xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12 
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43 
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #include <asm/hw_irq.h>
58 #endif
59 #include <asm/code-patching.h>
60 #include <asm/exec.h>
61 #include <asm/livepatch.h>
62 #include <asm/cpu_has_feature.h>
63 #include <asm/asm-prototypes.h>
64 #include <asm/stacktrace.h>
65 #include <asm/hw_breakpoint.h>
66 
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69 
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76 
77 extern unsigned long _get_SP(void);
78 
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 /*
81  * Are we running in "Suspend disabled" mode? If so we have to block any
82  * sigreturn that would get us into suspended state, and we also warn in some
83  * other paths that we should never reach with suspend disabled.
84  */
85 bool tm_suspend_disabled __ro_after_init = false;
86 
87 static void check_if_tm_restore_required(struct task_struct *tsk)
88 {
89 	/*
90 	 * If we are saving the current thread's registers, and the
91 	 * thread is in a transactional state, set the TIF_RESTORE_TM
92 	 * bit so that we know to restore the registers before
93 	 * returning to userspace.
94 	 */
95 	if (tsk == current && tsk->thread.regs &&
96 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97 	    !test_thread_flag(TIF_RESTORE_TM)) {
98 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99 		set_thread_flag(TIF_RESTORE_TM);
100 	}
101 }
102 
103 #else
104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
106 
107 bool strict_msr_control;
108 EXPORT_SYMBOL(strict_msr_control);
109 
110 static int __init enable_strict_msr_control(char *str)
111 {
112 	strict_msr_control = true;
113 	pr_info("Enabling strict facility control\n");
114 
115 	return 0;
116 }
117 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
118 
119 /* notrace because it's called by restore_math */
120 unsigned long notrace msr_check_and_set(unsigned long bits)
121 {
122 	unsigned long oldmsr = mfmsr();
123 	unsigned long newmsr;
124 
125 	newmsr = oldmsr | bits;
126 
127 #ifdef CONFIG_VSX
128 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129 		newmsr |= MSR_VSX;
130 #endif
131 
132 	if (oldmsr != newmsr)
133 		mtmsr_isync(newmsr);
134 
135 	return newmsr;
136 }
137 EXPORT_SYMBOL_GPL(msr_check_and_set);
138 
139 /* notrace because it's called by restore_math */
140 void notrace __msr_check_and_clear(unsigned long bits)
141 {
142 	unsigned long oldmsr = mfmsr();
143 	unsigned long newmsr;
144 
145 	newmsr = oldmsr & ~bits;
146 
147 #ifdef CONFIG_VSX
148 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149 		newmsr &= ~MSR_VSX;
150 #endif
151 
152 	if (oldmsr != newmsr)
153 		mtmsr_isync(newmsr);
154 }
155 EXPORT_SYMBOL(__msr_check_and_clear);
156 
157 #ifdef CONFIG_PPC_FPU
158 static void __giveup_fpu(struct task_struct *tsk)
159 {
160 	unsigned long msr;
161 
162 	save_fpu(tsk);
163 	msr = tsk->thread.regs->msr;
164 	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
165 #ifdef CONFIG_VSX
166 	if (cpu_has_feature(CPU_FTR_VSX))
167 		msr &= ~MSR_VSX;
168 #endif
169 	tsk->thread.regs->msr = msr;
170 }
171 
172 void giveup_fpu(struct task_struct *tsk)
173 {
174 	check_if_tm_restore_required(tsk);
175 
176 	msr_check_and_set(MSR_FP);
177 	__giveup_fpu(tsk);
178 	msr_check_and_clear(MSR_FP);
179 }
180 EXPORT_SYMBOL(giveup_fpu);
181 
182 /*
183  * Make sure the floating-point register state in the
184  * the thread_struct is up to date for task tsk.
185  */
186 void flush_fp_to_thread(struct task_struct *tsk)
187 {
188 	if (tsk->thread.regs) {
189 		/*
190 		 * We need to disable preemption here because if we didn't,
191 		 * another process could get scheduled after the regs->msr
192 		 * test but before we have finished saving the FP registers
193 		 * to the thread_struct.  That process could take over the
194 		 * FPU, and then when we get scheduled again we would store
195 		 * bogus values for the remaining FP registers.
196 		 */
197 		preempt_disable();
198 		if (tsk->thread.regs->msr & MSR_FP) {
199 			/*
200 			 * This should only ever be called for current or
201 			 * for a stopped child process.  Since we save away
202 			 * the FP register state on context switch,
203 			 * there is something wrong if a stopped child appears
204 			 * to still have its FP state in the CPU registers.
205 			 */
206 			BUG_ON(tsk != current);
207 			giveup_fpu(tsk);
208 		}
209 		preempt_enable();
210 	}
211 }
212 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
213 
214 void enable_kernel_fp(void)
215 {
216 	unsigned long cpumsr;
217 
218 	WARN_ON(preemptible());
219 
220 	cpumsr = msr_check_and_set(MSR_FP);
221 
222 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
223 		check_if_tm_restore_required(current);
224 		/*
225 		 * If a thread has already been reclaimed then the
226 		 * checkpointed registers are on the CPU but have definitely
227 		 * been saved by the reclaim code. Don't need to and *cannot*
228 		 * giveup as this would save  to the 'live' structure not the
229 		 * checkpointed structure.
230 		 */
231 		if (!MSR_TM_ACTIVE(cpumsr) &&
232 		     MSR_TM_ACTIVE(current->thread.regs->msr))
233 			return;
234 		__giveup_fpu(current);
235 	}
236 }
237 EXPORT_SYMBOL(enable_kernel_fp);
238 #endif /* CONFIG_PPC_FPU */
239 
240 #ifdef CONFIG_ALTIVEC
241 static void __giveup_altivec(struct task_struct *tsk)
242 {
243 	unsigned long msr;
244 
245 	save_altivec(tsk);
246 	msr = tsk->thread.regs->msr;
247 	msr &= ~MSR_VEC;
248 #ifdef CONFIG_VSX
249 	if (cpu_has_feature(CPU_FTR_VSX))
250 		msr &= ~MSR_VSX;
251 #endif
252 	tsk->thread.regs->msr = msr;
253 }
254 
255 void giveup_altivec(struct task_struct *tsk)
256 {
257 	check_if_tm_restore_required(tsk);
258 
259 	msr_check_and_set(MSR_VEC);
260 	__giveup_altivec(tsk);
261 	msr_check_and_clear(MSR_VEC);
262 }
263 EXPORT_SYMBOL(giveup_altivec);
264 
265 void enable_kernel_altivec(void)
266 {
267 	unsigned long cpumsr;
268 
269 	WARN_ON(preemptible());
270 
271 	cpumsr = msr_check_and_set(MSR_VEC);
272 
273 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
274 		check_if_tm_restore_required(current);
275 		/*
276 		 * If a thread has already been reclaimed then the
277 		 * checkpointed registers are on the CPU but have definitely
278 		 * been saved by the reclaim code. Don't need to and *cannot*
279 		 * giveup as this would save  to the 'live' structure not the
280 		 * checkpointed structure.
281 		 */
282 		if (!MSR_TM_ACTIVE(cpumsr) &&
283 		     MSR_TM_ACTIVE(current->thread.regs->msr))
284 			return;
285 		__giveup_altivec(current);
286 	}
287 }
288 EXPORT_SYMBOL(enable_kernel_altivec);
289 
290 /*
291  * Make sure the VMX/Altivec register state in the
292  * the thread_struct is up to date for task tsk.
293  */
294 void flush_altivec_to_thread(struct task_struct *tsk)
295 {
296 	if (tsk->thread.regs) {
297 		preempt_disable();
298 		if (tsk->thread.regs->msr & MSR_VEC) {
299 			BUG_ON(tsk != current);
300 			giveup_altivec(tsk);
301 		}
302 		preempt_enable();
303 	}
304 }
305 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
306 #endif /* CONFIG_ALTIVEC */
307 
308 #ifdef CONFIG_VSX
309 static void __giveup_vsx(struct task_struct *tsk)
310 {
311 	unsigned long msr = tsk->thread.regs->msr;
312 
313 	/*
314 	 * We should never be ssetting MSR_VSX without also setting
315 	 * MSR_FP and MSR_VEC
316 	 */
317 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
318 
319 	/* __giveup_fpu will clear MSR_VSX */
320 	if (msr & MSR_FP)
321 		__giveup_fpu(tsk);
322 	if (msr & MSR_VEC)
323 		__giveup_altivec(tsk);
324 }
325 
326 static void giveup_vsx(struct task_struct *tsk)
327 {
328 	check_if_tm_restore_required(tsk);
329 
330 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
331 	__giveup_vsx(tsk);
332 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
333 }
334 
335 void enable_kernel_vsx(void)
336 {
337 	unsigned long cpumsr;
338 
339 	WARN_ON(preemptible());
340 
341 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
342 
343 	if (current->thread.regs &&
344 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
345 		check_if_tm_restore_required(current);
346 		/*
347 		 * If a thread has already been reclaimed then the
348 		 * checkpointed registers are on the CPU but have definitely
349 		 * been saved by the reclaim code. Don't need to and *cannot*
350 		 * giveup as this would save  to the 'live' structure not the
351 		 * checkpointed structure.
