1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/random.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/uaccess.h> 40 #include <linux/elf-randomize.h> 41 #include <linux/pkeys.h> 42 #include <linux/seq_buf.h> 43 44 #include <asm/io.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/prom.h> 48 #include <asm/machdep.h> 49 #include <asm/time.h> 50 #include <asm/runlatch.h> 51 #include <asm/syscalls.h> 52 #include <asm/switch_to.h> 53 #include <asm/tm.h> 54 #include <asm/debug.h> 55 #ifdef CONFIG_PPC64 56 #include <asm/firmware.h> 57 #include <asm/hw_irq.h> 58 #endif 59 #include <asm/code-patching.h> 60 #include <asm/exec.h> 61 #include <asm/livepatch.h> 62 #include <asm/cpu_has_feature.h> 63 #include <asm/asm-prototypes.h> 64 #include <asm/stacktrace.h> 65 #include <asm/hw_breakpoint.h> 66 67 #include <linux/kprobes.h> 68 #include <linux/kdebug.h> 69 70 /* Transactional Memory debug */ 71 #ifdef TM_DEBUG_SW 72 #define TM_DEBUG(x...) printk(KERN_INFO x) 73 #else 74 #define TM_DEBUG(x...) do { } while(0) 75 #endif 76 77 extern unsigned long _get_SP(void); 78 79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 80 /* 81 * Are we running in "Suspend disabled" mode? If so we have to block any 82 * sigreturn that would get us into suspended state, and we also warn in some 83 * other paths that we should never reach with suspend disabled. 84 */ 85 bool tm_suspend_disabled __ro_after_init = false; 86 87 static void check_if_tm_restore_required(struct task_struct *tsk) 88 { 89 /* 90 * If we are saving the current thread's registers, and the 91 * thread is in a transactional state, set the TIF_RESTORE_TM 92 * bit so that we know to restore the registers before 93 * returning to userspace. 94 */ 95 if (tsk == current && tsk->thread.regs && 96 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 97 !test_thread_flag(TIF_RESTORE_TM)) { 98 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 99 set_thread_flag(TIF_RESTORE_TM); 100 } 101 } 102 103 #else 104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 106 107 bool strict_msr_control; 108 EXPORT_SYMBOL(strict_msr_control); 109 110 static int __init enable_strict_msr_control(char *str) 111 { 112 strict_msr_control = true; 113 pr_info("Enabling strict facility control\n"); 114 115 return 0; 116 } 117 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 118 119 /* notrace because it's called by restore_math */ 120 unsigned long notrace msr_check_and_set(unsigned long bits) 121 { 122 unsigned long oldmsr = mfmsr(); 123 unsigned long newmsr; 124 125 newmsr = oldmsr | bits; 126 127 #ifdef CONFIG_VSX 128 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 129 newmsr |= MSR_VSX; 130 #endif 131 132 if (oldmsr != newmsr) 133 mtmsr_isync(newmsr); 134 135 return newmsr; 136 } 137 EXPORT_SYMBOL_GPL(msr_check_and_set); 138 139 /* notrace because it's called by restore_math */ 140 void notrace __msr_check_and_clear(unsigned long bits) 141 { 142 unsigned long oldmsr = mfmsr(); 143 unsigned long newmsr; 144 145 newmsr = oldmsr & ~bits; 146 147 #ifdef CONFIG_VSX 148 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 149 newmsr &= ~MSR_VSX; 150 #endif 151 152 if (oldmsr != newmsr) 153 mtmsr_isync(newmsr); 154 } 155 EXPORT_SYMBOL(__msr_check_and_clear); 156 157 #ifdef CONFIG_PPC_FPU 158 static void __giveup_fpu(struct task_struct *tsk) 159 { 160 unsigned long msr; 161 162 save_fpu(tsk); 163 msr = tsk->thread.regs->msr; 164 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 165 #ifdef CONFIG_VSX 166 if (cpu_has_feature(CPU_FTR_VSX)) 167 msr &= ~MSR_VSX; 168 #endif 169 tsk->thread.regs->msr = msr; 170 } 171 172 void giveup_fpu(struct task_struct *tsk) 173 { 174 check_if_tm_restore_required(tsk); 175 176 msr_check_and_set(MSR_FP); 177 __giveup_fpu(tsk); 178 msr_check_and_clear(MSR_FP); 179 } 180 EXPORT_SYMBOL(giveup_fpu); 181 182 /* 183 * Make sure the floating-point register state in the 184 * the thread_struct is up to date for task tsk. 185 */ 186 void flush_fp_to_thread(struct task_struct *tsk) 187 { 188 if (tsk->thread.regs) { 189 /* 190 * We need to disable preemption here because if we didn't, 191 * another process could get scheduled after the regs->msr 192 * test but before we have finished saving the FP registers 193 * to the thread_struct. That process could take over the 194 * FPU, and then when we get scheduled again we would store 195 * bogus values for the remaining FP registers. 196 */ 197 preempt_disable(); 198 if (tsk->thread.regs->msr & MSR_FP) { 199 /* 200 * This should only ever be called for current or 201 * for a stopped child process. Since we save away 202 * the FP register state on context switch, 203 * there is something wrong if a stopped child appears 204 * to still have its FP state in the CPU registers. 205 */ 206 BUG_ON(tsk != current); 207 giveup_fpu(tsk); 208 } 209 preempt_enable(); 210 } 211 } 212 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 213 214 void enable_kernel_fp(void) 215 { 216 unsigned long cpumsr; 217 218 WARN_ON(preemptible()); 219 220 cpumsr = msr_check_and_set(MSR_FP); 221 222 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 223 check_if_tm_restore_required(current); 224 /* 225 * If a thread has already been reclaimed then the 226 * checkpointed registers are on the CPU but have definitely 227 * been saved by the reclaim code. Don't need to and *cannot* 228 * giveup as this would save to the 'live' structure not the 229 * checkpointed structure. 230 */ 231 if (!MSR_TM_ACTIVE(cpumsr) && 232 MSR_TM_ACTIVE(current->thread.regs->msr)) 233 return; 234 __giveup_fpu(current); 235 } 236 } 237 EXPORT_SYMBOL(enable_kernel_fp); 238 #endif /* CONFIG_PPC_FPU */ 239 240 #ifdef CONFIG_ALTIVEC 241 static void __giveup_altivec(struct task_struct *tsk) 242 { 243 unsigned long msr; 244 245 save_altivec(tsk); 246 msr = tsk->thread.regs->msr; 247 msr &= ~MSR_VEC; 248 #ifdef CONFIG_VSX 249 if (cpu_has_feature(CPU_FTR_VSX)) 250 msr &= ~MSR_VSX; 251 #endif 252 tsk->thread.regs->msr = msr; 253 } 254 255 void giveup_altivec(struct task_struct *tsk) 256 { 257 check_if_tm_restore_required(tsk); 258 259 msr_check_and_set(MSR_VEC); 260 __giveup_altivec(tsk); 261 msr_check_and_clear(MSR_VEC); 262 } 263 EXPORT_SYMBOL(giveup_altivec); 264 265 void enable_kernel_altivec(void) 266 { 267 unsigned long cpumsr; 268 269 WARN_ON(preemptible()); 270 271 cpumsr = msr_check_and_set(MSR_VEC); 272 273 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 274 check_if_tm_restore_required(current); 275 /* 276 * If a thread has already been reclaimed then the 277 * checkpointed registers are on the CPU but have definitely 278 * been saved by the reclaim code. Don't need to and *cannot* 279 * giveup as this would save to the 'live' structure not the 280 * checkpointed structure. 281 */ 282 if (!MSR_TM_ACTIVE(cpumsr) && 283 MSR_TM_ACTIVE(current->thread.regs->msr)) 284 return; 285 __giveup_altivec(current); 286 } 287 } 288 EXPORT_SYMBOL(enable_kernel_altivec); 289 290 /* 291 * Make sure the VMX/Altivec register state in the 292 * the thread_struct is up to date for task tsk. 293 */ 294 void flush_altivec_to_thread(struct task_struct *tsk) 295 { 296 if (tsk->thread.regs) { 297 preempt_disable(); 298 if (tsk->thread.regs->msr & MSR_VEC) { 299 BUG_ON(tsk != current); 300 giveup_altivec(tsk); 301 } 302 preempt_enable(); 303 } 304 } 305 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 306 #endif /* CONFIG_ALTIVEC */ 307 308 #ifdef CONFIG_VSX 309 static void __giveup_vsx(struct task_struct *tsk) 310 { 311 unsigned long msr = tsk->thread.regs->msr; 312 313 /* 314 * We should never be ssetting MSR_VSX without also setting 315 * MSR_FP and MSR_VEC 316 */ 317 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 318 319 /* __giveup_fpu will clear MSR_VSX */ 320 if (msr & MSR_FP) 321 __giveup_fpu(tsk); 322 if (msr & MSR_VEC) 323 __giveup_altivec(tsk); 324 } 325 326 static void giveup_vsx(struct task_struct *tsk) 327 { 328 check_if_tm_restore_required(tsk); 329 330 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 331 __giveup_vsx(tsk); 332 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 333 } 334 335 void enable_kernel_vsx(void) 336 { 337 unsigned long cpumsr; 338 339 WARN_ON(preemptible()); 340 341 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 342 343 if (current->thread.regs && 344 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 345 check_if_tm_restore_required(current); 346 /* 347 * If a thread has already been reclaimed then the 348 * checkpointed registers are on the CPU but have definitely 349 * been saved by the reclaim code. Don't need to and *cannot* 350 * giveup as this would save to the 'live' structure not the 351 * checkpointed structure. 