 		initial_boot_params->off_dt_struct;
477 	size = unflatten_dt_node(0, &start, NULL, NULL, 0);
478 	size = (size | 3) + 1;
479 
480 	DBG("  size is %lx, allocating...\n", size);
481 
482 	/* Allocate memory for the expanded device tree */
483 	mem = lmb_alloc(size + 4, __alignof__(struct device_node));
484 	mem = (unsigned long) __va(mem);
485 
486 	((u32 *)mem)[size / 4] = 0xdeadbeef;
487 
488 	DBG("  unflattening %lx...\n", mem);
489 
490 	/* Second pass, do actual unflattening */
491 	start = ((unsigned long)initial_boot_params) +
492 		initial_boot_params->off_dt_struct;
493 	unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
494 	if (*((u32 *)start) != OF_DT_END)
495 		printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
496 	if (((u32 *)mem)[size / 4] != 0xdeadbeef)
497 		printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
498 		       ((u32 *)mem)[size / 4] );
499 	*allnextp = NULL;
500 
501 	/* Get pointer to OF "/chosen" node for use everywhere */
502 	of_chosen = of_find_node_by_path("/chosen");
503 	if (of_chosen == NULL)
504 		of_chosen = of_find_node_by_path("/chosen@0");
505 
506 	DBG(" <- unflatten_device_tree()\n");
507 }
508 
509 /*
510  * ibm,pa-features is a per-cpu property that contains a string of
511  * attribute descriptors, each of which has a 2 byte header plus up
512  * to 254 bytes worth of processor attribute bits.  First header
513  * byte specifies the number of bytes following the header.
514  * Second header byte is an "attribute-specifier" type, of which
515  * zero is the only currently-defined value.
516  * Implementation:  Pass in the byte and bit offset for the feature
517  * that we are interested in.  The function will return -1 if the
518  * pa-features property is missing, or a 1/0 to indicate if the feature
519  * is supported/not supported.  Note that the bit numbers are
520  * big-endian to match the definition in PAPR.
521  */
522 static struct ibm_pa_feature {
523 	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
524 	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
525 	unsigned char	pabyte;		/* byte number in ibm,pa-features */
526 	unsigned char	pabit;		/* bit number (big-endian) */
527 	unsigned char	invert;		/* if 1, pa bit set => clear feature */
528 } ibm_pa_features[] __initdata = {
529 	{0, PPC_FEATURE_HAS_MMU,	0, 0, 0},
530 	{0, PPC_FEATURE_HAS_FPU,	0, 1, 0},
531 	{CPU_FTR_SLB, 0,		0, 2, 0},
532 	{CPU_FTR_CTRL, 0,		0, 3, 0},
533 	{CPU_FTR_NOEXECUTE, 0,		0, 6, 0},
534 	{CPU_FTR_NODSISRALIGN, 0,	1, 1, 1},
535 #if 0
536 	/* put this back once we know how to test if firmware does 64k IO */
537 	{CPU_FTR_CI_LARGE_PAGE, 0,	1, 2, 0},
538 #endif
539 	{CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
540 };
541 
542 static void __init scan_features(unsigned long node, unsigned char *ftrs,
543 				 unsigned long tablelen,
544 				 struct ibm_pa_feature *fp,
545 				 unsigned long ft_size)
546 {
547 	unsigned long i, len, bit;
548 
549 	/* find descriptor with type == 0 */
550 	for (;;) {
551 		if (tablelen < 3)
552 			return;
553 		len = 2 + ftrs[0];
554 		if (tablelen < len)
555 			return;		/* descriptor 0 not found */
556 		if (ftrs[1] == 0)
557 			break;
558 		tablelen -= len;
559 		ftrs += len;
560 	}
561 
562 	/* loop over bits we know about */
563 	for (i = 0; i < ft_size; ++i, ++fp) {
564 		if (fp->pabyte >= ftrs[0])
565 			continue;
566 		bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
567 		if (bit ^ fp->invert) {
568 			cur_cpu_spec->cpu_features |= fp->cpu_features;
569 			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
570 		} else {
571 			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
572 			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
573 		}
574 	}
575 }
576 
577 static void __init check_cpu_pa_features(unsigned long node)
578 {
579 	unsigned char *pa_ftrs;
580 	unsigned long tablelen;
581 
582 	pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
583 	if (pa_ftrs == NULL)
584 		return;
585 
586 	scan_features(node, pa_ftrs, tablelen,
587 		      ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
588 }
589 
590 static struct feature_property {
591 	const char *name;
592 	u32 min_value;
593 	unsigned long cpu_feature;
594 	unsigned long cpu_user_ftr;
595 } feature_properties[] __initdata = {
596 #ifdef CONFIG_ALTIVEC
597 	{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
598 	{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
599 #endif /* CONFIG_ALTIVEC */
600 #ifdef CONFIG_PPC64
601 	{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
602 	{"ibm,purr", 1, CPU_FTR_PURR, 0},
603 	{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
604 #endif /* CONFIG_PPC64 */
605 };
606 
607 static void __init check_cpu_feature_properties(unsigned long node)
608 {
609 	unsigned long i;
610 	struct feature_property *fp = feature_properties;
611 	const u32 *prop;
612 
613 	for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
614 		prop = of_get_flat_dt_prop(node, fp->name, NULL);
615 		if (prop && *prop >= fp->min_value) {
616 			cur_cpu_spec->cpu_features |= fp->cpu_feature;
617 			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
618 		}
619 	}
620 }
621 
622 static int __init early_init_dt_scan_cpus(unsigned long node,
623 					  const char *uname, int depth,
624 					  void *data)
625 {
626 	static int logical_cpuid = 0;
627 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
628 	const u32 *prop;
629 	const u32 *intserv;
630 	int i, nthreads;
631 	unsigned long len;
632 	int found = 0;
633 
634 	/* We are scanning "cpu" nodes only */
635 	if (type == NULL || strcmp(type, "cpu") != 0)
636 		return 0;
637 
638 	/* Get physical cpuid */
639 	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
640 	if (intserv) {
641 		nthreads = len / sizeof(int);
642 	} else {
643 		intserv = of_get_flat_dt_prop(node, "reg", NULL);
644 		nthreads = 1;
645 	}
646 
647 	/*
648 	 * Now see if any of these threads match our boot cpu.