352 		 */
353 		if (!MSR_TM_ACTIVE(cpumsr) &&
354 		     MSR_TM_ACTIVE(current->thread.regs->msr))
355 			return;
356 		__giveup_vsx(current);
357 	}
358 }
359 EXPORT_SYMBOL(enable_kernel_vsx);
360 
361 void flush_vsx_to_thread(struct task_struct *tsk)
362 {
363 	if (tsk->thread.regs) {
364 		preempt_disable();
365 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
366 			BUG_ON(tsk != current);
367 			giveup_vsx(tsk);
368 		}
369 		preempt_enable();
370 	}
371 }
372 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
373 #endif /* CONFIG_VSX */
374 
375 #ifdef CONFIG_SPE
376 void giveup_spe(struct task_struct *tsk)
377 {
378 	check_if_tm_restore_required(tsk);
379 
380 	msr_check_and_set(MSR_SPE);
381 	__giveup_spe(tsk);
382 	msr_check_and_clear(MSR_SPE);
383 }
384 EXPORT_SYMBOL(giveup_spe);
385 
386 void enable_kernel_spe(void)
387 {
388 	WARN_ON(preemptible());
389 
390 	msr_check_and_set(MSR_SPE);
391 
392 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
393 		check_if_tm_restore_required(current);
394 		__giveup_spe(current);
395 	}
396 }
397 EXPORT_SYMBOL(enable_kernel_spe);
398 
399 void flush_spe_to_thread(struct task_struct *tsk)
400 {
401 	if (tsk->thread.regs) {
402 		preempt_disable();
403 		if (tsk->thread.regs->msr & MSR_SPE) {
404 			BUG_ON(tsk != current);
405 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
406 			giveup_spe(tsk);
407 		}
408 		preempt_enable();
409 	}
410 }
411 #endif /* CONFIG_SPE */
412 
413 static unsigned long msr_all_available;
414 
415 static int __init init_msr_all_available(void)
416 {
417 #ifdef CONFIG_PPC_FPU
418 	msr_all_available |= MSR_FP;
419 #endif
420 #ifdef CONFIG_ALTIVEC
421 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
422 		msr_all_available |= MSR_VEC;
423 #endif
424 #ifdef CONFIG_VSX
425 	if (cpu_has_feature(CPU_FTR_VSX))
426 		msr_all_available |= MSR_VSX;
427 #endif
428 #ifdef CONFIG_SPE
429 	if (cpu_has_feature(CPU_FTR_SPE))
430 		msr_all_available |= MSR_SPE;
431 #endif
432 
433 	return 0;
434 }
435 early_initcall(init_msr_all_available);
436 
437 void giveup_all(struct task_struct *tsk)
438 {
439 	unsigned long usermsr;
440 
441 	if (!tsk->thread.regs)
442 		return;
443 
444 	check_if_tm_restore_required(tsk);
445 
446 	usermsr = tsk->thread.regs->msr;
447 
448 	if ((usermsr & msr_all_available) == 0)
449 		return;
450 
451 	msr_check_and_set(msr_all_available);
452 
453 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
454 
455 #ifdef CONFIG_PPC_FPU
456 	if (usermsr & MSR_FP)
457 		__giveup_fpu(tsk);
458 #endif
459 #ifdef CONFIG_ALTIVEC
460 	if (usermsr & MSR_VEC)
461 		__giveup_altivec(tsk);
462 #endif
463 #ifdef CONFIG_SPE
464 	if (usermsr & MSR_SPE)
465 		__giveup_spe(tsk);
466 #endif
467 
468 	msr_check_and_clear(msr_all_available);
469 }
470 EXPORT_SYMBOL(giveup_all);
471 
472 #ifdef CONFIG_PPC_BOOK3S_64
473 #ifdef CONFIG_PPC_FPU
474 static bool should_restore_fp(void)
475 {
476 	if (current->thread.load_fp) {
477 		current->thread.load_fp++;
478 		return true;
479 	}
480 	return false;
481 }
482 
483 static void do_restore_fp(void)
484 {
485 	load_fp_state(&current->thread.fp_state);
486 }
487 #else
488 static bool should_restore_fp(void) { return false; }
489 static void do_restore_fp(void) { }
490 #endif /* CONFIG_PPC_FPU */
491 
492 #ifdef CONFIG_ALTIVEC
493 static bool should_restore_altivec(void)
494 {
495 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
496 		current->thread.load_vec++;
497 		return true;
498 	}
499 	return false;
500 }
501 
502 static void do_restore_altivec(void)
503 {
504 	load_vr_state(&current->thread.vr_state);
505 	current->thread.used_vr = 1;
506 }
507 #else
508 static bool should_restore_altivec(void) { return false; }
509 static void do_restore_altivec(void) { }
510 #endif /* CONFIG_ALTIVEC */
511 
512 #ifdef CONFIG_VSX
513 static bool should_restore_vsx(void)
514 {
515 	if (cpu_has_feature(CPU_FTR_VSX))
516 		return true;
517 	return false;
518 }
519 static void do_restore_vsx(void)
520 {
521 	current->thread.used_vsr = 1;
522 }
523 #else
524 static bool should_restore_vsx(void) { return false; }
525 static void do_restore_vsx(void) { }
526 #endif /* CONFIG_VSX */
527 
528 /*
529  * The exception exit path calls restore_math() with interrupts hard disabled
530  * but the soft irq state not "reconciled". ftrace code that calls
531  * local_irq_save/restore causes warnings.
532  *
533  * Rather than complicate the exit path, just don't trace restore_math. This
534  * could be done by having ftrace entry code check for this un-reconciled
535  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
536  * temporarily fix it up for the duration of the ftrace call.
537  */
538 void notrace restore_math(struct pt_regs *regs)
539 {
540 	unsigned long msr;
541 	unsigned long new_msr = 0;
542 
543 	msr = regs->msr;
544 
545 	/*
546 	 * new_msr tracks the facilities that are to be restored. Only reload
547 	 * if the bit is not set in the user MSR (if it is set, the registers
548 	 * are live for the user thread).
549 	 */
550 	if ((!(msr & MSR_FP)) && should_restore_fp())
551 		new_msr |= MSR_FP;
552 
553 	if ((!(msr & MSR_VEC)) && should_restore_altivec())
554 		new_msr |= MSR_VEC;
555 
556 	if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
557 		if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
558 			new_msr |= MSR_VSX;
559 	}
560 
561 	if (new_msr) {
562 		unsigned long fpexc_mode = 0;
563 
564 		msr_check_and_set(new_msr);
565 
566 		if (new_msr & MSR_FP) {
567 			do_restore_fp();
568 
569 			// This also covers VSX, because VSX implies FP
570 			fpexc_mode = current->thread.fpexc_mode;
571 		}
572 
573 		if (new_msr & MSR_VEC)
574 			do_restore_altivec();
575 
576 		if (new_msr & MSR_VSX)
577 			do_restore_vsx();
578 
579 		msr_check_and_clear(new_msr);
580 
581 		regs->msr |= new_msr | fpexc_mode;
582 	}
583 }
584 #endif
585 
586 static void save_all(struct task_struct *tsk)
587 {
588 	unsigned long usermsr;
589 
590 	if (!tsk->thread.regs)
591 		return;
592 
593 	usermsr = tsk->thread.regs->msr;
594 
595 	if ((usermsr & msr_all_available) == 0)
596 		return;
597 
598 	msr_check_and_set(msr_all_available);
599 
600 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
601 
602 	if (usermsr & MSR_FP)
603 		save_fpu(tsk);
604 
605 	if (usermsr & MSR_VEC)
606 		save_altivec(tsk);
607 
608 	if (usermsr & MSR_SPE)
609 		__giveup_spe(tsk);
610 
611 	msr_check_and_clear(msr_all_available);
612 	thread_pkey_regs_save(&tsk->thread);
613 }
614 
615 void flush_all_to_thread(struct task_struct *tsk)
616 {
617 	if (tsk->thread.regs) {
618 		preempt_disable();
619 		BUG_ON(tsk != current);
620 #ifdef CONFIG_SPE
621 		if (tsk->thread.regs->msr & MSR_SPE)
622 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
623 #endif
624 		save_all(tsk);
625 
626 		preempt_enable();
627 	}
628 }
629 EXPORT_SYMBOL(flush_all_to_thread);
630 
631 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
632 void do_send_trap(struct pt_regs *regs, unsigned long address,
633 		  unsigned long error_code, int breakpt)
634 {
635 	current->thread.trap_nr = TRAP_HWBKPT;
636 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
637 			11, SIGSEGV) == NOTIFY_STOP)
638 		return;
639 
640 	/* Deliver the signal to userspace */
641 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
642 				    (void __user *)address);
643 }
644 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
645 void do_break (struct pt_regs *regs, unsigned long address,
646 		    unsigned long error_code)
647 {
648 	current->thread.trap_nr = TRAP_HWBKPT;
649 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
650 			11, SIGSEGV) == NOTIFY_STOP)
651 		return;
652 
653 	if (debugger_break_match(regs))
654 		return;
655 
656 	/* Deliver the signal to userspace */
657 	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
658 }
659 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
660 
661 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
662 
663 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
664 /*
665  * Set the debug registers back to their default "safe" values.