352 */ 353 if (!MSR_TM_ACTIVE(cpumsr) && 354 MSR_TM_ACTIVE(current->thread.regs->msr)) 355 return; 356 __giveup_vsx(current); 357 } 358 } 359 EXPORT_SYMBOL(enable_kernel_vsx); 360 361 void flush_vsx_to_thread(struct task_struct *tsk) 362 { 363 if (tsk->thread.regs) { 364 preempt_disable(); 365 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 366 BUG_ON(tsk != current); 367 giveup_vsx(tsk); 368 } 369 preempt_enable(); 370 } 371 } 372 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 373 #endif /* CONFIG_VSX */ 374 375 #ifdef CONFIG_SPE 376 void giveup_spe(struct task_struct *tsk) 377 { 378 check_if_tm_restore_required(tsk); 379 380 msr_check_and_set(MSR_SPE); 381 __giveup_spe(tsk); 382 msr_check_and_clear(MSR_SPE); 383 } 384 EXPORT_SYMBOL(giveup_spe); 385 386 void enable_kernel_spe(void) 387 { 388 WARN_ON(preemptible()); 389 390 msr_check_and_set(MSR_SPE); 391 392 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 393 check_if_tm_restore_required(current); 394 __giveup_spe(current); 395 } 396 } 397 EXPORT_SYMBOL(enable_kernel_spe); 398 399 void flush_spe_to_thread(struct task_struct *tsk) 400 { 401 if (tsk->thread.regs) { 402 preempt_disable(); 403 if (tsk->thread.regs->msr & MSR_SPE) { 404 BUG_ON(tsk != current); 405 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 406 giveup_spe(tsk); 407 } 408 preempt_enable(); 409 } 410 } 411 #endif /* CONFIG_SPE */ 412 413 static unsigned long msr_all_available; 414 415 static int __init init_msr_all_available(void) 416 { 417 #ifdef CONFIG_PPC_FPU 418 msr_all_available |= MSR_FP; 419 #endif 420 #ifdef CONFIG_ALTIVEC 421 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 422 msr_all_available |= MSR_VEC; 423 #endif 424 #ifdef CONFIG_VSX 425 if (cpu_has_feature(CPU_FTR_VSX)) 426 msr_all_available |= MSR_VSX; 427 #endif 428 #ifdef CONFIG_SPE 429 if (cpu_has_feature(CPU_FTR_SPE)) 430 msr_all_available |= MSR_SPE; 431 #endif 432 433 return 0; 434 } 435 early_initcall(init_msr_all_available); 436 437 void giveup_all(struct task_struct *tsk) 438 { 439 unsigned long usermsr; 440 441 if (!tsk->thread.regs) 442 return; 443 444 check_if_tm_restore_required(tsk); 445 446 usermsr = tsk->thread.regs->msr; 447 448 if ((usermsr & msr_all_available) == 0) 449 return; 450 451 msr_check_and_set(msr_all_available); 452 453 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 454 455 #ifdef CONFIG_PPC_FPU 456 if (usermsr & MSR_FP) 457 __giveup_fpu(tsk); 458 #endif 459 #ifdef CONFIG_ALTIVEC 460 if (usermsr & MSR_VEC) 461 __giveup_altivec(tsk); 462 #endif 463 #ifdef CONFIG_SPE 464 if (usermsr & MSR_SPE) 465 __giveup_spe(tsk); 466 #endif 467 468 msr_check_and_clear(msr_all_available); 469 } 470 EXPORT_SYMBOL(giveup_all); 471 472 #ifdef CONFIG_PPC_BOOK3S_64 473 #ifdef CONFIG_PPC_FPU 474 static int restore_fp(struct task_struct *tsk) 475 { 476 if (tsk->thread.load_fp) { 477 load_fp_state(¤t->thread.fp_state); 478 current->thread.load_fp++; 479 return 1; 480 } 481 return 0; 482 } 483 #else 484 static int restore_fp(struct task_struct *tsk) { return 0; } 485 #endif /* CONFIG_PPC_FPU */ 486 487 #ifdef CONFIG_ALTIVEC 488 #define loadvec(thr) ((thr).load_vec) 489 static int restore_altivec(struct task_struct *tsk) 490 { 491 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) { 492 load_vr_state(&tsk->thread.vr_state); 493 tsk->thread.used_vr = 1; 494 tsk->thread.load_vec++; 495 496 return 1; 497 } 498 return 0; 499 } 500 #else 501 #define loadvec(thr) 0 502 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 503 #endif /* CONFIG_ALTIVEC */ 504 505 #ifdef CONFIG_VSX 506 static int restore_vsx(struct task_struct *tsk) 507 { 508 if (cpu_has_feature(CPU_FTR_VSX)) { 509 tsk->thread.used_vsr = 1; 510 return 1; 511 } 512 513 return 0; 514 } 515 #else 516 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 517 #endif /* CONFIG_VSX */ 518 519 /* 520 * The exception exit path calls restore_math() with interrupts hard disabled 521 * but the soft irq state not "reconciled". ftrace code that calls 522 * local_irq_save/restore causes warnings. 523 * 524 * Rather than complicate the exit path, just don't trace restore_math. This 525 * could be done by having ftrace entry code check for this un-reconciled 526 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 527 * temporarily fix it up for the duration of the ftrace call. 528 */ 529 void notrace restore_math(struct pt_regs *regs) 530 { 531 unsigned long msr; 532 533 if (!MSR_TM_ACTIVE(regs->msr) && 534 !current->thread.load_fp && !loadvec(current->thread)) 535 return; 536 537 msr = regs->msr; 538 msr_check_and_set(msr_all_available); 539 540 /* 541 * Only reload if the bit is not set in the user MSR, the bit BEING set 542 * indicates that the registers are hot 543 */ 544 if ((!(msr & MSR_FP)) && restore_fp(current)) 545 msr |= MSR_FP | current->thread.fpexc_mode; 546 547 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 548 msr |= MSR_VEC; 549 550 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 551 restore_vsx(current)) { 552 msr |= MSR_VSX; 553 } 554 555 msr_check_and_clear(msr_all_available); 556 557 regs->msr = msr; 558 } 559 #endif 560 561 static void save_all(struct task_struct *tsk) 562 { 563 unsigned long usermsr; 564 565 if (!tsk->thread.regs) 566 return; 567 568 usermsr = tsk->thread.regs->msr; 569 570 if ((usermsr & msr_all_available) == 0) 571 return; 572 573 msr_check_and_set(msr_all_available); 574 575 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 576 577 if (usermsr & MSR_FP) 578 save_fpu(tsk); 579 580 if (usermsr & MSR_VEC) 581 save_altivec(tsk); 582 583 if (usermsr & MSR_SPE) 584 __giveup_spe(tsk); 585 586 msr_check_and_clear(msr_all_available); 587 thread_pkey_regs_save(&tsk->thread); 588 } 589 590 void flush_all_to_thread(struct task_struct *tsk) 591 { 592 if (tsk->thread.regs) { 593 preempt_disable(); 594 BUG_ON(tsk != current); 595 #ifdef CONFIG_SPE 596 if (tsk->thread.regs->msr & MSR_SPE) 597 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 598 #endif 599 save_all(tsk); 600 601 preempt_enable(); 602 } 603 } 604 EXPORT_SYMBOL(flush_all_to_thread); 605 606 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 607 void do_send_trap(struct pt_regs *regs, unsigned long address, 608 unsigned long error_code, int breakpt) 609 { 610 current->thread.trap_nr = TRAP_HWBKPT; 611 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 612 11, SIGSEGV) == NOTIFY_STOP) 613 return; 614 615 /* Deliver the signal to userspace */ 616 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 617 (void __user *)address); 618 } 619 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 620 void do_break (struct pt_regs *regs, unsigned long address, 621 unsigned long error_code) 622 { 623 current->thread.trap_nr = TRAP_HWBKPT; 624 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 625 11, SIGSEGV) == NOTIFY_STOP) 626 return; 627 628 if (debugger_break_match(regs)) 629 return; 630 631 /* Deliver the signal to userspace */ 632 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address); 633 } 634 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 635 636 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]); 637 638 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 639 /* 640 * Set the debug registers back to their default "safe" values. 