649 	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
650 	 */
651 	for (i = 0; i < nthreads; i++) {
652 		/*
653 		 * version 2 of the kexec param format adds the phys cpuid of
654 		 * booted proc.
655 		 */
656 		if (initial_boot_params && initial_boot_params->version >= 2) {
657 			if (intserv[i] ==
658 					initial_boot_params->boot_cpuid_phys) {
659 				found = 1;
660 				break;
661 			}
662 		} else {
663 			/*
664 			 * Check if it's the boot-cpu, set it's hw index now,
665 			 * unfortunately this format did not support booting
666 			 * off secondary threads.
667 			 */
668 			if (of_get_flat_dt_prop(node,
669 					"linux,boot-cpu", NULL) != NULL) {
670 				found = 1;
671 				break;
672 			}
673 		}
674 
675 #ifdef CONFIG_SMP
676 		/* logical cpu id is always 0 on UP kernels */
677 		logical_cpuid++;
678 #endif
679 	}
680 
681 	if (found) {
682 		DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
683 			intserv[i]);
684 		boot_cpuid = logical_cpuid;
685 		set_hard_smp_processor_id(boot_cpuid, intserv[i]);
686 
687 		/*
688 		 * PAPR defines "logical" PVR values for cpus that
689 		 * meet various levels of the architecture:
690 		 * 0x0f000001	Architecture version 2.04
691 		 * 0x0f000002	Architecture version 2.05
692 		 * If the cpu-version property in the cpu node contains
693 		 * such a value, we call identify_cpu again with the
694 		 * logical PVR value in order to use the cpu feature
695 		 * bits appropriate for the architecture level.
696 		 *
697 		 * A POWER6 partition in "POWER6 architected" mode
698 		 * uses the 0x0f000002 PVR value; in POWER5+ mode
699 		 * it uses 0x0f000001.
700 		 */
701 		prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
702 		if (prop && (*prop & 0xff000000) == 0x0f000000)
703 			identify_cpu(0, *prop);
704 	}
705 
706 	check_cpu_feature_properties(node);
707 	check_cpu_pa_features(node);
708 
709 #ifdef CONFIG_PPC_PSERIES
710 	if (nthreads > 1)
711 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
712 	else
713 		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
714 #endif
715 
716 	return 0;
717 }
718 
719 #ifdef CONFIG_BLK_DEV_INITRD
720 static void __init early_init_dt_check_for_initrd(unsigned long node)
721 {
722 	unsigned long l;
723 	u32 *prop;
724 
725 	DBG("Looking for initrd properties... ");
726 
727 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &l);
728 	if (prop) {
729 		initrd_start = (unsigned long)__va(of_read_ulong(prop, l/4));
730 
731 		prop = of_get_flat_dt_prop(node, "linux,initrd-end", &l);
732 		if (prop) {
733 			initrd_end = (unsigned long)
734 					__va(of_read_ulong(prop, l/4));
735 			initrd_below_start_ok = 1;
736 		} else {
737 			initrd_start = 0;
738 		}
739 	}
740 
741 	DBG("initrd_start=0x%lx  initrd_end=0x%lx\n", initrd_start, initrd_end);
742 }
743 #else
744 static inline void early_init_dt_check_for_initrd(unsigned long node)
745 {
746 }
747 #endif /* CONFIG_BLK_DEV_INITRD */
748 
749 static int __init early_init_dt_scan_chosen(unsigned long node,
750 					    const char *uname, int depth, void *data)
751 {
752 	unsigned long *lprop;
753 	unsigned long l;
754 	char *p;
755 
756 	DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
757 
758 	if (depth != 1 ||
759 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
760 		return 0;
761 
762 #ifdef CONFIG_PPC64
763 	/* check if iommu is forced on or off */
764 	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
765 		iommu_is_off = 1;
766 	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
767 		iommu_force_on = 1;
768 #endif
769 
770 	/* mem=x on the command line is the preferred mechanism */
771  	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
772  	if (lprop)
773  		memory_limit = *lprop;
774 
775 #ifdef CONFIG_PPC64
776  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
777  	if (lprop)
778  		tce_alloc_start = *lprop;
779  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
780  	if (lprop)