666  */
667 static void set_debug_reg_defaults(struct thread_struct *thread)
668 {
669 	thread->debug.iac1 = thread->debug.iac2 = 0;
670 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
671 	thread->debug.iac3 = thread->debug.iac4 = 0;
672 #endif
673 	thread->debug.dac1 = thread->debug.dac2 = 0;
674 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
675 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
676 #endif
677 	thread->debug.dbcr0 = 0;
678 #ifdef CONFIG_BOOKE
679 	/*
680 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
681 	 */
682 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
683 			DBCR1_IAC3US | DBCR1_IAC4US;
684 	/*
685 	 * Force Data Address Compare User/Supervisor bits to be User-only
686 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
687 	 */
688 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
689 #else
690 	thread->debug.dbcr1 = 0;
691 #endif
692 }
693 
694 static void prime_debug_regs(struct debug_reg *debug)
695 {
696 	/*
697 	 * We could have inherited MSR_DE from userspace, since
698 	 * it doesn't get cleared on exception entry.  Make sure
699 	 * MSR_DE is clear before we enable any debug events.
700 	 */
701 	mtmsr(mfmsr() & ~MSR_DE);
702 
703 	mtspr(SPRN_IAC1, debug->iac1);
704 	mtspr(SPRN_IAC2, debug->iac2);
705 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
706 	mtspr(SPRN_IAC3, debug->iac3);
707 	mtspr(SPRN_IAC4, debug->iac4);
708 #endif
709 	mtspr(SPRN_DAC1, debug->dac1);
710 	mtspr(SPRN_DAC2, debug->dac2);
711 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
712 	mtspr(SPRN_DVC1, debug->dvc1);
713 	mtspr(SPRN_DVC2, debug->dvc2);
714 #endif
715 	mtspr(SPRN_DBCR0, debug->dbcr0);
716 	mtspr(SPRN_DBCR1, debug->dbcr1);
717 #ifdef CONFIG_BOOKE
718 	mtspr(SPRN_DBCR2, debug->dbcr2);
719 #endif
720 }
721 /*
722  * Unless neither the old or new thread are making use of the
723  * debug registers, set the debug registers from the values
724  * stored in the new thread.
725  */
726 void switch_booke_debug_regs(struct debug_reg *new_debug)
727 {
728 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
729 		|| (new_debug->dbcr0 & DBCR0_IDM))
730 			prime_debug_regs(new_debug);
731 }
732 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
733 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
734 #ifndef CONFIG_HAVE_HW_BREAKPOINT
735 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
736 {
737 	preempt_disable();
738 	__set_breakpoint(i, brk);
739 	preempt_enable();
740 }
741 
742 static void set_debug_reg_defaults(struct thread_struct *thread)
743 {
744 	int i;
745 	struct arch_hw_breakpoint null_brk = {0};
746 
747 	for (i = 0; i < nr_wp_slots(); i++) {
748 		thread->hw_brk[i] = null_brk;
749 		if (ppc_breakpoint_available())
750 			set_breakpoint(i, &thread->hw_brk[i]);
751 	}
752 }
753 
754 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
755 				struct arch_hw_breakpoint *b)
756 {
757 	if (a->address != b->address)
758 		return false;
759 	if (a->type != b->type)
760 		return false;
761 	if (a->len != b->len)
762 		return false;
763 	/* no need to check hw_len. it's calculated from address and len */
764 	return true;
765 }
766 
767 static void switch_hw_breakpoint(struct task_struct *new)
768 {
769 	int i;
770 
771 	for (i = 0; i < nr_wp_slots(); i++) {
772 		if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
773 					&new->thread.hw_brk[i])))
774 			continue;
775 
776 		__set_breakpoint(i, &new->thread.hw_brk[i]);
777 	}
778 }
779 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
780 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
781 
782 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
783 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
784 {
785 	mtspr(SPRN_DAC1, dabr);
786 #ifdef CONFIG_PPC_47x
787 	isync();
788 #endif
789 	return 0;
790 }
791 #elif defined(CONFIG_PPC_BOOK3S)
792 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
793 {
794 	mtspr(SPRN_DABR, dabr);
795 	if (cpu_has_feature(CPU_FTR_DABRX))
796 		mtspr(SPRN_DABRX, dabrx);
797 	return 0;
798 }
799 #else
800 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
801 {
802 	return -EINVAL;
803 }
804 #endif
805 
806 static inline int set_dabr(struct arch_hw_breakpoint *brk)
807 {
808 	unsigned long dabr, dabrx;
809 
810 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
811 	dabrx = ((brk->type >> 3) & 0x7);
812 
813 	if (ppc_md.set_dabr)
814 		return ppc_md.set_dabr(dabr, dabrx);
815 
816 	return __set_dabr(dabr, dabrx);
817 }
818 
819 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
820 {
821 	unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
822 			       LCTRL1_CRWF_RW;
823 	unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
824 	unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
825 	unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
826 
827 	if (start_addr == 0)
828 		lctrl2 |= LCTRL2_LW0LA_F;
829 	else if (end_addr == 0)
830 		lctrl2 |= LCTRL2_LW0LA_E;
831 	else
832 		lctrl2 |= LCTRL2_LW0LA_EandF;
833 
834 	mtspr(SPRN_LCTRL2, 0);
835 
836 	if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
837 		return 0;
838 
839 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
840 		lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
841 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
842 		lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
843 
844 	mtspr(SPRN_CMPE, start_addr - 1);
845 	mtspr(SPRN_CMPF, end_addr);
846 	mtspr(SPRN_LCTRL1, lctrl1);
847 	mtspr(SPRN_LCTRL2, lctrl2);
848 
849 	return 0;
850 }
851 
852 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
853 {
854 	memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
855 
856 	if (dawr_enabled())
857 		// Power8 or later
858 		set_dawr(nr, brk);
859 	else if (IS_ENABLED(CONFIG_PPC_8xx))
860 		set_breakpoint_8xx(brk);
861 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
862 		// Power7 or earlier
863 		set_dabr(brk);
864 	else
865 		// Shouldn't happen due to higher level checks
866 		WARN_ON_ONCE(1);
867 }
868 
869 /* Check if we have DAWR or DABR hardware */
870 bool ppc_breakpoint_available(void)
871 {
872 	if (dawr_enabled())
873 		return true; /* POWER8 DAWR or POWER9 forced DAWR */
874 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
875 		return false; /* POWER9 with DAWR disabled */
876 	/* DABR: Everything but POWER8 and POWER9 */
877 	return true;
878 }
879 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
880 
881 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
882 
883 static inline bool tm_enabled(struct task_struct *tsk)
884 {
885 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
886 }
887 
888 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
889 {
890 	/*
891 	 * Use the current MSR TM suspended bit to track if we have
892 	 * checkpointed state outstanding.
893 	 * On signal delivery, we'd normally reclaim the checkpointed
894 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
895 	 * This will then directly return to userspace without going
896 	 * through __switch_to(). However, if the stack frame is bad,
897 	 * we need to exit this thread which calls __switch_to() which
898 	 * will again attempt to reclaim the already saved tm state.
899 	 * Hence we need to check that we've not already reclaimed
900 	 * this state.
901 	 * We do this using the current MSR, rather tracking it in
902 	 * some specific thread_struct bit, as it has the additional
903 	 * benefit of checking for a potential TM bad thing exception.