641 */ 642 static void set_debug_reg_defaults(struct thread_struct *thread) 643 { 644 thread->debug.iac1 = thread->debug.iac2 = 0; 645 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 646 thread->debug.iac3 = thread->debug.iac4 = 0; 647 #endif 648 thread->debug.dac1 = thread->debug.dac2 = 0; 649 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 650 thread->debug.dvc1 = thread->debug.dvc2 = 0; 651 #endif 652 thread->debug.dbcr0 = 0; 653 #ifdef CONFIG_BOOKE 654 /* 655 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 656 */ 657 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 658 DBCR1_IAC3US | DBCR1_IAC4US; 659 /* 660 * Force Data Address Compare User/Supervisor bits to be User-only 661 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 662 */ 663 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 664 #else 665 thread->debug.dbcr1 = 0; 666 #endif 667 } 668 669 static void prime_debug_regs(struct debug_reg *debug) 670 { 671 /* 672 * We could have inherited MSR_DE from userspace, since 673 * it doesn't get cleared on exception entry. Make sure 674 * MSR_DE is clear before we enable any debug events. 675 */ 676 mtmsr(mfmsr() & ~MSR_DE); 677 678 mtspr(SPRN_IAC1, debug->iac1); 679 mtspr(SPRN_IAC2, debug->iac2); 680 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 681 mtspr(SPRN_IAC3, debug->iac3); 682 mtspr(SPRN_IAC4, debug->iac4); 683 #endif 684 mtspr(SPRN_DAC1, debug->dac1); 685 mtspr(SPRN_DAC2, debug->dac2); 686 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 687 mtspr(SPRN_DVC1, debug->dvc1); 688 mtspr(SPRN_DVC2, debug->dvc2); 689 #endif 690 mtspr(SPRN_DBCR0, debug->dbcr0); 691 mtspr(SPRN_DBCR1, debug->dbcr1); 692 #ifdef CONFIG_BOOKE 693 mtspr(SPRN_DBCR2, debug->dbcr2); 694 #endif 695 } 696 /* 697 * Unless neither the old or new thread are making use of the 698 * debug registers, set the debug registers from the values 699 * stored in the new thread. 700 */ 701 void switch_booke_debug_regs(struct debug_reg *new_debug) 702 { 703 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 704 || (new_debug->dbcr0 & DBCR0_IDM)) 705 prime_debug_regs(new_debug); 706 } 707 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 708 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 709 #ifndef CONFIG_HAVE_HW_BREAKPOINT 710 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk) 711 { 712 preempt_disable(); 713 __set_breakpoint(i, brk); 714 preempt_enable(); 715 } 716 717 static void set_debug_reg_defaults(struct thread_struct *thread) 718 { 719 int i; 720 struct arch_hw_breakpoint null_brk = {0}; 721 722 for (i = 0; i < nr_wp_slots(); i++) { 723 thread->hw_brk[i] = null_brk; 724 if (ppc_breakpoint_available()) 725 set_breakpoint(i, &thread->hw_brk[i]); 726 } 727 } 728 729 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 730 struct arch_hw_breakpoint *b) 731 { 732 if (a->address != b->address) 733 return false; 734 if (a->type != b->type) 735 return false; 736 if (a->len != b->len) 737 return false; 738 /* no need to check hw_len. it's calculated from address and len */ 739 return true; 740 } 741 742 static void switch_hw_breakpoint(struct task_struct *new) 743 { 744 int i; 745 746 for (i = 0; i < nr_wp_slots(); i++) { 747 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]), 748 &new->thread.hw_brk[i]))) 749 continue; 750 751 __set_breakpoint(i, &new->thread.hw_brk[i]); 752 } 753 } 754 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 755 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 756 757 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 758 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 759 { 760 mtspr(SPRN_DAC1, dabr); 761 #ifdef CONFIG_PPC_47x 762 isync(); 763 #endif 764 return 0; 765 } 766 #elif defined(CONFIG_PPC_BOOK3S) 767 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 768 { 769 mtspr(SPRN_DABR, dabr); 770 if (cpu_has_feature(CPU_FTR_DABRX)) 771 mtspr(SPRN_DABRX, dabrx); 772 return 0; 773 } 774 #else 775 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 776 { 777 return -EINVAL; 778 } 779 #endif 780 781 static inline int set_dabr(struct arch_hw_breakpoint *brk) 782 { 783 unsigned long dabr, dabrx; 784 785 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 786 dabrx = ((brk->type >> 3) & 0x7); 787 788 if (ppc_md.set_dabr) 789 return ppc_md.set_dabr(dabr, dabrx); 790 791 return __set_dabr(dabr, dabrx); 792 } 793 794 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk) 795 { 796 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW | 797 LCTRL1_CRWF_RW; 798 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN; 799 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE); 800 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE); 801 802 if (start_addr == 0) 803 lctrl2 |= LCTRL2_LW0LA_F; 804 else if (end_addr == 0) 805 lctrl2 |= LCTRL2_LW0LA_E; 806 else 807 lctrl2 |= LCTRL2_LW0LA_EandF; 808 809 mtspr(SPRN_LCTRL2, 0); 810 811 if ((brk->type & HW_BRK_TYPE_RDWR) == 0) 812 return 0; 813 814 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 815 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO; 816 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 817 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO; 818 819 mtspr(SPRN_CMPE, start_addr - 1); 820 mtspr(SPRN_CMPF, end_addr); 821 mtspr(SPRN_LCTRL1, lctrl1); 822 mtspr(SPRN_LCTRL2, lctrl2); 823 824 return 0; 825 } 826 827 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk) 828 { 829 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk)); 830 831 if (dawr_enabled()) 832 // Power8 or later 833 set_dawr(nr, brk); 834 else if (IS_ENABLED(CONFIG_PPC_8xx)) 835 set_breakpoint_8xx(brk); 836 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 837 // Power7 or earlier 838 set_dabr(brk); 839 else 840 // Shouldn't happen due to higher level checks 841 WARN_ON_ONCE(1); 842 } 843 844 /* Check if we have DAWR or DABR hardware */ 845 bool ppc_breakpoint_available(void) 846 { 847 if (dawr_enabled()) 848 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 849 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 850 return false; /* POWER9 with DAWR disabled */ 851 /* DABR: Everything but POWER8 and POWER9 */ 852 return true; 853 } 854 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 855 856 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 857 858 static inline bool tm_enabled(struct task_struct *tsk) 859 { 860 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 861 } 862 863 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 864 { 865 /* 866 * Use the current MSR TM suspended bit to track if we have 867 * checkpointed state outstanding. 868 * On signal delivery, we'd normally reclaim the checkpointed 869 * state to obtain stack pointer (see:get_tm_stackpointer()). 870 * This will then directly return to userspace without going 871 * through __switch_to(). However, if the stack frame is bad, 872 * we need to exit this thread which calls __switch_to() which 873 * will again attempt to reclaim the already saved tm state. 874 * Hence we need to check that we've not already reclaimed 875 * this state. 876 * We do this using the current MSR, rather tracking it in 877 * some specific thread_struct bit, as it has the additional 878 * benefit of checking for a potential TM bad thing exception. 