781  		tce_alloc_end = *lprop;
782 #endif
783 
784 #ifdef CONFIG_KEXEC
785        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
786        if (lprop)
787                crashk_res.start = *lprop;
788 
789        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
790        if (lprop)
791                crashk_res.end = crashk_res.start + *lprop - 1;
792 #endif
793 
794 	early_init_dt_check_for_initrd(node);
795 
796 	/* Retreive command line */
797  	p = of_get_flat_dt_prop(node, "bootargs", &l);
798 	if (p != NULL && l > 0)
799 		strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
800 
801 #ifdef CONFIG_CMDLINE
802 	if (p == NULL || l == 0 || (l == 1 && (*p) == 0))
803 		strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
804 #endif /* CONFIG_CMDLINE */
805 
806 	DBG("Command line is: %s\n", cmd_line);
807 
808 	/* break now */
809 	return 1;
810 }
811 
812 static int __init early_init_dt_scan_root(unsigned long node,
813 					  const char *uname, int depth, void *data)
814 {
815 	u32 *prop;
816 
817 	if (depth != 0)
818 		return 0;
819 
820 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
821 	dt_root_size_cells = (prop == NULL) ? 1 : *prop;
822 	DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
823 
824 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
825 	dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
826 	DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
827 
828 	/* break now */
829 	return 1;
830 }
831 
832 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
833 {
834 	cell_t *p = *cellp;
835 
836 	*cellp = p + s;
837 	return of_read_ulong(p, s);
838 }
839 
840 #ifdef CONFIG_PPC_PSERIES
841 /*
842  * Interpret the ibm,dynamic-memory property in the
843  * /ibm,dynamic-reconfiguration-memory node.
844  * This contains a list of memory blocks along with NUMA affinity
845  * information.
846  */
847 static int __init early_init_dt_scan_drconf_memory(unsigned long node)
848 {
849 	cell_t *dm, *ls;
850 	unsigned long l, n;
851 	unsigned long base, size, lmb_size, flags;
852 
853 	ls = (cell_t *)of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
854 	if (ls == NULL || l < dt_root_size_cells * sizeof(cell_t))
855 		return 0;
856 	lmb_size = dt_mem_next_cell(dt_root_size_cells, &ls);
857 
858 	dm = (cell_t *)of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
859 	if (dm == NULL || l < sizeof(cell_t))
860 		return 0;
861 
862 	n = *dm++;	/* number of entries */
863 	if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(cell_t))
864 		return 0;
865 
866 	for (; n != 0; --n) {
867 		base = dt_mem_next_cell(dt_root_addr_cells, &dm);
868 		flags = dm[3];
869 		/* skip DRC index, pad, assoc. list index, flags */
870 		dm += 4;
871 		/* skip this block if the reserved bit is set in flags (0x80)
872 		   or if the block is not assigned to this partition (0x8) */
873 		if ((flags & 0x80) || !(flags & 0x8))
874 			continue;
875 		size = lmb_size;
876 		if (iommu_is_off) {
877 			if (base >= 0x80000000ul)
878 				continue;
879 			if ((base + size) > 0x80000000ul)
880 				size = 0x80000000ul - base;
881 		}
882 		lmb_add(base, size);
883 	}
884 	lmb_dump_all();
885 	return 0;
886 }
887 #else
888 #define early_init_dt_scan_drconf_memory(node)	0
889 #endif /* CONFIG_PPC_PSERIES */
890 
891 static int __init early_init_dt_scan_memory(unsigned long node,
892 					    const char *uname, int depth, void *data)
893 {
894 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
895 	cell_t *reg, *endp;
896 	unsigned long l;
897 
898 	/* Look for the ibm,dynamic-reconfiguration-memory node */
899 	if (depth == 1 &&
900 	    strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
901 		return early_init_dt_scan_drconf_memory(node);
902 
903 	/* We are scanning "memory" nodes only */
904 	if (type == NULL) {
905 		/*
906 		 * The longtrail doesn't have a device_type on the
907 		 * /memory node, so look for the node called /memory@0.