904 	 */
905 	if (!MSR_TM_SUSPENDED(mfmsr()))
906 		return;
907 
908 	giveup_all(container_of(thr, struct task_struct, thread));
909 
910 	tm_reclaim(thr, cause);
911 
912 	/*
913 	 * If we are in a transaction and FP is off then we can't have
914 	 * used FP inside that transaction. Hence the checkpointed
915 	 * state is the same as the live state. We need to copy the
916 	 * live state to the checkpointed state so that when the
917 	 * transaction is restored, the checkpointed state is correct
918 	 * and the aborted transaction sees the correct state. We use
919 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
920 	 * determine if it's going to write the checkpointed state or
921 	 * not. So either this will write the checkpointed registers,
922 	 * or reclaim will. Similarly for VMX.
923 	 */
924 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
925 		memcpy(&thr->ckfp_state, &thr->fp_state,
926 		       sizeof(struct thread_fp_state));
927 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
928 		memcpy(&thr->ckvr_state, &thr->vr_state,
929 		       sizeof(struct thread_vr_state));
930 }
931 
932 void tm_reclaim_current(uint8_t cause)
933 {
934 	tm_enable();
935 	tm_reclaim_thread(&current->thread, cause);
936 }
937 
938 static inline void tm_reclaim_task(struct task_struct *tsk)
939 {
940 	/* We have to work out if we're switching from/to a task that's in the
941 	 * middle of a transaction.
942 	 *
943 	 * In switching we need to maintain a 2nd register state as
944 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
945 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
946 	 * ckvr_state
947 	 *
948 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
949 	 */
950 	struct thread_struct *thr = &tsk->thread;
951 
952 	if (!thr->regs)
953 		return;
954 
955 	if (!MSR_TM_ACTIVE(thr->regs->msr))
956 		goto out_and_saveregs;
957 
958 	WARN_ON(tm_suspend_disabled);
959 
960 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
961 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
962 		 tsk->pid, thr->regs->nip,
963 		 thr->regs->ccr, thr->regs->msr,
964 		 thr->regs->trap);
965 
966 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
967 
968 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
969 		 tsk->pid);
970 
971 out_and_saveregs:
972 	/* Always save the regs here, even if a transaction's not active.
973 	 * This context-switches a thread's TM info SPRs.  We do it here to
974 	 * be consistent with the restore path (in recheckpoint) which
975 	 * cannot happen later in _switch().
976 	 */
977 	tm_save_sprs(thr);
978 }
979 
980 extern void __tm_recheckpoint(struct thread_struct *thread);
981 
982 void tm_recheckpoint(struct thread_struct *thread)
983 {
984 	unsigned long flags;
985 
986 	if (!(thread->regs->msr & MSR_TM))
987 		return;
988 
989 	/* We really can't be interrupted here as the TEXASR registers can't
990 	 * change and later in the trecheckpoint code, we have a userspace R1.
991 	 * So let's hard disable over this region.
992 	 */
993 	local_irq_save(flags);
994 	hard_irq_disable();
995 
996 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
997 	 * before the trecheckpoint and no explosion occurs.
998 	 */
999 	tm_restore_sprs(thread);
1000 
1001 	__tm_recheckpoint(thread);
1002 
1003 	local_irq_restore(flags);
1004 }
1005 
1006 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1007 {
1008 	if (!cpu_has_feature(CPU_FTR_TM))
1009 		return;
1010 
1011 	/* Recheckpoint the registers of the thread we're about to switch to.
1012 	 *
1013 	 * If the task was using FP, we non-lazily reload both the original and
1014 	 * the speculative FP register states.  This is because the kernel
1015 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
1016 	 * unavailable later, we are unable to determine which set of FP regs
1017 	 * need to be restored.
1018 	 */
1019 	if (!tm_enabled(new))
1020 		return;
1021 
1022 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1023 		tm_restore_sprs(&new->thread);
1024 		return;
1025 	}
1026 	/* Recheckpoint to restore original checkpointed register state. */
1027 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1028 		 new->pid, new->thread.regs->msr);
1029 
1030 	tm_recheckpoint(&new->thread);
1031 
1032 	/*
1033 	 * The checkpointed state has been restored but the live state has
1034 	 * not, ensure all the math functionality is turned off to trigger
1035 	 * restore_math() to reload.
1036 	 */
1037 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1038 
1039 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1040 		 "(kernel msr 0x%lx)\n",
1041 		 new->pid, mfmsr());
1042 }
1043 
1044 static inline void __switch_to_tm(struct task_struct *prev,
1045 		struct task_struct *new)
1046 {
1047 	if (cpu_has_feature(CPU_FTR_TM)) {
1048 		if (tm_enabled(prev) || tm_enabled(new))
1049 			tm_enable();
1050 
1051 		if (tm_enabled(prev)) {
1052 			prev->thread.load_tm++;
1053 			tm_reclaim_task(prev);
1054 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1055 				prev->thread.regs->msr &= ~MSR_TM;
1056 		}
1057 
1058 		tm_recheckpoint_new_task(new);
1059 	}
1060 }
1061 
1062 /*
1063  * This is called if we are on the way out to userspace and the
1064  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1065  * FP and/or vector state and does so if necessary.
1066  * If userspace is inside a transaction (whether active or
1067  * suspended) and FP/VMX/VSX instructions have ever been enabled
1068  * inside that transaction, then we have to keep them enabled
1069  * and keep the FP/VMX/VSX state loaded while ever the transaction
1070  * continues.  The reason is that if we didn't, and subsequently
1071  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1072  * we don't know whether it's the same transaction, and thus we
1073  * don't know which of the checkpointed state and the transactional
1074  * state to use.
1075  */
1076 void restore_tm_state(struct pt_regs *regs)
1077 {
1078 	unsigned long msr_diff;
1079 
1080 	/*
1081 	 * This is the only moment we should clear TIF_RESTORE_TM as
1082 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1083 	 * again, anything else could lead to an incorrect ckpt_msr being
1084 	 * saved and therefore incorrect signal contexts.
1085 	 */
1086 	clear_thread_flag(TIF_RESTORE_TM);
1087 	if (!MSR_TM_ACTIVE(regs->msr))
1088 		return;
1089 
1090 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1091 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1092 
1093 	/* Ensure that restore_math() will restore */
1094 	if (msr_diff & MSR_FP)
1095 		current->thread.load_fp = 1;
1096 #ifdef CONFIG_ALTIVEC
1097 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1098 		current->thread.load_vec = 1;
1099 #endif
1100 	restore_math(regs);
1101 
1102 	regs->msr |= msr_diff;
1103 }
1104 
1105 #else
1106 #define tm_recheckpoint_new_task(new)
1107 #define __switch_to_tm(prev, new)
1108 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1109 
1110 static inline void save_sprs(struct thread_struct *t)
1111 {
1112 #ifdef CONFIG_ALTIVEC
1113 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1114 		t->vrsave = mfspr(SPRN_VRSAVE);
1115 #endif
1116 #ifdef CONFIG_PPC_BOOK3S_64
1117 	if (cpu_has_feature(CPU_FTR_DSCR))
1118 		t->dscr = mfspr(SPRN_DSCR);
1119 
1120 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1121 		t->bescr = mfspr(SPRN_BESCR);
1122 		t->ebbhr = mfspr(SPRN_EBBHR);
1123 		t->ebbrr = mfspr(SPRN_EBBRR);
1124 
1125 		t->fscr = mfspr(SPRN_FSCR);
1126 
1127 		/*
1128 		 * Note that the TAR is not available for use in the kernel.
1129 		 * (To provide this, the TAR should be backed up/restored on
1130 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1131 		 * this should be in pt_regs anyway (for debug).)