879 */ 880 if (!MSR_TM_SUSPENDED(mfmsr())) 881 return; 882 883 giveup_all(container_of(thr, struct task_struct, thread)); 884 885 tm_reclaim(thr, cause); 886 887 /* 888 * If we are in a transaction and FP is off then we can't have 889 * used FP inside that transaction. Hence the checkpointed 890 * state is the same as the live state. We need to copy the 891 * live state to the checkpointed state so that when the 892 * transaction is restored, the checkpointed state is correct 893 * and the aborted transaction sees the correct state. We use 894 * ckpt_regs.msr here as that's what tm_reclaim will use to 895 * determine if it's going to write the checkpointed state or 896 * not. So either this will write the checkpointed registers, 897 * or reclaim will. Similarly for VMX. 898 */ 899 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 900 memcpy(&thr->ckfp_state, &thr->fp_state, 901 sizeof(struct thread_fp_state)); 902 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 903 memcpy(&thr->ckvr_state, &thr->vr_state, 904 sizeof(struct thread_vr_state)); 905 } 906 907 void tm_reclaim_current(uint8_t cause) 908 { 909 tm_enable(); 910 tm_reclaim_thread(¤t->thread, cause); 911 } 912 913 static inline void tm_reclaim_task(struct task_struct *tsk) 914 { 915 /* We have to work out if we're switching from/to a task that's in the 916 * middle of a transaction. 917 * 918 * In switching we need to maintain a 2nd register state as 919 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 920 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 921 * ckvr_state 922 * 923 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 924 */ 925 struct thread_struct *thr = &tsk->thread; 926 927 if (!thr->regs) 928 return; 929 930 if (!MSR_TM_ACTIVE(thr->regs->msr)) 931 goto out_and_saveregs; 932 933 WARN_ON(tm_suspend_disabled); 934 935 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 936 "ccr=%lx, msr=%lx, trap=%lx)\n", 937 tsk->pid, thr->regs->nip, 938 thr->regs->ccr, thr->regs->msr, 939 thr->regs->trap); 940 941 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 942 943 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 944 tsk->pid); 945 946 out_and_saveregs: 947 /* Always save the regs here, even if a transaction's not active. 948 * This context-switches a thread's TM info SPRs. We do it here to 949 * be consistent with the restore path (in recheckpoint) which 950 * cannot happen later in _switch(). 951 */ 952 tm_save_sprs(thr); 953 } 954 955 extern void __tm_recheckpoint(struct thread_struct *thread); 956 957 void tm_recheckpoint(struct thread_struct *thread) 958 { 959 unsigned long flags; 960 961 if (!(thread->regs->msr & MSR_TM)) 962 return; 963 964 /* We really can't be interrupted here as the TEXASR registers can't 965 * change and later in the trecheckpoint code, we have a userspace R1. 966 * So let's hard disable over this region. 967 */ 968 local_irq_save(flags); 969 hard_irq_disable(); 970 971 /* The TM SPRs are restored here, so that TEXASR.FS can be set 972 * before the trecheckpoint and no explosion occurs. 973 */ 974 tm_restore_sprs(thread); 975 976 __tm_recheckpoint(thread); 977 978 local_irq_restore(flags); 979 } 980 981 static inline void tm_recheckpoint_new_task(struct task_struct *new) 982 { 983 if (!cpu_has_feature(CPU_FTR_TM)) 984 return; 985 986 /* Recheckpoint the registers of the thread we're about to switch to. 987 * 988 * If the task was using FP, we non-lazily reload both the original and 989 * the speculative FP register states. This is because the kernel 990 * doesn't see if/when a TM rollback occurs, so if we take an FP 991 * unavailable later, we are unable to determine which set of FP regs 992 * need to be restored. 993 */ 994 if (!tm_enabled(new)) 995 return; 996 997 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 998 tm_restore_sprs(&new->thread); 999 return; 1000 } 1001 /* Recheckpoint to restore original checkpointed register state. */ 1002 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1003 new->pid, new->thread.regs->msr); 1004 1005 tm_recheckpoint(&new->thread); 1006 1007 /* 1008 * The checkpointed state has been restored but the live state has 1009 * not, ensure all the math functionality is turned off to trigger 1010 * restore_math() to reload. 1011 */ 1012 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1013 1014 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1015 "(kernel msr 0x%lx)\n", 1016 new->pid, mfmsr()); 1017 } 1018 1019 static inline void __switch_to_tm(struct task_struct *prev, 1020 struct task_struct *new) 1021 { 1022 if (cpu_has_feature(CPU_FTR_TM)) { 1023 if (tm_enabled(prev) || tm_enabled(new)) 1024 tm_enable(); 1025 1026 if (tm_enabled(prev)) { 1027 prev->thread.load_tm++; 1028 tm_reclaim_task(prev); 1029 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1030 prev->thread.regs->msr &= ~MSR_TM; 1031 } 1032 1033 tm_recheckpoint_new_task(new); 1034 } 1035 } 1036 1037 /* 1038 * This is called if we are on the way out to userspace and the 1039 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1040 * FP and/or vector state and does so if necessary. 1041 * If userspace is inside a transaction (whether active or 1042 * suspended) and FP/VMX/VSX instructions have ever been enabled 1043 * inside that transaction, then we have to keep them enabled 1044 * and keep the FP/VMX/VSX state loaded while ever the transaction 1045 * continues. The reason is that if we didn't, and subsequently 1046 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1047 * we don't know whether it's the same transaction, and thus we 1048 * don't know which of the checkpointed state and the transactional 1049 * state to use. 1050 */ 1051 void restore_tm_state(struct pt_regs *regs) 1052 { 1053 unsigned long msr_diff; 1054 1055 /* 1056 * This is the only moment we should clear TIF_RESTORE_TM as 1057 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1058 * again, anything else could lead to an incorrect ckpt_msr being 1059 * saved and therefore incorrect signal contexts. 1060 */ 1061 clear_thread_flag(TIF_RESTORE_TM); 1062 if (!MSR_TM_ACTIVE(regs->msr)) 1063 return; 1064 1065 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1066 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1067 1068 /* Ensure that restore_math() will restore */ 1069 if (msr_diff & MSR_FP) 1070 current->thread.load_fp = 1; 1071 #ifdef CONFIG_ALTIVEC 1072 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1073 current->thread.load_vec = 1; 1074 #endif 1075 restore_math(regs); 1076 1077 regs->msr |= msr_diff; 1078 } 1079 1080 #else 1081 #define tm_recheckpoint_new_task(new) 1082 #define __switch_to_tm(prev, new) 1083 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1084 1085 static inline void save_sprs(struct thread_struct *t) 1086 { 1087 #ifdef CONFIG_ALTIVEC 1088 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1089 t->vrsave = mfspr(SPRN_VRSAVE); 1090 #endif 1091 #ifdef CONFIG_PPC_BOOK3S_64 1092 if (cpu_has_feature(CPU_FTR_DSCR)) 1093 t->dscr = mfspr(SPRN_DSCR); 1094 1095 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1096 t->bescr = mfspr(SPRN_BESCR); 1097 t->ebbhr = mfspr(SPRN_EBBHR); 1098 t->ebbrr = mfspr(SPRN_EBBRR); 1099 1100 t->fscr = mfspr(SPRN_FSCR); 1101 1102 /* 1103 * Note that the TAR is not available for use in the kernel. 1104 * (To provide this, the TAR should be backed up/restored on 1105 * exception entry/exit instead, and be in pt_regs. FIXME, 1106 * this should be in pt_regs anyway (for debug).) 