908 		 */
909 		if (depth != 1 || strcmp(uname, "memory@0") != 0)
910 			return 0;
911 	} else if (strcmp(type, "memory") != 0)
912 		return 0;
913 
914 	reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
915 	if (reg == NULL)
916 		reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
917 	if (reg == NULL)
918 		return 0;
919 
920 	endp = reg + (l / sizeof(cell_t));
921 
922 	DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
923 	    uname, l, reg[0], reg[1], reg[2], reg[3]);
924 
925 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
926 		unsigned long base, size;
927 
928 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
929 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
930 
931 		if (size == 0)
932 			continue;
933 		DBG(" - %lx ,  %lx\n", base, size);
934 #ifdef CONFIG_PPC64
935 		if (iommu_is_off) {
936 			if (base >= 0x80000000ul)
937 				continue;
938 			if ((base + size) > 0x80000000ul)
939 				size = 0x80000000ul - base;
940 		}
941 #endif
942 		lmb_add(base, size);
943 	}
944 	return 0;
945 }
946 
947 static void __init early_reserve_mem(void)
948 {
949 	u64 base, size;
950 	u64 *reserve_map;
951 	unsigned long self_base;
952 	unsigned long self_size;
953 
954 	reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
955 					initial_boot_params->off_mem_rsvmap);
956 
957 	/* before we do anything, lets reserve the dt blob */
958 	self_base = __pa((unsigned long)initial_boot_params);
959 	self_size = initial_boot_params->totalsize;
960 	lmb_reserve(self_base, self_size);
961 
962 #ifdef CONFIG_BLK_DEV_INITRD
963 	/* then reserve the initrd, if any */
964 	if (initrd_start && (initrd_end > initrd_start))
965 		lmb_reserve(__pa(initrd_start), initrd_end - initrd_start);
966 #endif /* CONFIG_BLK_DEV_INITRD */
967 
968 #ifdef CONFIG_PPC32
969 	/*
970 	 * Handle the case where we might be booting from an old kexec
971 	 * image that setup the mem_rsvmap as pairs of 32-bit values
972 	 */
973 	if (*reserve_map > 0xffffffffull) {
974 		u32 base_32, size_32;
975 		u32 *reserve_map_32 = (u32 *)reserve_map;
976 
977 		while (1) {
978 			base_32 = *(reserve_map_32++);
979 			size_32 = *(reserve_map_32++);
980 			if (size_32 == 0)
981 				break;
982 			/* skip if the reservation is for the blob */
983 			if (base_32 == self_base && size_32 == self_size)
984 				continue;
985 			DBG("reserving: %x -> %x\n", base_32, size_32);
986 			lmb_reserve(base_32, size_32);
987 		}
988 		return;
989 	}
990 #endif
991 	while (1) {
992 		base = *(reserve_map++);
993 		size = *(reserve_map++);
994 		if (size == 0)
995 			break;
996 		DBG("reserving: %llx -> %llx\n", base, size);
997 		lmb_reserve(base, size);
998 	}
999 
1000 #if 0
1001 	DBG("memory reserved, lmbs :\n");
1002       	lmb_dump_all();
1003 #endif
1004 }
1005 
1006 void __init early_init_devtree(void *params)
1007 {
1008 	DBG(" -> early_init_devtree()\n");
1009 
1010 	/* Setup flat device-tree pointer */
1011 	initial_boot_params = params;
1012 
1013 #ifdef CONFIG_PPC_RTAS
1014 	/* Some machines might need RTAS info for debugging, grab it now. */
1015 	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
1016 #endif
1017 
1018 	/* Retrieve various informations from the /chosen node of the
1019 	 * device-tree, including the platform type, initrd location and
1020 	 * size, TCE reserve, and more ...
1021 	 */
1022 	of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1023 
1024 	/* Scan memory nodes and rebuild LMBs */
1025 	lmb_init();
1026 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1027 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1028 
1029 	/* Save command line for /proc/cmdline and then parse parameters */
1030 	strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE);
1031 	parse_early_param();
1032 
1033 	/* Reserve LMB regions used by kernel, initrd, dt, etc... */
1034 	lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1035 	reserve_kdump_trampoline();
1036 	reserve_crashkernel();
1037 	early_reserve_mem();
1038 
1039 	lmb_enforce_memory_limit(memory_limit);
1040 	lmb_analyze();
1041 
1042 	DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1043 
1044 	/* We may need to relocate the flat tree, do it now.
1045 	 * FIXME .. and the initrd too? */
1046 	move_device_tree();
1047 
1048 	DBG("Scanning CPUs ...\n");
1049 
1050 	/* Retreive CPU related informations from the flat tree
1051 	 * (altivec support, boot CPU ID, ...)
1052 	 */
1053 	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1054 
1055 	DBG(" <- early_init_devtree()\n");
1056 }
1057 
1058 #undef printk
1059 
1060 int of_n_addr_cells(struct device_node* np)
1061 {
1062 	const int *ip;
1063 	do {
1064 		if (np->parent)
1065 			np = np->parent;
1066 		ip = of_get_property(np, "#address-cells", NULL);
1067 		if (ip != NULL)
1068 			return *ip;
1069 	} while (np->parent);
1070 	/* No #address-cells property for the root node, default to 1 */
1071 	return 1;
1072 }
1073 EXPORT_SYMBOL(of_n_addr_cells);
1074 
1075 int of_n_size_cells(struct device_node* np)
1076 {
1077 	const int* ip;
1078 	do {
1079 		if (np->parent)
1080 			np = np->parent;
1081 		ip = of_get_property(np, "#size-cells", NULL);
1082 		if (ip != NULL)
1083 			return *ip;
1084 	} while (np->parent);
1085 	/* No #size-cells property for the root node, default to 1 */
1086 	return 1;
1087 }
1088 EXPORT_SYMBOL(of_n_size_cells);
1089 
1090 /** Checks if the given "compat" string matches one of the strings in
1091  * the device's "compatible" property
1092  */
1093 int of_device_is_compatible(const struct device_node *device,
1094 		const char *compat)
1095 {
1096 	const char* cp;
1097 	int cplen, l;
1098 
1099 	cp = of_get_property(device, "compatible", &cplen);
1100 	if (cp == NULL)
1101 		return 0;
1102 	while (cplen > 0) {
1103 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
1104 			return 1;
1105 		l = strlen(cp) + 1;
1106 		cp += l;
1107 		cplen -= l;
1108 	}
1109 
1110 	return 0;
1111 }
1112 EXPORT_SYMBOL(of_device_is_compatible);
1113 
1114 
1115 /**
1116  * Indicates whether the root node has a given value in its
1117  * compatible property.