1132 		 */
1133 		t->tar = mfspr(SPRN_TAR);
1134 	}
1135 #endif
1136 
1137 	thread_pkey_regs_save(t);
1138 }
1139 
1140 static inline void restore_sprs(struct thread_struct *old_thread,
1141 				struct thread_struct *new_thread)
1142 {
1143 #ifdef CONFIG_ALTIVEC
1144 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1145 	    old_thread->vrsave != new_thread->vrsave)
1146 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1147 #endif
1148 #ifdef CONFIG_PPC_BOOK3S_64
1149 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1150 		u64 dscr = get_paca()->dscr_default;
1151 		if (new_thread->dscr_inherit)
1152 			dscr = new_thread->dscr;
1153 
1154 		if (old_thread->dscr != dscr)
1155 			mtspr(SPRN_DSCR, dscr);
1156 	}
1157 
1158 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1159 		if (old_thread->bescr != new_thread->bescr)
1160 			mtspr(SPRN_BESCR, new_thread->bescr);
1161 		if (old_thread->ebbhr != new_thread->ebbhr)
1162 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1163 		if (old_thread->ebbrr != new_thread->ebbrr)
1164 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1165 
1166 		if (old_thread->fscr != new_thread->fscr)
1167 			mtspr(SPRN_FSCR, new_thread->fscr);
1168 
1169 		if (old_thread->tar != new_thread->tar)
1170 			mtspr(SPRN_TAR, new_thread->tar);
1171 	}
1172 
1173 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1174 	    old_thread->tidr != new_thread->tidr)
1175 		mtspr(SPRN_TIDR, new_thread->tidr);
1176 #endif
1177 
1178 	thread_pkey_regs_restore(new_thread, old_thread);
1179 }
1180 
1181 struct task_struct *__switch_to(struct task_struct *prev,
1182 	struct task_struct *new)
1183 {
1184 	struct thread_struct *new_thread, *old_thread;
1185 	struct task_struct *last;
1186 #ifdef CONFIG_PPC_BOOK3S_64
1187 	struct ppc64_tlb_batch *batch;
1188 #endif
1189 
1190 	new_thread = &new->thread;
1191 	old_thread = &current->thread;
1192 
1193 	WARN_ON(!irqs_disabled());
1194 
1195 #ifdef CONFIG_PPC_BOOK3S_64
1196 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1197 	if (batch->active) {
1198 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1199 		if (batch->index)
1200 			__flush_tlb_pending(batch);
1201 		batch->active = 0;
1202 	}
1203 #endif /* CONFIG_PPC_BOOK3S_64 */
1204 
1205 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1206 	switch_booke_debug_regs(&new->thread.debug);
1207 #else
1208 /*
1209  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1210  * schedule DABR
1211  */
1212 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1213 	switch_hw_breakpoint(new);
1214 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1215 #endif
1216 
1217 	/*
1218 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1219 	 * change a number of them.
1220 	 */
1221 	save_sprs(&prev->thread);
1222 
1223 	/* Save FPU, Altivec, VSX and SPE state */
1224 	giveup_all(prev);
1225 
1226 	__switch_to_tm(prev, new);
1227 
1228 	if (!radix_enabled()) {
1229 		/*
1230 		 * We can't take a PMU exception inside _switch() since there
1231 		 * is a window where the kernel stack SLB and the kernel stack
1232 		 * are out of sync. Hard disable here.
1233 		 */
1234 		hard_irq_disable();
1235 	}
1236 
1237 	/*
1238 	 * Call restore_sprs() before calling _switch(). If we move it after
1239 	 * _switch() then we miss out on calling it for new tasks. The reason
1240 	 * for this is we manually create a stack frame for new tasks that
1241 	 * directly returns through ret_from_fork() or
1242 	 * ret_from_kernel_thread(). See copy_thread() for details.
1243 	 */
1244 	restore_sprs(old_thread, new_thread);
1245 
1246 	last = _switch(old_thread, new_thread);
1247 
1248 #ifdef CONFIG_PPC_BOOK3S_64
1249 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1250 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1251 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1252 		batch->active = 1;
1253 	}
1254 
1255 	if (current->thread.regs) {
1256 		restore_math(current->thread.regs);
1257 
1258 		/*
1259 		 * The copy-paste buffer can only store into foreign real
1260 		 * addresses, so unprivileged processes can not see the
1261 		 * data or use it in any way unless they have foreign real
1262 		 * mappings. If the new process has the foreign real address
1263 		 * mappings, we must issue a cp_abort to clear any state and
1264 		 * prevent snooping, corruption or a covert channel.
1265 		 */
1266 		if (current->mm &&
1267 			atomic_read(&current->mm->context.vas_windows))
1268 			asm volatile(PPC_CP_ABORT);
1269 	}
1270 #endif /* CONFIG_PPC_BOOK3S_64 */
1271 
1272 	return last;
1273 }
1274 
1275 #define NR_INSN_TO_PRINT	16
1276 
1277 static void show_instructions(struct pt_regs *regs)
1278 {
1279 	int i;
1280 	unsigned long nip = regs->nip;
1281 	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1282 
1283 	printk("Instruction dump:");
1284 
1285 	/*
1286 	 * If we were executing with the MMU off for instructions, adjust pc
1287 	 * rather than printing XXXXXXXX.
1288 	 */
1289 	if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1290 		pc = (unsigned long)phys_to_virt(pc);
1291 		nip = (unsigned long)phys_to_virt(regs->nip);
1292 	}
1293 
1294 	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1295 		int instr;
1296 
1297 		if (!(i % 8))
1298 			pr_cont("\n");
1299 
1300 		if (!__kernel_text_address(pc) ||
1301 		    get_kernel_nofault(instr, (const void *)pc)) {
1302 			pr_cont("XXXXXXXX ");
1303 		} else {
1304 			if (nip == pc)
1305 				pr_cont("<%08x> ", instr);
1306 			else
1307 				pr_cont("%08x ", instr);
1308 		}
1309 
1310 		pc += sizeof(int);
1311 	}
1312 
1313 	pr_cont("\n");
1314 }
1315 
1316 void show_user_instructions(struct pt_regs *regs)
1317 {
1318 	unsigned long pc;
1319 	int n = NR_INSN_TO_PRINT;
1320 	struct seq_buf s;
1321 	char buf[96]; /* enough for 8 times 9 + 2 chars */
1322 
1323 	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1324 
1325 	seq_buf_init(&s, buf, sizeof(buf));
1326 
1327 	while (n) {
1328 		int i;
1329 
1330 		seq_buf_clear(&s);
1331 
1332 		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1333 			int instr;
1334 
1335 			if (copy_from_user_nofault(&instr, (void __user *)pc,
1336 					sizeof(instr))) {
1337 				seq_buf_printf(&s, "XXXXXXXX ");
1338 				continue;
1339 			}
1340 			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1341 		}
1342 
1343 		if (!seq_buf_has_overflowed(&s))
1344 			pr_info("%s[%d]: code: %s\n", current->comm,
1345 				current->pid, s.buffer);
1346 	}
1347 }
1348 
1349 struct regbit {
1350 	unsigned long bit;
1351 	const char *name;
1352 };
1353 
1354 static struct regbit msr_bits[] = {
1355 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1356 	{MSR_SF,	"SF"},
1357 	{MSR_HV,	"HV"},
1358 #endif
1359 	{MSR_VEC,	"VEC"},
1360 	{MSR_VSX,	"VSX"},
1361 #ifdef CONFIG_BOOKE
1362 	{MSR_CE,	"CE"},
1363 #endif
1364 	{MSR_EE,	"EE"},
1365 	{MSR_PR,	"PR"},
1366 	{MSR_FP,	"FP"},
1367 	{MSR_ME,	"ME"},
1368 #ifdef CONFIG_BOOKE
1369 	{MSR_DE,	"DE"},
1370 #else
1371 	{MSR_SE,	"SE"},
1372 	{MSR_BE,	"BE"},
1373 #endif
1374 	{MSR_IR,	"IR"},
1375 	{MSR_DR,	"DR"},
1376 	{MSR_PMM,	"PMM"},
1377 #ifndef CONFIG_BOOKE
1378 	{MSR_RI,	"RI"},
1379 	{MSR_LE,	"LE"},
1380 #endif
1381 	{0,		NULL}
1382 };
1383 
1384 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1385 {
1386 	const char *s = "";
1387 
1388 	for (; bits->bit; ++bits)
1389 		if (val & bits->bit) {
1390 			pr_cont("%s%s", s, bits->name);
1391 			s = sep;
1392 		}
1393 }
1394 
1395 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1396 static struct regbit msr_tm_bits[] = {
1397 	{MSR_TS_T,	"T"},
1398 	{MSR_TS_S,	"S"},
1399 	{MSR_TM,	"E"},
1400 	{0,		NULL}
1401 };
1402 
1403 static void print_tm_bits(unsigned long val)
1404 {
1405 /*
1406  * This only prints something if at least one of the TM bit is set.