1107 */ 1108 t->tar = mfspr(SPRN_TAR); 1109 } 1110 #endif 1111 1112 thread_pkey_regs_save(t); 1113 } 1114 1115 static inline void restore_sprs(struct thread_struct *old_thread, 1116 struct thread_struct *new_thread) 1117 { 1118 #ifdef CONFIG_ALTIVEC 1119 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1120 old_thread->vrsave != new_thread->vrsave) 1121 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1122 #endif 1123 #ifdef CONFIG_PPC_BOOK3S_64 1124 if (cpu_has_feature(CPU_FTR_DSCR)) { 1125 u64 dscr = get_paca()->dscr_default; 1126 if (new_thread->dscr_inherit) 1127 dscr = new_thread->dscr; 1128 1129 if (old_thread->dscr != dscr) 1130 mtspr(SPRN_DSCR, dscr); 1131 } 1132 1133 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1134 if (old_thread->bescr != new_thread->bescr) 1135 mtspr(SPRN_BESCR, new_thread->bescr); 1136 if (old_thread->ebbhr != new_thread->ebbhr) 1137 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1138 if (old_thread->ebbrr != new_thread->ebbrr) 1139 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1140 1141 if (old_thread->fscr != new_thread->fscr) 1142 mtspr(SPRN_FSCR, new_thread->fscr); 1143 1144 if (old_thread->tar != new_thread->tar) 1145 mtspr(SPRN_TAR, new_thread->tar); 1146 } 1147 1148 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1149 old_thread->tidr != new_thread->tidr) 1150 mtspr(SPRN_TIDR, new_thread->tidr); 1151 #endif 1152 1153 thread_pkey_regs_restore(new_thread, old_thread); 1154 } 1155 1156 struct task_struct *__switch_to(struct task_struct *prev, 1157 struct task_struct *new) 1158 { 1159 struct thread_struct *new_thread, *old_thread; 1160 struct task_struct *last; 1161 #ifdef CONFIG_PPC_BOOK3S_64 1162 struct ppc64_tlb_batch *batch; 1163 #endif 1164 1165 new_thread = &new->thread; 1166 old_thread = ¤t->thread; 1167 1168 WARN_ON(!irqs_disabled()); 1169 1170 #ifdef CONFIG_PPC_BOOK3S_64 1171 batch = this_cpu_ptr(&ppc64_tlb_batch); 1172 if (batch->active) { 1173 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1174 if (batch->index) 1175 __flush_tlb_pending(batch); 1176 batch->active = 0; 1177 } 1178 #endif /* CONFIG_PPC_BOOK3S_64 */ 1179 1180 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1181 switch_booke_debug_regs(&new->thread.debug); 1182 #else 1183 /* 1184 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1185 * schedule DABR 1186 */ 1187 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1188 switch_hw_breakpoint(new); 1189 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1190 #endif 1191 1192 /* 1193 * We need to save SPRs before treclaim/trecheckpoint as these will 1194 * change a number of them. 1195 */ 1196 save_sprs(&prev->thread); 1197 1198 /* Save FPU, Altivec, VSX and SPE state */ 1199 giveup_all(prev); 1200 1201 __switch_to_tm(prev, new); 1202 1203 if (!radix_enabled()) { 1204 /* 1205 * We can't take a PMU exception inside _switch() since there 1206 * is a window where the kernel stack SLB and the kernel stack 1207 * are out of sync. Hard disable here. 1208 */ 1209 hard_irq_disable(); 1210 } 1211 1212 /* 1213 * Call restore_sprs() before calling _switch(). If we move it after 1214 * _switch() then we miss out on calling it for new tasks. The reason 1215 * for this is we manually create a stack frame for new tasks that 1216 * directly returns through ret_from_fork() or 1217 * ret_from_kernel_thread(). See copy_thread() for details. 1218 */ 1219 restore_sprs(old_thread, new_thread); 1220 1221 last = _switch(old_thread, new_thread); 1222 1223 #ifdef CONFIG_PPC_BOOK3S_64 1224 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1225 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1226 batch = this_cpu_ptr(&ppc64_tlb_batch); 1227 batch->active = 1; 1228 } 1229 1230 if (current->thread.regs) { 1231 restore_math(current->thread.regs); 1232 1233 /* 1234 * The copy-paste buffer can only store into foreign real 1235 * addresses, so unprivileged processes can not see the 1236 * data or use it in any way unless they have foreign real 1237 * mappings. If the new process has the foreign real address 1238 * mappings, we must issue a cp_abort to clear any state and 1239 * prevent snooping, corruption or a covert channel. 1240 */ 1241 if (current->mm && 1242 atomic_read(¤t->mm->context.vas_windows)) 1243 asm volatile(PPC_CP_ABORT); 1244 } 1245 #endif /* CONFIG_PPC_BOOK3S_64 */ 1246 1247 return last; 1248 } 1249 1250 #define NR_INSN_TO_PRINT 16 1251 1252 static void show_instructions(struct pt_regs *regs) 1253 { 1254 int i; 1255 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1256 1257 printk("Instruction dump:"); 1258 1259 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1260 int instr; 1261 1262 if (!(i % 8)) 1263 pr_cont("\n"); 1264 1265 #if !defined(CONFIG_BOOKE) 1266 /* If executing with the IMMU off, adjust pc rather 1267 * than print XXXXXXXX. 1268 */ 1269 if (!(regs->msr & MSR_IR)) 1270 pc = (unsigned long)phys_to_virt(pc); 1271 #endif 1272 1273 if (!__kernel_text_address(pc) || 1274 probe_kernel_address((const void *)pc, instr)) { 1275 pr_cont("XXXXXXXX "); 1276 } else { 1277 if (regs->nip == pc) 1278 pr_cont("<%08x> ", instr); 1279 else 1280 pr_cont("%08x ", instr); 1281 } 1282 1283 pc += sizeof(int); 1284 } 1285 1286 pr_cont("\n"); 1287 } 1288 1289 void show_user_instructions(struct pt_regs *regs) 1290 { 1291 unsigned long pc; 1292 int n = NR_INSN_TO_PRINT; 1293 struct seq_buf s; 1294 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1295 1296 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1297 1298 seq_buf_init(&s, buf, sizeof(buf)); 1299 1300 while (n) { 1301 int i; 1302 1303 seq_buf_clear(&s); 1304 1305 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1306 int instr; 1307 1308 if (probe_user_read(&instr, (void __user *)pc, sizeof(instr))) { 1309 seq_buf_printf(&s, "XXXXXXXX "); 1310 continue; 1311 } 1312 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1313 } 1314 1315 if (!seq_buf_has_overflowed(&s)) 1316 pr_info("%s[%d]: code: %s\n", current->comm, 1317 current->pid, s.buffer); 1318 } 1319 } 1320 1321 struct regbit { 1322 unsigned long bit; 1323 const char *name; 1324 }; 1325 1326 static struct regbit msr_bits[] = { 1327 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1328 {MSR_SF, "SF"}, 1329 {MSR_HV, "HV"}, 1330 #endif 1331 {MSR_VEC, "VEC"}, 1332 {MSR_VSX, "VSX"}, 1333 #ifdef CONFIG_BOOKE 1334 {MSR_CE, "CE"}, 1335 #endif 1336 {MSR_EE, "EE"}, 1337 {MSR_PR, "PR"}, 1338 {MSR_FP, "FP"}, 1339 {MSR_ME, "ME"}, 1340 #ifdef CONFIG_BOOKE 1341 {MSR_DE, "DE"}, 1342 #else 1343 {MSR_SE, "SE"}, 1344 {MSR_BE, "BE"}, 1345 #endif 1346 {MSR_IR, "IR"}, 1347 {MSR_DR, "DR"}, 1348 {MSR_PMM, "PMM"}, 1349 #ifndef CONFIG_BOOKE 1350 {MSR_RI, "RI"}, 1351 {MSR_LE, "LE"}, 1352 #endif 1353 {0, NULL} 1354 }; 1355 1356 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1357 { 1358 const char *s = ""; 1359 1360 for (; bits->bit; ++bits) 1361 if (val & bits->bit) { 1362 pr_cont("%s%s", s, bits->name); 1363 s = sep; 1364 } 1365 } 1366 1367 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1368 static struct regbit msr_tm_bits[] = { 1369 {MSR_TS_T, "T"}, 1370 {MSR_TS_S, "S"}, 1371 {MSR_TM, "E"}, 1372 {0, NULL} 1373 }; 1374 1375 static void print_tm_bits(unsigned long val) 1376 { 1377 /* 1378 * This only prints something if at least one of the TM bit is set. 1379 * Inside the TM[], the output means: 1380 * E: Enabled (bit 32) 1381 * S: Suspended (bit 33) 1382 * T: Transactional (bit 34) 1383 */ 1384 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1385 pr_cont(",TM["); 1386 print_bits(val, msr_tm_bits, ""); 1387 pr_cont("]"); 1388 } 1389 } 1390 #else 1391 static void print_tm_bits(unsigned long val) {} 1392 #endif 1393 1394 static void print_msr_bits(unsigned long val) 1395 { 1396 pr_cont("<"); 1397 print_bits(val, msr_bits, ","); 1398 print_tm_bits(val); 1399 pr_cont(">"); 1400 } 1401 1402 #ifdef CONFIG_PPC64 1403 #define REG "%016lx" 1404 #define REGS_PER_LINE 4 1405 #define LAST_VOLATILE 13 1406 #else 1407 #define REG "%08lx" 1408 #define REGS_PER_LINE 8 1409 #define LAST_VOLATILE 12 1410 #endif 1411 1412 void show_regs(struct pt_regs * regs) 1413 { 1414 int i, trap; 1415 1416 show_regs_print_info(KERN_DEFAULT); 1417 1418 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1419 regs->nip, regs->link, regs->ctr); 1420 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1421 regs, regs->trap, print_tainted(), init_utsname()->release); 1422 printk("MSR: "REG" ", regs->msr); 1423 print_msr_bits(regs->msr); 1424 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1425 trap = TRAP(regs); 1426 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR)) 1427 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1428 