1118  */
1119 int machine_is_compatible(const char *compat)
1120 {
1121 	struct device_node *root;
1122 	int rc = 0;
1123 
1124 	root = of_find_node_by_path("/");
1125 	if (root) {
1126 		rc = of_device_is_compatible(root, compat);
1127 		of_node_put(root);
1128 	}
1129 	return rc;
1130 }
1131 EXPORT_SYMBOL(machine_is_compatible);
1132 
1133 /*******
1134  *
1135  * New implementation of the OF "find" APIs, return a refcounted
1136  * object, call of_node_put() when done.  The device tree and list
1137  * are protected by a rw_lock.
1138  *
1139  * Note that property management will need some locking as well,
1140  * this isn't dealt with yet.
1141  *
1142  *******/
1143 
1144 /**
1145  *	of_find_node_by_name - Find a node by its "name" property
1146  *	@from:	The node to start searching from or NULL, the node
1147  *		you pass will not be searched, only the next one
1148  *		will; typically, you pass what the previous call
1149  *		returned. of_node_put() will be called on it
1150  *	@name:	The name string to match against
1151  *
1152  *	Returns a node pointer with refcount incremented, use
1153  *	of_node_put() on it when done.
1154  */
1155 struct device_node *of_find_node_by_name(struct device_node *from,
1156 	const char *name)
1157 {
1158 	struct device_node *np;
1159 
1160 	read_lock(&devtree_lock);
1161 	np = from ? from->allnext : allnodes;
1162 	for (; np != NULL; np = np->allnext)
1163 		if (np->name != NULL && strcasecmp(np->name, name) == 0
1164 		    && of_node_get(np))
1165 			break;
1166 	of_node_put(from);
1167 	read_unlock(&devtree_lock);
1168 	return np;
1169 }
1170 EXPORT_SYMBOL(of_find_node_by_name);
1171 
1172 /**
1173  *	of_find_node_by_type - Find a node by its "device_type" property
1174  *	@from:	The node to start searching from or NULL, the node
1175  *		you pass will not be searched, only the next one
1176  *		will; typically, you pass what the previous call
1177  *		returned. of_node_put() will be called on it
1178  *	@name:	The type string to match against
1179  *
1180  *	Returns a node pointer with refcount incremented, use
1181  *	of_node_put() on it when done.
1182  */
1183 struct device_node *of_find_node_by_type(struct device_node *from,
1184 	const char *type)
1185 {
1186 	struct device_node *np;
1187 
1188 	read_lock(&devtree_lock);
1189 	np = from ? from->allnext : allnodes;
1190 	for (; np != 0; np = np->allnext)
1191 		if (np->type != 0 && strcasecmp(np->type, type) == 0
1192 		    && of_node_get(np))
1193 			break;
1194 	of_node_put(from);
1195 	read_unlock(&devtree_lock);
1196 	return np;
1197 }
1198 EXPORT_SYMBOL(of_find_node_by_type);
1199 
1200 /**
1201  *	of_find_compatible_node - Find a node based on type and one of the
1202  *                                tokens in its "compatible" property
1203  *	@from:		The node to start searching from or NULL, the node
1204  *			you pass will not be searched, only the next one
1205  *			will; typically, you pass what the previous call
1206  *			returned. of_node_put() will be called on it
1207  *	@type:		The type string to match "device_type" or NULL to ignore
1208  *	@compatible:	The string to match to one of the tokens in the device
1209  *			"compatible" list.
1210  *
1211  *	Returns a node pointer with refcount incremented, use
1212  *	of_node_put() on it when done.
1213  */
1214 struct device_node *of_find_compatible_node(struct device_node *from,
1215 	const char *type, const char *compatible)
1216 {
1217 	struct device_node *np;
1218 
1219 	read_lock(&devtree_lock);
1220 	np = from ? from->allnext : allnodes;
1221 	for (; np != 0; np = np->allnext) {
1222 		if (type != NULL
1223 		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1224 			continue;
1225 		if (of_device_is_compatible(np, compatible) && of_node_get(np))
1226 			break;
1227 	}
1228 	of_node_put(from);
1229 	read_unlock(&devtree_lock);
1230 	return np;
1231 }
1232 EXPORT_SYMBOL(of_find_compatible_node);
1233 
1234 /**
1235  *	of_find_node_by_path - Find a node matching a full OF path
1236  *	@path:	The full path to match
1237  *
1238  *	Returns a node pointer with refcount incremented, use
1239  *	of_node_put() on it when done.
1240  */
1241 struct device_node *of_find_node_by_path(const char *path)
1242 {
1243 	struct device_node *np = allnodes;
1244 
1245 	read_lock(&devtree_lock);
1246 	for (; np != 0; np = np->allnext) {
1247 		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1248 		    && of_node_get(np))
1249 			break;
1250 	}
1251 	read_unlock(&devtree_lock);
1252 	return np;
1253 }
1254 EXPORT_SYMBOL(of_find_node_by_path);
1255 
1256 /**
1257  *	of_find_node_by_phandle - Find a node given a phandle
1258  *	@handle:	phandle of the node to find
1259  *
1260  *	Returns a node pointer with refcount incremented, use
1261  *	of_node_put() on it when done.