1407  * Inside the TM[], the output means:
1408  *   E: Enabled		(bit 32)
1409  *   S: Suspended	(bit 33)
1410  *   T: Transactional	(bit 34)
1411  */
1412 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1413 		pr_cont(",TM[");
1414 		print_bits(val, msr_tm_bits, "");
1415 		pr_cont("]");
1416 	}
1417 }
1418 #else
1419 static void print_tm_bits(unsigned long val) {}
1420 #endif
1421 
1422 static void print_msr_bits(unsigned long val)
1423 {
1424 	pr_cont("<");
1425 	print_bits(val, msr_bits, ",");
1426 	print_tm_bits(val);
1427 	pr_cont(">");
1428 }
1429 
1430 #ifdef CONFIG_PPC64
1431 #define REG		"%016lx"
1432 #define REGS_PER_LINE	4
1433 #define LAST_VOLATILE	13
1434 #else
1435 #define REG		"%08lx"
1436 #define REGS_PER_LINE	8
1437 #define LAST_VOLATILE	12
1438 #endif
1439 
1440 void show_regs(struct pt_regs * regs)
1441 {
1442 	int i, trap;
1443 
1444 	show_regs_print_info(KERN_DEFAULT);
1445 
1446 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1447 	       regs->nip, regs->link, regs->ctr);
1448 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1449 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1450 	printk("MSR:  "REG" ", regs->msr);
1451 	print_msr_bits(regs->msr);
1452 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1453 	trap = TRAP(regs);
1454 	if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1455 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1456 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1457 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1458 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1459 #else
1460 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1461 #endif
1462 #ifdef CONFIG_PPC64
1463 	pr_cont("IRQMASK: %lx ", regs->softe);
1464 #endif
1465 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1466 	if (MSR_TM_ACTIVE(regs->msr))
1467 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1468 #endif
1469 
1470 	for (i = 0;  i < 32;  i++) {
1471 		if ((i % REGS_PER_LINE) == 0)
1472 			pr_cont("\nGPR%02d: ", i);
1473 		pr_cont(REG " ", regs->gpr[i]);
1474 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1475 			break;
1476 	}
1477 	pr_cont("\n");
1478 #ifdef CONFIG_KALLSYMS
1479 	/*
1480 	 * Lookup NIP late so we have the best change of getting the
1481 	 * above info out without failing
1482 	 */
1483 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1484 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1485 #endif
1486 	show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1487 	if (!user_mode(regs))
1488 		show_instructions(regs);
1489 }
1490 
1491 void flush_thread(void)
1492 {
1493 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1494 	flush_ptrace_hw_breakpoint(current);
1495 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1496 	set_debug_reg_defaults(&current->thread);
1497 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1498 }
1499 
1500 #ifdef CONFIG_PPC_BOOK3S_64
1501 void arch_setup_new_exec(void)
1502 {
1503 	if (radix_enabled())
1504 		return;
1505 	hash__setup_new_exec();
1506 }
1507 #endif
1508 
1509 #ifdef CONFIG_PPC64
1510 /**
1511  * Assign a TIDR (thread ID) for task @t and set it in the thread
1512  * structure. For now, we only support setting TIDR for 'current' task.
1513  *
1514  * Since the TID value is a truncated form of it PID, it is possible
1515  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1516  * that 2 threads share the same TID and are waiting, one of the following
1517  * cases will happen:
1518  *
1519  * 1. The correct thread is running, the wrong thread is not
1520  * In this situation, the correct thread is woken and proceeds to pass it's
1521  * condition check.
1522  *
1523  * 2. Neither threads are running
1524  * In this situation, neither thread will be woken. When scheduled, the waiting
1525  * threads will execute either a wait, which will return immediately, followed
1526  * by a condition check, which will pass for the correct thread and fail
1527  * for the wrong thread, or they will execute the condition check immediately.
1528  *
1529  * 3. The wrong thread is running, the correct thread is not
1530  * The wrong thread will be woken, but will fail it's condition check and
1531  * re-execute wait. The correct thread, when scheduled, will execute either
1532  * it's condition check (which will pass), or wait, which returns immediately
1533  * when called the first time after the thread is scheduled, followed by it's
1534  * condition check (which will pass).
1535  *
1536  * 4. Both threads are running
1537  * Both threads will be woken. The wrong thread will fail it's condition check
1538  * and execute another wait, while the correct thread will pass it's condition
1539  * check.
1540  *
1541  * @t: the task to set the thread ID for
1542  */
1543 int set_thread_tidr(struct task_struct *t)
1544 {
1545 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1546 		return -EINVAL;
1547 
1548 	if (t != current)
1549 		return -EINVAL;
1550 
1551 	if (t->thread.tidr)
1552 		return 0;
1553 
1554 	t->thread.tidr = (u16)task_pid_nr(t);
1555 	mtspr(SPRN_TIDR, t->thread.tidr);
1556 
1557 	return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(set_thread_tidr);
1560 
1561 #endif /* CONFIG_PPC64 */
1562 
1563 void
1564 release_thread(struct task_struct *t)
1565 {
1566 }
1567 
1568 /*
1569  * this gets called so that we can store coprocessor state into memory and
1570  * copy the current task into the new thread.
1571  */
1572 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1573 {
1574 	flush_all_to_thread(src);
1575 	/*
1576 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1577 	 * flush but it removes the checkpointed state from the current CPU and
1578 	 * transitions the CPU out of TM mode.  Hence we need to call
1579 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1580 	 * checkpointed state back and the TM mode.
1581 	 *
1582 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1583 	 * dst is only important for __switch_to()
1584 	 */
1585 	__switch_to_tm(src, src);
1586 
1587 	*dst = *src;
1588 
1589 	clear_task_ebb(dst);
1590 
1591 	return 0;
1592 }
1593 
1594 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1595 {
1596 #ifdef CONFIG_PPC_BOOK3S_64
1597 	unsigned long sp_vsid;
1598 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1599 
1600 	if (radix_enabled())
1601 		return;
1602 
1603 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1604 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1605 			<< SLB_VSID_SHIFT_1T;
1606 	else
1607 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1608 			<< SLB_VSID_SHIFT;
1609 	sp_vsid |= SLB_VSID_KERNEL | llp;
1610 	p->thread.ksp_vsid = sp_vsid;
1611 #endif
1612 }
1613 
1614 /*
1615  * Copy a thread..
1616  */
1617 
1618 /*
1619  * Copy architecture-specific thread state
1620  */
1621 int copy_thread(unsigned long clone_flags, unsigned long usp,
1622 		unsigned long kthread_arg, struct task_struct *p,
1623 		unsigned long tls)
1624 {
1625 	struct pt_regs *childregs, *kregs;
1626 	extern void ret_from_fork(void);
1627 	extern void ret_from_fork_scv(void);
1628 	extern void ret_from_kernel_thread(void);
1629 	void (*f)(void);
1630 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1631 	struct thread_info *ti = task_thread_info(p);
1632 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1633 	int i;
1634 #endif
1635 
1636 	klp_init_thread_info(p);
1637 
1638 	/* Copy registers */
1639 	sp -= sizeof(struct pt_regs);
1640 	childregs = (struct pt_regs *) sp;
1641 	if (unlikely(p->flags & PF_KTHREAD)) {
1642 		/* kernel thread */
1643 		memset(childregs, 0, sizeof(struct pt_regs));
1644 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1645 		/* function */
1646 		if (usp)
1647 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1648 #ifdef CONFIG_PPC64
1649 		clear_tsk_thread_flag(p, TIF_32BIT);
1650 		childregs->softe = IRQS_ENABLED;
1651 #endif
1652 		childregs->gpr[15] = kthread_arg;
1653 		p->thread.regs = NULL;	/* no user register state */
1654 		ti->flags |= _TIF_RESTOREALL;
1655 		f = ret_from_kernel_thread;
1656 	} else {
1657 		/* user thread */
1658 		struct pt_regs *regs = current_pt_regs();
1659 		CHECK_FULL_REGS(regs);
1660 		*childregs = *regs;
1661 		if (usp)
1662 			childregs->gpr[1] = usp;
1663 		p->thread.regs = childregs;
1664 		/* 64s sets this in ret_from_fork */
1665 		if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1666 			childregs->gpr[3] = 0;  /* Result from fork() */
1667 		if (clone_flags & CLONE_SETTLS) {
1668 			if (!is_32bit_task())
1669 				childregs->gpr[13] = tls;
1670 			else
1671 				childregs->gpr[2] = tls;
1672 		}
1673 
1674 		if (trap_is_scv(regs))
1675 			f = ret_from_fork_scv;
1676 		else
1677 			f = ret_from_fork;
1678 	}
1679 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1680 	sp -= STACK_FRAME_OVERHEAD;
1681 
1682 	/*
1683 	 * The way this works is that at some point in the future
1684 	 * some task will call _switch to switch to the new task.
1685 	 * That will pop off the stack frame created below and start
1686 	 * the new task running at ret_from_fork.  The new task will
1687 	 * do some house keeping and then return from the fork or clone
1688 	 * system call, using the stack frame created above.