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1429 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1430 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1431 #else 1432 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1433 #endif 1434 #ifdef CONFIG_PPC64 1435 pr_cont("IRQMASK: %lx ", regs->softe); 1436 #endif 1437 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1438 if (MSR_TM_ACTIVE(regs->msr)) 1439 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1440 #endif 1441 1442 for (i = 0; i < 32; i++) { 1443 if ((i % REGS_PER_LINE) == 0) 1444 pr_cont("\nGPR%02d: ", i); 1445 pr_cont(REG " ", regs->gpr[i]); 1446 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1447 break; 1448 } 1449 pr_cont("\n"); 1450 #ifdef CONFIG_KALLSYMS 1451 /* 1452 * Lookup NIP late so we have the best change of getting the 1453 * above info out without failing 1454 */ 1455 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1456 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1457 #endif 1458 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT); 1459 if (!user_mode(regs)) 1460 show_instructions(regs); 1461 } 1462 1463 void flush_thread(void) 1464 { 1465 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1466 flush_ptrace_hw_breakpoint(current); 1467 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1468 set_debug_reg_defaults(¤t->thread); 1469 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1470 } 1471 1472 #ifdef CONFIG_PPC_BOOK3S_64 1473 void arch_setup_new_exec(void) 1474 { 1475 if (radix_enabled()) 1476 return; 1477 hash__setup_new_exec(); 1478 } 1479 #endif 1480 1481 #ifdef CONFIG_PPC64 1482 /** 1483 * Assign a TIDR (thread ID) for task @t and set it in the thread 1484 * structure. For now, we only support setting TIDR for 'current' task. 1485 * 1486 * Since the TID value is a truncated form of it PID, it is possible 1487 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1488 * that 2 threads share the same TID and are waiting, one of the following 1489 * cases will happen: 1490 * 1491 * 1. The correct thread is running, the wrong thread is not 1492 * In this situation, the correct thread is woken and proceeds to pass it's 1493 * condition check. 1494 * 1495 * 2. Neither threads are running 1496 * In this situation, neither thread will be woken. When scheduled, the waiting 1497 * threads will execute either a wait, which will return immediately, followed 1498 * by a condition check, which will pass for the correct thread and fail 1499 * for the wrong thread, or they will execute the condition check immediately. 1500 * 1501 * 3. The wrong thread is running, the correct thread is not 1502 * The wrong thread will be woken, but will fail it's condition check and 1503 * re-execute wait. The correct thread, when scheduled, will execute either 1504 * it's condition check (which will pass), or wait, which returns immediately 1505 * when called the first time after the thread is scheduled, followed by it's 1506 * condition check (which will pass). 1507 * 1508 * 4. Both threads are running 1509 * Both threads will be woken. The wrong thread will fail it's condition check 1510 * and execute another wait, while the correct thread will pass it's condition 1511 * check. 1512 * 1513 * @t: the task to set the thread ID for 1514 */ 1515 int set_thread_tidr(struct task_struct *t) 1516 { 1517 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1518 return -EINVAL; 1519 1520 if (t != current) 1521 return -EINVAL; 1522 1523 if (t->thread.tidr) 1524 return 0; 1525 1526 t->thread.tidr = (u16)task_pid_nr(t); 1527 mtspr(SPRN_TIDR, t->thread.tidr); 1528 1529 return 0; 1530 } 1531 EXPORT_SYMBOL_GPL(set_thread_tidr); 1532 1533 #endif /* CONFIG_PPC64 */ 1534 1535 void 1536 release_thread(struct task_struct *t) 1537 { 1538 } 1539 1540 /* 1541 * this gets called so that we can store coprocessor state into memory and 1542 * copy the current task into the new thread. 1543 */ 1544 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1545 { 1546 flush_all_to_thread(src); 1547 /* 1548 * Flush TM state out so we can copy it. __switch_to_tm() does this 1549 * flush but it removes the checkpointed state from the current CPU and 1550 * transitions the CPU out of TM mode. Hence we need to call 1551 * tm_recheckpoint_new_task() (on the same task) to restore the 1552 * checkpointed state back and the TM mode. 1553 * 1554 * Can't pass dst because it isn't ready. Doesn't matter, passing 1555 * dst is only important for __switch_to() 1556 */ 1557 __switch_to_tm(src, src); 1558 1559 *dst = *src; 1560 1561 clear_task_ebb(dst); 1562 1563 return 0; 1564 } 1565 1566 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1567 { 1568 #ifdef CONFIG_PPC_BOOK3S_64 1569 unsigned long sp_vsid; 1570 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1571 1572 if (radix_enabled()) 1573 return; 1574 1575 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1576 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1577 << SLB_VSID_SHIFT_1T; 1578 else 1579 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1580 << SLB_VSID_SHIFT; 1581 sp_vsid |= SLB_VSID_KERNEL | llp; 1582 p->thread.ksp_vsid = sp_vsid; 1583 #endif 1584 } 1585 1586 /* 1587 * Copy a thread.. 1588 */ 1589 1590 /* 1591 * Copy architecture-specific thread state 1592 */ 1593 int copy_thread_tls(unsigned long clone_flags, unsigned long usp, 1594 unsigned long kthread_arg, struct task_struct *p, 1595 unsigned long tls) 1596 { 1597 struct pt_regs *childregs, *kregs; 1598 extern void ret_from_fork(void); 1599 extern void ret_from_kernel_thread(void); 1600 void (*f)(void); 1601 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1602 struct thread_info *ti = task_thread_info(p); 1603 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1604 int i; 1605 #endif 1606 1607 klp_init_thread_info(p); 1608 1609 /* Copy registers */ 1610 sp -= sizeof(struct pt_regs); 1611 childregs = (struct pt_regs *) sp; 1612 if (unlikely(p->flags & PF_KTHREAD)) { 1613 /* kernel thread */ 1614 memset(childregs, 0, sizeof(struct pt_regs)); 1615 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1616 /* function */ 1617 if (usp) 1618 childregs->gpr[14] = ppc_function_entry((void *)usp); 1619 #ifdef CONFIG_PPC64 1620 clear_tsk_thread_flag(p, TIF_32BIT); 1621 childregs->softe = IRQS_ENABLED; 1622 #endif 1623 childregs->gpr[15] = kthread_arg; 1624 p->thread.regs = NULL; /* no user register state */ 1625 ti->flags |= _TIF_RESTOREALL; 1626 f = ret_from_kernel_thread; 1627 } else { 1628 /* user thread */ 1629 struct pt_regs *regs = current_pt_regs(); 1630 CHECK_FULL_REGS(regs); 1631 *childregs = *regs; 1632 if (usp) 1633 childregs->gpr[1] = usp; 1634 p->thread.regs = childregs; 1635 childregs->gpr[3] = 0; /* Result from fork() */ 1636 if (clone_flags & CLONE_SETTLS) { 1637 if (!is_32bit_task()) 1638 childregs->gpr[13] = tls; 1639 else 1640 childregs->gpr[2] = tls; 1641 } 1642 1643 f = ret_from_fork; 1644 } 1645 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1646 sp -= STACK_FRAME_OVERHEAD; 1647 1648 /* 1649 * The way this works is that at some point in the future 1650 * some task will call _switch to switch to the new task. 1651 * That will pop off the stack frame created below and start 1652 * the new task running at ret_from_fork. The new task will 1653 * do some house keeping and then return from the fork or clone 1654 * system call, using the stack frame created above. 