1262  */
1263 struct device_node *of_find_node_by_phandle(phandle handle)
1264 {
1265 	struct device_node *np;
1266 
1267 	read_lock(&devtree_lock);
1268 	for (np = allnodes; np != 0; np = np->allnext)
1269 		if (np->linux_phandle == handle)
1270 			break;
1271 	of_node_get(np);
1272 	read_unlock(&devtree_lock);
1273 	return np;
1274 }
1275 EXPORT_SYMBOL(of_find_node_by_phandle);
1276 
1277 /**
1278  *	of_find_all_nodes - Get next node in global list
1279  *	@prev:	Previous node or NULL to start iteration
1280  *		of_node_put() will be called on it
1281  *
1282  *	Returns a node pointer with refcount incremented, use
1283  *	of_node_put() on it when done.
1284  */
1285 struct device_node *of_find_all_nodes(struct device_node *prev)
1286 {
1287 	struct device_node *np;
1288 
1289 	read_lock(&devtree_lock);
1290 	np = prev ? prev->allnext : allnodes;
1291 	for (; np != 0; np = np->allnext)
1292 		if (of_node_get(np))
1293 			break;
1294 	of_node_put(prev);
1295 	read_unlock(&devtree_lock);
1296 	return np;
1297 }
1298 EXPORT_SYMBOL(of_find_all_nodes);
1299 
1300 /**
1301  *	of_get_parent - Get a node's parent if any
1302  *	@node:	Node to get parent
1303  *
1304  *	Returns a node pointer with refcount incremented, use
1305  *	of_node_put() on it when done.
1306  */
1307 struct device_node *of_get_parent(const struct device_node *node)
1308 {
1309 	struct device_node *np;
1310 
1311 	if (!node)
1312 		return NULL;
1313 
1314 	read_lock(&devtree_lock);
1315 	np = of_node_get(node->parent);
1316 	read_unlock(&devtree_lock);
1317 	return np;
1318 }
1319 EXPORT_SYMBOL(of_get_parent);
1320 
1321 /**
1322  *	of_get_next_child - Iterate a node childs
1323  *	@node:	parent node
1324  *	@prev:	previous child of the parent node, or NULL to get first
1325  *
1326  *	Returns a node pointer with refcount incremented, use
1327  *	of_node_put() on it when done.
1328  */
1329 struct device_node *of_get_next_child(const struct device_node *node,
1330 	struct device_node *prev)
1331 {
1332 	struct device_node *next;
1333 
1334 	read_lock(&devtree_lock);
1335 	next = prev ? prev->sibling : node->child;
1336 	for (; next != 0; next = next->sibling)
1337 		if (of_node_get(next))
1338 			break;
1339 	of_node_put(prev);
1340 	read_unlock(&devtree_lock);
1341 	return next;
1342 }
1343 EXPORT_SYMBOL(of_get_next_child);
1344 
1345 /**
1346  *	of_node_get - Increment refcount of a node
1347  *	@node:	Node to inc refcount, NULL is supported to
1348  *		simplify writing of callers
1349  *
1350  *	Returns node.
1351  */
1352 struct device_node *of_node_get(struct device_node *node)
1353 {
1354 	if (node)
1355 		kref_get(&node->kref);
1356 	return node;
1357 }
1358 EXPORT_SYMBOL(of_node_get);
1359 
1360 static inline struct device_node * kref_to_device_node(struct kref *kref)
1361 {
1362 	return container_of(kref, struct device_node, kref);
1363 }
1364 
1365 /**
1366  *	of_node_release - release a dynamically allocated node
1367  *	@kref:  kref element of the node to be released
1368  *
1369  *	In of_node_put() this function is passed to kref_put()
1370  *	as the destructor.
1371  */
1372 static void of_node_release(struct kref *kref)
1373 {
1374 	struct device_node *node = kref_to_device_node(kref);
1375 	struct property *prop = node->properties;
1376 
1377 	if (!OF_IS_DYNAMIC(node))
1378 		return;
1379 	while (prop) {
1380 		struct property *next = prop->next;
1381 		kfree(prop->name);
1382 		kfree(prop->value);
1383 		kfree(prop);
1384 		prop = next;
1385 
1386 		if (!prop) {
1387 			prop = node->deadprops;
1388 			node->deadprops = NULL;
1389 		}
1390 	}
1391 	kfree(node->full_name);
1392 	kfree(node->data);
1393 	kfree(node);
1394 }
1395 
1396 /**
1397  *	of_node_put - Decrement refcount of a node
1398  *	@node:	Node to dec refcount, NULL is supported to
1399  *		simplify writing of callers
1400  *
1401  */
1402 void of_node_put(struct device_node *node)
1403 {
1404 	if (node)
1405 		kref_put(&node->kref, of_node_release);
1406 }
1407 EXPORT_SYMBOL(of_node_put);
1408 
1409 /*
1410  * Plug a device node into the tree and global list.