1689 	 */
1690 	((unsigned long *)sp)[0] = 0;
1691 	sp -= sizeof(struct pt_regs);
1692 	kregs = (struct pt_regs *) sp;
1693 	sp -= STACK_FRAME_OVERHEAD;
1694 	p->thread.ksp = sp;
1695 #ifdef CONFIG_PPC32
1696 	p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1697 #endif
1698 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1699 	for (i = 0; i < nr_wp_slots(); i++)
1700 		p->thread.ptrace_bps[i] = NULL;
1701 #endif
1702 
1703 	p->thread.fp_save_area = NULL;
1704 #ifdef CONFIG_ALTIVEC
1705 	p->thread.vr_save_area = NULL;
1706 #endif
1707 
1708 	setup_ksp_vsid(p, sp);
1709 
1710 #ifdef CONFIG_PPC64
1711 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1712 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1713 		p->thread.dscr = mfspr(SPRN_DSCR);
1714 	}
1715 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1716 		childregs->ppr = DEFAULT_PPR;
1717 
1718 	p->thread.tidr = 0;
1719 #endif
1720 	kregs->nip = ppc_function_entry(f);
1721 	return 0;
1722 }
1723 
1724 void preload_new_slb_context(unsigned long start, unsigned long sp);
1725 
1726 /*
1727  * Set up a thread for executing a new program
1728  */
1729 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1730 {
1731 #ifdef CONFIG_PPC64
1732 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1733 
1734 #ifdef CONFIG_PPC_BOOK3S_64
1735 	if (!radix_enabled())
1736 		preload_new_slb_context(start, sp);
1737 #endif
1738 #endif
1739 
1740 	/*
1741 	 * If we exec out of a kernel thread then thread.regs will not be
1742 	 * set.  Do it now.
1743 	 */
1744 	if (!current->thread.regs) {
1745 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1746 		current->thread.regs = regs - 1;
1747 	}
1748 
1749 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1750 	/*
1751 	 * Clear any transactional state, we're exec()ing. The cause is
1752 	 * not important as there will never be a recheckpoint so it's not
1753 	 * user visible.
1754 	 */
1755 	if (MSR_TM_SUSPENDED(mfmsr()))
1756 		tm_reclaim_current(0);
1757 #endif
1758 
1759 	memset(regs->gpr, 0, sizeof(regs->gpr));
1760 	regs->ctr = 0;
1761 	regs->link = 0;
1762 	regs->xer = 0;
1763 	regs->ccr = 0;
1764 	regs->gpr[1] = sp;
1765 
1766 	/*
1767 	 * We have just cleared all the nonvolatile GPRs, so make
1768 	 * FULL_REGS(regs) return true.  This is necessary to allow
1769 	 * ptrace to examine the thread immediately after exec.
1770 	 */
1771 	SET_FULL_REGS(regs);
1772 
1773 #ifdef CONFIG_PPC32
1774 	regs->mq = 0;
1775 	regs->nip = start;
1776 	regs->msr = MSR_USER;
1777 #else
1778 	if (!is_32bit_task()) {
1779 		unsigned long entry;
1780 
1781 		if (is_elf2_task()) {
1782 			/* Look ma, no function descriptors! */
1783 			entry = start;
1784 
1785 			/*
1786 			 * Ulrich says:
1787 			 *   The latest iteration of the ABI requires that when
1788 			 *   calling a function (at its global entry point),
1789 			 *   the caller must ensure r12 holds the entry point
1790 			 *   address (so that the function can quickly
1791 			 *   establish addressability).
1792 			 */
1793 			regs->gpr[12] = start;
1794 			/* Make sure that's restored on entry to userspace. */
1795 			set_thread_flag(TIF_RESTOREALL);
1796 		} else {
1797 			unsigned long toc;
1798 
1799 			/* start is a relocated pointer to the function
1800 			 * descriptor for the elf _start routine.  The first
1801 			 * entry in the function descriptor is the entry
1802 			 * address of _start and the second entry is the TOC
1803 			 * value we need to use.
1804 			 */
1805 			__get_user(entry, (unsigned long __user *)start);
1806 			__get_user(toc, (unsigned long __user *)start+1);
1807 
1808 			/* Check whether the e_entry function descriptor entries
1809 			 * need to be relocated before we can use them.
1810 			 */
1811 			if (load_addr != 0) {
1812 				entry += load_addr;
1813 				toc   += load_addr;
1814 			}
1815 			regs->gpr[2] = toc;
1816 		}
1817 		regs->nip = entry;
1818 		regs->msr = MSR_USER64;
1819 	} else {
1820 		regs->nip = start;
1821 		regs->gpr[2] = 0;
1822 		regs->msr = MSR_USER32;
1823 	}
1824 #endif
1825 #ifdef CONFIG_VSX
1826 	current->thread.used_vsr = 0;
1827 #endif
1828 	current->thread.load_slb = 0;
1829 	current->thread.load_fp = 0;
1830 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1831 	current->thread.fp_save_area = NULL;
1832 #ifdef CONFIG_ALTIVEC
1833 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1834 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1835 	current->thread.vr_save_area = NULL;
1836 	current->thread.vrsave = 0;
1837 	current->thread.used_vr = 0;
1838 	current->thread.load_vec = 0;
1839 #endif /* CONFIG_ALTIVEC */
1840 #ifdef CONFIG_SPE
1841 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1842 	current->thread.acc = 0;
1843 	current->thread.spefscr = 0;
1844 	current->thread.used_spe = 0;
1845 #endif /* CONFIG_SPE */
1846 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1847 	current->thread.tm_tfhar = 0;
1848 	current->thread.tm_texasr = 0;
1849 	current->thread.tm_tfiar = 0;
1850 	current->thread.load_tm = 0;
1851 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1852 
1853 	thread_pkey_regs_init(&current->thread);
1854 }
1855 EXPORT_SYMBOL(start_thread);
1856 
1857 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1858 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1859 
1860 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1861 {
1862 	struct pt_regs *regs = tsk->thread.regs;
1863 
1864 	/* This is a bit hairy.  If we are an SPE enabled  processor
1865 	 * (have embedded fp) we store the IEEE exception enable flags in
1866 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1867 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1868 	if (val & PR_FP_EXC_SW_ENABLE) {
1869 #ifdef CONFIG_SPE
1870 		if (cpu_has_feature(CPU_FTR_SPE)) {
1871 			/*
1872 			 * When the sticky exception bits are set
1873 			 * directly by userspace, it must call prctl
1874 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1875 			 * in the existing prctl settings) or
1876 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1877 			 * the bits being set).  <fenv.h> functions
1878 			 * saving and restoring the whole
1879 			 * floating-point environment need to do so
1880 			 * anyway to restore the prctl settings from
1881 			 * the saved environment.
1882 			 */
1883 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1884 			tsk->thread.fpexc_mode = val &
1885 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1886 			return 0;
1887 		} else {
1888 			return -EINVAL;
1889 		}
1890 #else
1891 		return -EINVAL;
1892 #endif
1893 	}
1894 
1895 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1896 	 * __pack_fe01 use do not overlap with bits used for
1897 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1898 	 * on CONFIG_SPE implementations are reserved so writing to
1899 	 * them does not change anything */
1900 	if (val > PR_FP_EXC_PRECISE)
1901 		return -EINVAL;
1902 	tsk->thread.fpexc_mode = __pack_fe01(val);
1903 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1904 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1905 			| tsk->thread.fpexc_mode;
1906 	return 0;
1907 }
1908 
1909 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1910 {
1911 	unsigned int val;
1912 
1913 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1914 #ifdef CONFIG_SPE
1915 		if (cpu_has_feature(CPU_FTR_SPE)) {
1916 			/*
1917 			 * When the sticky exception bits are set
1918 			 * directly by userspace, it must call prctl
1919 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1920 			 * in the existing prctl settings) or
1921 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1922 			 * the bits being set).  <fenv.h> functions
1923 			 * saving and restoring the whole
1924 			 * floating-point environment need to do so
1925 			 * anyway to restore the prctl settings from
1926 			 * the saved environment.