1655 */ 1656 ((unsigned long *)sp)[0] = 0; 1657 sp -= sizeof(struct pt_regs); 1658 kregs = (struct pt_regs *) sp; 1659 sp -= STACK_FRAME_OVERHEAD; 1660 p->thread.ksp = sp; 1661 #ifdef CONFIG_PPC32 1662 p->thread.ksp_limit = (unsigned long)end_of_stack(p); 1663 #endif 1664 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1665 for (i = 0; i < nr_wp_slots(); i++) 1666 p->thread.ptrace_bps[i] = NULL; 1667 #endif 1668 1669 p->thread.fp_save_area = NULL; 1670 #ifdef CONFIG_ALTIVEC 1671 p->thread.vr_save_area = NULL; 1672 #endif 1673 1674 setup_ksp_vsid(p, sp); 1675 1676 #ifdef CONFIG_PPC64 1677 if (cpu_has_feature(CPU_FTR_DSCR)) { 1678 p->thread.dscr_inherit = current->thread.dscr_inherit; 1679 p->thread.dscr = mfspr(SPRN_DSCR); 1680 } 1681 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1682 childregs->ppr = DEFAULT_PPR; 1683 1684 p->thread.tidr = 0; 1685 #endif 1686 kregs->nip = ppc_function_entry(f); 1687 return 0; 1688 } 1689 1690 void preload_new_slb_context(unsigned long start, unsigned long sp); 1691 1692 /* 1693 * Set up a thread for executing a new program 1694 */ 1695 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1696 { 1697 #ifdef CONFIG_PPC64 1698 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1699 1700 #ifdef CONFIG_PPC_BOOK3S_64 1701 if (!radix_enabled()) 1702 preload_new_slb_context(start, sp); 1703 #endif 1704 #endif 1705 1706 /* 1707 * If we exec out of a kernel thread then thread.regs will not be 1708 * set. Do it now. 1709 */ 1710 if (!current->thread.regs) { 1711 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1712 current->thread.regs = regs - 1; 1713 } 1714 1715 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1716 /* 1717 * Clear any transactional state, we're exec()ing. The cause is 1718 * not important as there will never be a recheckpoint so it's not 1719 * user visible. 1720 */ 1721 if (MSR_TM_SUSPENDED(mfmsr())) 1722 tm_reclaim_current(0); 1723 #endif 1724 1725 memset(regs->gpr, 0, sizeof(regs->gpr)); 1726 regs->ctr = 0; 1727 regs->link = 0; 1728 regs->xer = 0; 1729 regs->ccr = 0; 1730 regs->gpr[1] = sp; 1731 1732 /* 1733 * We have just cleared all the nonvolatile GPRs, so make 1734 * FULL_REGS(regs) return true. This is necessary to allow 1735 * ptrace to examine the thread immediately after exec. 1736 */ 1737 SET_FULL_REGS(regs); 1738 1739 #ifdef CONFIG_PPC32 1740 regs->mq = 0; 1741 regs->nip = start; 1742 regs->msr = MSR_USER; 1743 #else 1744 if (!is_32bit_task()) { 1745 unsigned long entry; 1746 1747 if (is_elf2_task()) { 1748 /* Look ma, no function descriptors! */ 1749 entry = start; 1750 1751 /* 1752 * Ulrich says: 1753 * The latest iteration of the ABI requires that when 1754 * calling a function (at its global entry point), 1755 * the caller must ensure r12 holds the entry point 1756 * address (so that the function can quickly 1757 * establish addressability). 1758 */ 1759 regs->gpr[12] = start; 1760 /* Make sure that's restored on entry to userspace. */ 1761 set_thread_flag(TIF_RESTOREALL); 1762 } else { 1763 unsigned long toc; 1764 1765 /* start is a relocated pointer to the function 1766 * descriptor for the elf _start routine. The first 1767 * entry in the function descriptor is the entry 1768 * address of _start and the second entry is the TOC 1769 * value we need to use. 1770 */ 1771 __get_user(entry, (unsigned long __user *)start); 1772 __get_user(toc, (unsigned long __user *)start+1); 1773 1774 /* Check whether the e_entry function descriptor entries 1775 * need to be relocated before we can use them. 1776 */ 1777 if (load_addr != 0) { 1778 entry += load_addr; 1779 toc += load_addr; 1780 } 1781 regs->gpr[2] = toc; 1782 } 1783 regs->nip = entry; 1784 regs->msr = MSR_USER64; 1785 } else { 1786 regs->nip = start; 1787 regs->gpr[2] = 0; 1788 regs->msr = MSR_USER32; 1789 } 1790 #endif 1791 #ifdef CONFIG_VSX 1792 current->thread.used_vsr = 0; 1793 #endif 1794 current->thread.load_slb = 0; 1795 current->thread.load_fp = 0; 1796 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1797 current->thread.fp_save_area = NULL; 1798 #ifdef CONFIG_ALTIVEC 1799 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1800 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1801 current->thread.vr_save_area = NULL; 1802 current->thread.vrsave = 0; 1803 current->thread.used_vr = 0; 1804 current->thread.load_vec = 0; 1805 #endif /* CONFIG_ALTIVEC */ 1806 #ifdef CONFIG_SPE 1807 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1808 current->thread.acc = 0; 1809 current->thread.spefscr = 0; 1810 current->thread.used_spe = 0; 1811 #endif /* CONFIG_SPE */ 1812 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1813 current->thread.tm_tfhar = 0; 1814 current->thread.tm_texasr = 0; 1815 current->thread.tm_tfiar = 0; 1816 current->thread.load_tm = 0; 1817 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1818 1819 thread_pkey_regs_init(¤t->thread); 1820 } 1821 EXPORT_SYMBOL(start_thread); 1822 1823 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1824 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1825 1826 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1827 { 1828 struct pt_regs *regs = tsk->thread.regs; 1829 1830 /* This is a bit hairy. If we are an SPE enabled processor 1831 * (have embedded fp) we store the IEEE exception enable flags in 1832 * fpexc_mode. fpexc_mode is also used for setting FP exception 1833 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1834 if (val & PR_FP_EXC_SW_ENABLE) { 1835 #ifdef CONFIG_SPE 1836 if (cpu_has_feature(CPU_FTR_SPE)) { 1837 /* 1838 * When the sticky exception bits are set 1839 * directly by userspace, it must call prctl 1840 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1841 * in the existing prctl settings) or 1842 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1843 * the bits being set). <fenv.h> functions 1844 * saving and restoring the whole 1845 * floating-point environment need to do so 1846 * anyway to restore the prctl settings from 1847 * the saved environment. 1848 */ 1849 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1850 tsk->thread.fpexc_mode = val & 1851 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1852 return 0; 1853 } else { 1854 return -EINVAL; 1855 } 1856 #else 1857 return -EINVAL; 1858 #endif 1859 } 1860 1861 /* on a CONFIG_SPE this does not hurt us. The bits that 1862 * __pack_fe01 use do not overlap with bits used for 1863 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1864 * on CONFIG_SPE implementations are reserved so writing to 1865 * them does not change anything */ 1866 if (val > PR_FP_EXC_PRECISE) 1867 return -EINVAL; 1868 tsk->thread.fpexc_mode = __pack_fe01(val); 1869 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1870 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1871 | tsk->thread.fpexc_mode; 1872 return 0; 1873 } 1874 1875 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1876 { 1877 unsigned int val; 1878 1879 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1880 #ifdef CONFIG_SPE 1881 if (cpu_has_feature(CPU_FTR_SPE)) { 1882 /* 1883 * When the sticky exception bits are set 1884 * directly by userspace, it must call prctl 1885 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1886 * in the existing prctl settings) or 1887 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1888 * the bits being set). <fenv.h> functions 1889 * saving and restoring the whole 1890 * floating-point environment need to do so 1891 * anyway to restore the prctl settings from 1892 * the saved environment. 