1411  */
1412 void of_attach_node(struct device_node *np)
1413 {
1414 	write_lock(&devtree_lock);
1415 	np->sibling = np->parent->child;
1416 	np->allnext = allnodes;
1417 	np->parent->child = np;
1418 	allnodes = np;
1419 	write_unlock(&devtree_lock);
1420 }
1421 
1422 /*
1423  * "Unplug" a node from the device tree.  The caller must hold
1424  * a reference to the node.  The memory associated with the node
1425  * is not freed until its refcount goes to zero.
1426  */
1427 void of_detach_node(const struct device_node *np)
1428 {
1429 	struct device_node *parent;
1430 
1431 	write_lock(&devtree_lock);
1432 
1433 	parent = np->parent;
1434 
1435 	if (allnodes == np)
1436 		allnodes = np->allnext;
1437 	else {
1438 		struct device_node *prev;
1439 		for (prev = allnodes;
1440 		     prev->allnext != np;
1441 		     prev = prev->allnext)
1442 			;
1443 		prev->allnext = np->allnext;
1444 	}
1445 
1446 	if (parent->child == np)
1447 		parent->child = np->sibling;
1448 	else {
1449 		struct device_node *prevsib;
1450 		for (prevsib = np->parent->child;
1451 		     prevsib->sibling != np;
1452 		     prevsib = prevsib->sibling)
1453 			;
1454 		prevsib->sibling = np->sibling;
1455 	}
1456 
1457 	write_unlock(&devtree_lock);
1458 }
1459 
1460 #ifdef CONFIG_PPC_PSERIES
1461 /*
1462  * Fix up the uninitialized fields in a new device node:
1463  * name, type and pci-specific fields
1464  */
1465 
1466 static int of_finish_dynamic_node(struct device_node *node)
1467 {
1468 	struct device_node *parent = of_get_parent(node);
1469 	int err = 0;
1470 	const phandle *ibm_phandle;
1471 
1472 	node->name = of_get_property(node, "name", NULL);
1473 	node->type = of_get_property(node, "device_type", NULL);
1474 
1475 	if (!parent) {
1476 		err = -ENODEV;
1477 		goto out;
1478 	}
1479 
1480 	/* We don't support that function on PowerMac, at least
1481 	 * not yet
1482 	 */
1483 	if (machine_is(powermac))
1484 		return -ENODEV;
1485 
1486 	/* fix up new node's linux_phandle field */
1487 	if ((ibm_phandle = of_get_property(node, "ibm,phandle", NULL)))
1488 		node->linux_phandle = *ibm_phandle;
1489 
1490 out:
1491 	of_node_put(parent);
1492 	return err;
1493 }
1494 
1495 static int prom_reconfig_notifier(struct notifier_block *nb,
1496 				  unsigned long action, void *node)
1497 {
1498 	int err;
1499 
1500 	switch (action) {
1501 	case PSERIES_RECONFIG_ADD:
1502 		err = of_finish_dynamic_node(node);
1503 		if (err < 0) {
1504 			printk(KERN_ERR "finish_node returned %d\n", err);
1505 			err = NOTIFY_BAD;
1506 		}
1507 		break;
1508 	default:
1509 		err = NOTIFY_DONE;
1510 		break;
1511 	}
1512 	return err;
1513 }
1514 
1515 static struct notifier_block prom_reconfig_nb = {
1516 	.notifier_call = prom_reconfig_notifier,
1517 	.priority = 10, /* This one needs to run first */
1518 };
1519 
1520 static int __init prom_reconfig_setup(void)
1521 {
1522 	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1523 }
1524 __initcall(prom_reconfig_setup);
1525 #endif
1526 
1527 struct property *of_find_property(const struct device_node *np,
1528 				  const char *name,
1529 				  int *lenp)
1530 {
1531 	struct property *pp;
1532 
1533 	read_lock(&devtree_lock);
1534 	for (pp = np->properties; pp != 0; pp = pp->next)
1535 		if (strcmp(pp->name, name) == 0) {
1536 			if (lenp != 0)
1537 				*lenp = pp->length;
1538 			break;
1539 		}
1540 	read_unlock(&devtree_lock);
1541 
1542 	return pp;
1543 }
1544 EXPORT_SYMBOL(of_find_property);
1545 
1546 /*
1547  * Find a property with a given name for a given node
1548  * and return the value.
1549  */
1550 const void *of_get_property(const struct device_node *np, const char *name,
1551 			 int *lenp)
1552 {
1553 	struct property *pp = of_find_property(np,name,lenp);
1554 	return pp ? pp->value : NULL;
1555 }
1556 EXPORT_SYMBOL(of_get_property);
1557 
1558 /*
1559  * Add a property to a node
1560  */
1561 int prom_add_property(struct device_node* np, struct property* prop)
1562 {
1563 	struct property **next;
1564 
1565 	prop->next = NULL;
1566 	write_lock(&devtree_lock);
1567 	next = &np->properties;
1568 	while (*next) {
1569 		if (strcmp(prop->name, (*next)->name) == 0) {
1570 			/* duplicate ! don't insert it */
1571 			write_unlock(&devtree_lock);
1572 			return -1;
1573 		}
1574 		next = &(*next)->next;
1575 	}
1576 	*next = prop;
1577 	write_unlock(&devtree_lock);
1578 
1579 #ifdef CONFIG_PROC_DEVICETREE
1580 	/* try to add to proc as well if it was initialized */
1581 	if (np->pde)
1582 		proc_device_tree_add_prop(np->pde, prop);
1583 #endif /* CONFIG_PROC_DEVICETREE */
1584 
1585 	return 0;
1586 }
1587 
1588 /*
1589  * Remove a property from a node.  Note that we don't actually
1590  * remove it, since we have given out who-knows-how-many pointers
1591  * to the data using get-property.  Instead we just move the property
1592  * to the "dead properties" list, so it won't be found any more.