1927 			 */
1928 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1929 			val = tsk->thread.fpexc_mode;
1930 		} else
1931 			return -EINVAL;
1932 #else
1933 		return -EINVAL;
1934 #endif
1935 	else
1936 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1937 	return put_user(val, (unsigned int __user *) adr);
1938 }
1939 
1940 int set_endian(struct task_struct *tsk, unsigned int val)
1941 {
1942 	struct pt_regs *regs = tsk->thread.regs;
1943 
1944 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1945 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1946 		return -EINVAL;
1947 
1948 	if (regs == NULL)
1949 		return -EINVAL;
1950 
1951 	if (val == PR_ENDIAN_BIG)
1952 		regs->msr &= ~MSR_LE;
1953 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1954 		regs->msr |= MSR_LE;
1955 	else
1956 		return -EINVAL;
1957 
1958 	return 0;
1959 }
1960 
1961 int get_endian(struct task_struct *tsk, unsigned long adr)
1962 {
1963 	struct pt_regs *regs = tsk->thread.regs;
1964 	unsigned int val;
1965 
1966 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1967 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1968 		return -EINVAL;
1969 
1970 	if (regs == NULL)
1971 		return -EINVAL;
1972 
1973 	if (regs->msr & MSR_LE) {
1974 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1975 			val = PR_ENDIAN_LITTLE;
1976 		else
1977 			val = PR_ENDIAN_PPC_LITTLE;
1978 	} else
1979 		val = PR_ENDIAN_BIG;
1980 
1981 	return put_user(val, (unsigned int __user *)adr);
1982 }
1983 
1984 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1985 {
1986 	tsk->thread.align_ctl = val;
1987 	return 0;
1988 }
1989 
1990 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1991 {
1992 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1993 }
1994 
1995 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1996 				  unsigned long nbytes)
1997 {
1998 	unsigned long stack_page;
1999 	unsigned long cpu = task_cpu(p);
2000 
2001 	stack_page = (unsigned long)hardirq_ctx[cpu];
2002 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2003 		return 1;
2004 
2005 	stack_page = (unsigned long)softirq_ctx[cpu];
2006 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2007 		return 1;
2008 
2009 	return 0;
2010 }
2011 
2012 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2013 					unsigned long nbytes)
2014 {
2015 #ifdef CONFIG_PPC64
2016 	unsigned long stack_page;
2017 	unsigned long cpu = task_cpu(p);
2018 
2019 	stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2020 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2021 		return 1;
2022 
2023 # ifdef CONFIG_PPC_BOOK3S_64
2024 	stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2025 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2026 		return 1;
2027 
2028 	stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2029 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2030 		return 1;
2031 # endif
2032 #endif
2033 
2034 	return 0;
2035 }
2036 
2037 
2038 int validate_sp(unsigned long sp, struct task_struct *p,
2039 		       unsigned long nbytes)
2040 {
2041 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2042 
2043 	if (sp < THREAD_SIZE)
2044 		return 0;
2045 
2046 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2047 		return 1;
2048 
2049 	if (valid_irq_stack(sp, p, nbytes))
2050 		return 1;
2051 
2052 	return valid_emergency_stack(sp, p, nbytes);
2053 }
2054 
2055 EXPORT_SYMBOL(validate_sp);
2056 
2057 static unsigned long __get_wchan(struct task_struct *p)
2058 {
2059 	unsigned long ip, sp;
2060 	int count = 0;
2061 
2062 	if (!p || p == current || p->state == TASK_RUNNING)
2063 		return 0;
2064 
2065 	sp = p->thread.ksp;
2066 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2067 		return 0;
2068 
2069 	do {
2070 		sp = *(unsigned long *)sp;
2071 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2072 		    p->state == TASK_RUNNING)
2073 			return 0;
2074 		if (count > 0) {
2075 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2076 			if (!in_sched_functions(ip))
2077 				return ip;
2078 		}
2079 	} while (count++ < 16);
2080 	return 0;
2081 }
2082 
2083 unsigned long get_wchan(struct task_struct *p)
2084 {
2085 	unsigned long ret;
2086 
2087 	if (!try_get_task_stack(p))
2088 		return 0;
2089 
2090 	ret = __get_wchan(p);
2091 
2092 	put_task_stack(p);
2093 
2094 	return ret;
2095 }
2096 
2097 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2098 
2099 void show_stack(struct task_struct *tsk, unsigned long *stack,
2100 		const char *loglvl)
2101 {
2102 	unsigned long sp, ip, lr, newsp;
2103 	int count = 0;
2104 	int firstframe = 1;
2105 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2106 	unsigned long ret_addr;
2107 	int ftrace_idx = 0;
2108 #endif
2109 
2110 	if (tsk == NULL)
2111 		tsk = current;
2112 
2113 	if (!try_get_task_stack(tsk))
2114 		return;
2115 
2116 	sp = (unsigned long) stack;
2117 	if (sp == 0) {
2118 		if (tsk == current)
2119 			sp = current_stack_frame();
2120 		else
2121 			sp = tsk->thread.ksp;
2122 	}
2123 
2124 	lr = 0;
2125 	printk("%sCall Trace:\n", loglvl);
2126 	do {
2127 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2128 			break;
2129 
2130 		stack = (unsigned long *) sp;
2131 		newsp = stack[0];
2132 		ip = stack[STACK_FRAME_LR_SAVE];
2133 		if (!firstframe || ip != lr) {
2134 			printk("%s["REG"] ["REG"] %pS",
2135 				loglvl, sp, ip, (void *)ip);
2136 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2137 			ret_addr = ftrace_graph_ret_addr(current,
2138 						&ftrace_idx, ip, stack);
2139 			if (ret_addr != ip)
2140 				pr_cont(" (%pS)", (void *)ret_addr);
2141 #endif
2142 			if (firstframe)
2143 				pr_cont(" (unreliable)");
2144 			pr_cont("\n");
2145 		}
2146 		firstframe = 0;
2147 
2148 		/*
2149 		 * See if this is an exception frame.
2150 		 * We look for the "regshere" marker in the current frame.
2151 		 */
2152 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2153 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2154 			struct pt_regs *regs = (struct pt_regs *)
2155 				(sp + STACK_FRAME_OVERHEAD);
2156 			lr = regs->link;
2157 			printk("%s--- interrupt: %lx at %pS\n    LR = %pS\n",
2158 			       loglvl, regs->trap,
2159 			       (void *)regs->nip, (void *)lr);
2160 			firstframe = 1;
2161 		}
2162 
2163 		sp = newsp;
2164 	} while (count++ < kstack_depth_to_print);
2165 
2166 	put_task_stack(tsk);
2167 }
2168 
2169 #ifdef CONFIG_PPC64
2170 /* Called with hard IRQs off */
2171 void notrace __ppc64_runlatch_on(void)
2172 {
2173 	struct thread_info *ti = current_thread_info();
2174 
2175 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2176 		/*
2177 		 * Least significant bit (RUN) is the only writable bit of
2178 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2179 		 * earliest ISA where this is the case, but it's convenient.
2180 		 */
2181 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2182 	} else {
2183 		unsigned long ctrl;
2184 
2185 		/*
2186 		 * Some architectures (e.g., Cell) have writable fields other
2187 		 * than RUN, so do the read-modify-write.
2188 		 */
2189 		ctrl = mfspr(SPRN_CTRLF);
2190 		ctrl |= CTRL_RUNLATCH;
2191 		mtspr(SPRN_CTRLT, ctrl);
2192 	}
2193 
2194 	ti->local_flags |= _TLF_RUNLATCH;
2195 }
2196 
2197 /* Called with hard IRQs off */
2198 void notrace __ppc64_runlatch_off(void)
2199 {
2200 	struct thread_info *ti = current_thread_info();
2201 
2202 	ti->local_flags &= ~_TLF_RUNLATCH;
2203 
2204 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2205 		mtspr(SPRN_CTRLT, 0);
2206 	} else {
2207 		unsigned long ctrl;
2208 
2209 		ctrl = mfspr(SPRN_CTRLF);
2210 		ctrl &= ~CTRL_RUNLATCH;
2211 		mtspr(SPRN_CTRLT, ctrl);
2212 	}
2213 }
2214 #endif /* CONFIG_PPC64 */
2215 
2216 unsigned long arch_align_stack(unsigned long sp)
2217 {
2218 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2219 		sp -= get_random_int() & ~PAGE_MASK;
2220 	return sp & ~0xf;
2221 }
2222 
2223 static inline unsigned long brk_rnd(void)
2224 {
2225         unsigned long rnd = 0;
2226 
2227 	/* 8MB for 32bit, 1GB for 64bit */
2228 	if (is_32bit_task())
2229 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2230 	else
2231 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2232 
2233 	return rnd << PAGE_SHIFT;
2234 }
2235 
2236 unsigned long arch_randomize_brk(struct mm_struct *mm)
2237 {
2238 	unsigned long base = mm->brk;
2239 	unsigned long ret;
2240 
2241 #ifdef CONFIG_PPC_BOOK3S_64
2242 	/*
2243 	 * If we are using 1TB segments and we are allowed to randomise
2244 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2245 	 * segment. Otherwise the heap will be in the bottom 1TB
2246 	 * which always uses 256MB segments and this may result in a
2247 	 * performance penalty. We don't need to worry about radix. For
2248 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2249 	 */
2250 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2251 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2252 #endif
2253 
2254 	ret = PAGE_ALIGN(base + brk_rnd());
2255 
2256 	if (ret < mm->brk)
2257 		return mm->brk;
2258 
2259 	return ret;
2260 }
2261 
2262