1893 */ 1894 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1895 val = tsk->thread.fpexc_mode; 1896 } else 1897 return -EINVAL; 1898 #else 1899 return -EINVAL; 1900 #endif 1901 else 1902 val = __unpack_fe01(tsk->thread.fpexc_mode); 1903 return put_user(val, (unsigned int __user *) adr); 1904 } 1905 1906 int set_endian(struct task_struct *tsk, unsigned int val) 1907 { 1908 struct pt_regs *regs = tsk->thread.regs; 1909 1910 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1911 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1912 return -EINVAL; 1913 1914 if (regs == NULL) 1915 return -EINVAL; 1916 1917 if (val == PR_ENDIAN_BIG) 1918 regs->msr &= ~MSR_LE; 1919 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1920 regs->msr |= MSR_LE; 1921 else 1922 return -EINVAL; 1923 1924 return 0; 1925 } 1926 1927 int get_endian(struct task_struct *tsk, unsigned long adr) 1928 { 1929 struct pt_regs *regs = tsk->thread.regs; 1930 unsigned int val; 1931 1932 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1933 !cpu_has_feature(CPU_FTR_REAL_LE)) 1934 return -EINVAL; 1935 1936 if (regs == NULL) 1937 return -EINVAL; 1938 1939 if (regs->msr & MSR_LE) { 1940 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1941 val = PR_ENDIAN_LITTLE; 1942 else 1943 val = PR_ENDIAN_PPC_LITTLE; 1944 } else 1945 val = PR_ENDIAN_BIG; 1946 1947 return put_user(val, (unsigned int __user *)adr); 1948 } 1949 1950 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1951 { 1952 tsk->thread.align_ctl = val; 1953 return 0; 1954 } 1955 1956 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1957 { 1958 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1959 } 1960 1961 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1962 unsigned long nbytes) 1963 { 1964 unsigned long stack_page; 1965 unsigned long cpu = task_cpu(p); 1966 1967 stack_page = (unsigned long)hardirq_ctx[cpu]; 1968 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1969 return 1; 1970 1971 stack_page = (unsigned long)softirq_ctx[cpu]; 1972 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1973 return 1; 1974 1975 return 0; 1976 } 1977 1978 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p, 1979 unsigned long nbytes) 1980 { 1981 #ifdef CONFIG_PPC64 1982 unsigned long stack_page; 1983 unsigned long cpu = task_cpu(p); 1984 1985 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE; 1986 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1987 return 1; 1988 1989 # ifdef CONFIG_PPC_BOOK3S_64 1990 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE; 1991 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1992 return 1; 1993 1994 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE; 1995 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1996 return 1; 1997 # endif 1998 #endif 1999 2000 return 0; 2001 } 2002 2003 2004 int validate_sp(unsigned long sp, struct task_struct *p, 2005 unsigned long nbytes) 2006 { 2007 unsigned long stack_page = (unsigned long)task_stack_page(p); 2008 2009 if (sp < THREAD_SIZE) 2010 return 0; 2011 2012 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2013 return 1; 2014 2015 if (valid_irq_stack(sp, p, nbytes)) 2016 return 1; 2017 2018 return valid_emergency_stack(sp, p, nbytes); 2019 } 2020 2021 EXPORT_SYMBOL(validate_sp); 2022 2023 static unsigned long __get_wchan(struct task_struct *p) 2024 { 2025 unsigned long ip, sp; 2026 int count = 0; 2027 2028 if (!p || p == current || p->state == TASK_RUNNING) 2029 return 0; 2030 2031 sp = p->thread.ksp; 2032 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2033 return 0; 2034 2035 do { 2036 sp = *(unsigned long *)sp; 2037 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2038 p->state == TASK_RUNNING) 2039 return 0; 2040 if (count > 0) { 2041 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2042 if (!in_sched_functions(ip)) 2043 return ip; 2044 } 2045 } while (count++ < 16); 2046 return 0; 2047 } 2048 2049 unsigned long get_wchan(struct task_struct *p) 2050 { 2051 unsigned long ret; 2052 2053 if (!try_get_task_stack(p)) 2054 return 0; 2055 2056 ret = __get_wchan(p); 2057 2058 put_task_stack(p); 2059 2060 return ret; 2061 } 2062 2063 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2064 2065 void show_stack(struct task_struct *tsk, unsigned long *stack, 2066 const char *loglvl) 2067 { 2068 unsigned long sp, ip, lr, newsp; 2069 int count = 0; 2070 int firstframe = 1; 2071 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2072 unsigned long ret_addr; 2073 int ftrace_idx = 0; 2074 #endif 2075 2076 if (tsk == NULL) 2077 tsk = current; 2078 2079 if (!try_get_task_stack(tsk)) 2080 return; 2081 2082 sp = (unsigned long) stack; 2083 if (sp == 0) { 2084 if (tsk == current) 2085 sp = current_stack_frame(); 2086 else 2087 sp = tsk->thread.ksp; 2088 } 2089 2090 lr = 0; 2091 printk("%sCall Trace:\n", loglvl); 2092 do { 2093 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2094 break; 2095 2096 stack = (unsigned long *) sp; 2097 newsp = stack[0]; 2098 ip = stack[STACK_FRAME_LR_SAVE]; 2099 if (!firstframe || ip != lr) { 2100 printk("%s["REG"] ["REG"] %pS", 2101 loglvl, sp, ip, (void *)ip); 2102 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2103 ret_addr = ftrace_graph_ret_addr(current, 2104 &ftrace_idx, ip, stack); 2105 if (ret_addr != ip) 2106 pr_cont(" (%pS)", (void *)ret_addr); 2107 #endif 2108 if (firstframe) 2109 pr_cont(" (unreliable)"); 2110 pr_cont("\n"); 2111 } 2112 firstframe = 0; 2113 2114 /* 2115 * See if this is an exception frame. 2116 * We look for the "regshere" marker in the current frame. 2117 */ 2118 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2119 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2120 struct pt_regs *regs = (struct pt_regs *) 2121 (sp + STACK_FRAME_OVERHEAD); 2122 lr = regs->link; 2123 printk("%s--- interrupt: %lx at %pS\n LR = %pS\n", 2124 loglvl, regs->trap, 2125 (void *)regs->nip, (void *)lr); 2126 firstframe = 1; 2127 } 2128 2129 sp = newsp; 2130 } while (count++ < kstack_depth_to_print); 2131 2132 put_task_stack(tsk); 2133 } 2134 2135 #ifdef CONFIG_PPC64 2136 /* Called with hard IRQs off */ 2137 void notrace __ppc64_runlatch_on(void) 2138 { 2139 struct thread_info *ti = current_thread_info(); 2140 2141 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2142 /* 2143 * Least significant bit (RUN) is the only writable bit of 2144 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2145 * earliest ISA where this is the case, but it's convenient. 2146 */ 2147 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2148 } else { 2149 unsigned long ctrl; 2150 2151 /* 2152 * Some architectures (e.g., Cell) have writable fields other 2153 * than RUN, so do the read-modify-write. 2154 */ 2155 ctrl = mfspr(SPRN_CTRLF); 2156 ctrl |= CTRL_RUNLATCH; 2157 mtspr(SPRN_CTRLT, ctrl); 2158 } 2159 2160 ti->local_flags |= _TLF_RUNLATCH; 2161 } 2162 2163 /* Called with hard IRQs off */ 2164 void notrace __ppc64_runlatch_off(void) 2165 { 2166 struct thread_info *ti = current_thread_info(); 2167 2168 ti->local_flags &= ~_TLF_RUNLATCH; 2169 2170 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2171 mtspr(SPRN_CTRLT, 0); 2172 } else { 2173 unsigned long ctrl; 2174 2175 ctrl = mfspr(SPRN_CTRLF); 2176 ctrl &= ~CTRL_RUNLATCH; 2177 mtspr(SPRN_CTRLT, ctrl); 2178 } 2179 } 2180 #endif /* CONFIG_PPC64 */ 2181 2182 unsigned long arch_align_stack(unsigned long sp) 2183 { 2184 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2185 sp -= get_random_int() & ~PAGE_MASK; 2186 return sp & ~0xf; 2187 } 2188 2189 static inline unsigned long brk_rnd(void) 2190 { 2191 unsigned long rnd = 0; 2192 2193 /* 8MB for 32bit, 1GB for 64bit */ 2194 if (is_32bit_task()) 2195 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2196 else 2197 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2198 2199 return rnd << PAGE_SHIFT; 2200 } 2201 2202 unsigned long arch_randomize_brk(struct mm_struct *mm) 2203 { 2204 unsigned long base = mm->brk; 2205 unsigned long ret; 2206 2207 #ifdef CONFIG_PPC_BOOK3S_64 2208 /* 2209 * If we are using 1TB segments and we are allowed to randomise 2210 * the heap, we can put it above 1TB so it is backed by a 1TB 2211 * segment. Otherwise the heap will be in the bottom 1TB 2212 * which always uses 256MB segments and this may result in a 2213 * performance penalty. We don't need to worry about radix. For 2214 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2215 */ 2216 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2217 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2218 #endif 2219 2220 ret = PAGE_ALIGN(base + brk_rnd()); 2221 2222 if (ret < mm->brk) 2223 return mm->brk; 2224 2225 return ret; 2226 } 2227 2228