1593  */
1594 int prom_remove_property(struct device_node *np, struct property *prop)
1595 {
1596 	struct property **next;
1597 	int found = 0;
1598 
1599 	write_lock(&devtree_lock);
1600 	next = &np->properties;
1601 	while (*next) {
1602 		if (*next == prop) {
1603 			/* found the node */
1604 			*next = prop->next;
1605 			prop->next = np->deadprops;
1606 			np->deadprops = prop;
1607 			found = 1;
1608 			break;
1609 		}
1610 		next = &(*next)->next;
1611 	}
1612 	write_unlock(&devtree_lock);
1613 
1614 	if (!found)
1615 		return -ENODEV;
1616 
1617 #ifdef CONFIG_PROC_DEVICETREE
1618 	/* try to remove the proc node as well */
1619 	if (np->pde)
1620 		proc_device_tree_remove_prop(np->pde, prop);
1621 #endif /* CONFIG_PROC_DEVICETREE */
1622 
1623 	return 0;
1624 }
1625 
1626 /*
1627  * Update a property in a node.  Note that we don't actually
1628  * remove it, since we have given out who-knows-how-many pointers
1629  * to the data using get-property.  Instead we just move the property
1630  * to the "dead properties" list, and add the new property to the
1631  * property list
1632  */
1633 int prom_update_property(struct device_node *np,
1634 			 struct property *newprop,
1635 			 struct property *oldprop)
1636 {
1637 	struct property **next;
1638 	int found = 0;
1639 
1640 	write_lock(&devtree_lock);
1641 	next = &np->properties;
1642 	while (*next) {
1643 		if (*next == oldprop) {
1644 			/* found the node */
1645 			newprop->next = oldprop->next;
1646 			*next = newprop;
1647 			oldprop->next = np->deadprops;
1648 			np->deadprops = oldprop;
1649 			found = 1;
1650 			break;
1651 		}
1652 		next = &(*next)->next;
1653 	}
1654 	write_unlock(&devtree_lock);
1655 
1656 	if (!found)
1657 		return -ENODEV;
1658 
1659 #ifdef CONFIG_PROC_DEVICETREE
1660 	/* try to add to proc as well if it was initialized */
1661 	if (np->pde)
1662 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1663 #endif /* CONFIG_PROC_DEVICETREE */
1664 
1665 	return 0;
1666 }
1667 
1668 
1669 /* Find the device node for a given logical cpu number, also returns the cpu
1670  * local thread number (index in ibm,interrupt-server#s) if relevant and
1671  * asked for (non NULL)
1672  */
1673 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
1674 {
1675 	int hardid;
1676 	struct device_node *np;
1677 
1678 	hardid = get_hard_smp_processor_id(cpu);
1679 
1680 	for_each_node_by_type(np, "cpu") {
1681 		const u32 *intserv;
1682 		unsigned int plen, t;
1683 
1684 		/* Check for ibm,ppc-interrupt-server#s. If it doesn't exist
1685 		 * fallback to "reg" property and assume no threads
1686 		 */
1687 		intserv = of_get_property(np, "ibm,ppc-interrupt-server#s",
1688 				&plen);
1689 		if (intserv == NULL) {
1690 			const u32 *reg = of_get_property(np, "reg", NULL);
1691 			if (reg == NULL)
1692 				continue;
1693 			if (*reg == hardid) {
1694 				if (thread)
1695 					*thread = 0;
1696 				return np;
1697 			}
1698 		} else {
1699 			plen /= sizeof(u32);
1700 			for (t = 0; t < plen; t++) {
1701 				if (hardid == intserv[t]) {
1702 					if (thread)
1703 						*thread = t;
1704 					return np;
1705 				}
1706 			}
1707 		}
1708 	}
1709 	return NULL;
1710 }
1711 EXPORT_SYMBOL(of_get_cpu_node);
1712 
1713 #ifdef DEBUG
1714 static struct debugfs_blob_wrapper flat_dt_blob;
1715 
1716 static int __init export_flat_device_tree(void)
1717 {
1718 	struct dentry *d;
1719 
1720 	d = debugfs_create_dir("powerpc", NULL);
1721 	if (!d)
1722 		return 1;
1723 
1724 	flat_dt_blob.data = initial_boot_params;
1725 	flat_dt_blob.size = initial_boot_params->totalsize;
1726 
1727 	d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
1728 				d, &flat_dt_blob);
1729 	if (!d)
1730 		return 1;
1731 
1732 	return 0;
1733 }
1734 __initcall(export_flat_device_tree);
1735 #endif
1736