1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/random.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/uaccess.h> 40 #include <linux/elf-randomize.h> 41 #include <linux/pkeys.h> 42 #include <linux/seq_buf.h> 43 44 #include <asm/io.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/prom.h> 48 #include <asm/machdep.h> 49 #include <asm/time.h> 50 #include <asm/runlatch.h> 51 #include <asm/syscalls.h> 52 #include <asm/switch_to.h> 53 #include <asm/tm.h> 54 #include <asm/debug.h> 55 #ifdef CONFIG_PPC64 56 #include <asm/firmware.h> 57 #include <asm/hw_irq.h> 58 #endif 59 #include <asm/code-patching.h> 60 #include <asm/exec.h> 61 #include <asm/livepatch.h> 62 #include <asm/cpu_has_feature.h> 63 #include <asm/asm-prototypes.h> 64 #include <asm/stacktrace.h> 65 #include <asm/hw_breakpoint.h> 66 67 #include <linux/kprobes.h> 68 #include <linux/kdebug.h> 69 70 /* Transactional Memory debug */ 71 #ifdef TM_DEBUG_SW 72 #define TM_DEBUG(x...) printk(KERN_INFO x) 73 #else 74 #define TM_DEBUG(x...) do { } while(0) 75 #endif 76 77 extern unsigned long _get_SP(void); 78 79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 80 /* 81 * Are we running in "Suspend disabled" mode? If so we have to block any 82 * sigreturn that would get us into suspended state, and we also warn in some 83 * other paths that we should never reach with suspend disabled. 84 */ 85 bool tm_suspend_disabled __ro_after_init = false; 86 87 static void check_if_tm_restore_required(struct task_struct *tsk) 88 { 89 /* 90 * If we are saving the current thread's registers, and the 91 * thread is in a transactional state, set the TIF_RESTORE_TM 92 * bit so that we know to restore the registers before 93 * returning to userspace. 94 */ 95 if (tsk == current && tsk->thread.regs && 96 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 97 !test_thread_flag(TIF_RESTORE_TM)) { 98 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 99 set_thread_flag(TIF_RESTORE_TM); 100 } 101 } 102 103 #else 104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 106 107 bool strict_msr_control; 108 EXPORT_SYMBOL(strict_msr_control); 109 110 static int __init enable_strict_msr_control(char *str) 111 { 112 strict_msr_control = true; 113 pr_info("Enabling strict facility control\n"); 114 115 return 0; 116 } 117 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 118 119 /* notrace because it's called by restore_math */ 120 unsigned long notrace msr_check_and_set(unsigned long bits) 121 { 122 unsigned long oldmsr = mfmsr(); 123 unsigned long newmsr; 124 125 newmsr = oldmsr | bits; 126 127 #ifdef CONFIG_VSX 128 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 129 newmsr |= MSR_VSX; 130 #endif 131 132 if (oldmsr != newmsr) 133 mtmsr_isync(newmsr); 134 135 return newmsr; 136 } 137 EXPORT_SYMBOL_GPL(msr_check_and_set); 138 139 /* notrace because it's called by restore_math */ 140 void notrace __msr_check_and_clear(unsigned long bits) 141 { 142 unsigned long oldmsr = mfmsr(); 143 unsigned long newmsr; 144 145 newmsr = oldmsr & ~bits; 146 147 #ifdef CONFIG_VSX 148 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 149 newmsr &= ~MSR_VSX; 150 #endif 151 152 if (oldmsr != newmsr) 153 mtmsr_isync(newmsr); 154 } 155 EXPORT_SYMBOL(__msr_check_and_clear); 156 157 #ifdef CONFIG_PPC_FPU 158 static void __giveup_fpu(struct task_struct *tsk) 159 { 160 unsigned long msr; 161 162 save_fpu(tsk); 163 msr = tsk->thread.regs->msr; 164 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 165 #ifdef CONFIG_VSX 166 if (cpu_has_feature(CPU_FTR_VSX)) 167 msr &= ~MSR_VSX; 168 #endif 169 tsk->thread.regs->msr = msr; 170 } 171 172 void giveup_fpu(struct task_struct *tsk) 173 { 174 check_if_tm_restore_required(tsk); 175 176 msr_check_and_set(MSR_FP); 177 __giveup_fpu(tsk); 178 msr_check_and_clear(MSR_FP); 179 } 180 EXPORT_SYMBOL(giveup_fpu); 181 182 /* 183 * Make sure the floating-point register state in the 184 * the thread_struct is up to date for task tsk. 185 */ 186 void flush_fp_to_thread(struct task_struct *tsk) 187 { 188 if (tsk->thread.regs) { 189 /* 190 * We need to disable preemption here because if we didn't, 191 * another process could get scheduled after the regs->msr 192 * test but before we have finished saving the FP registers 193 * to the thread_struct. That process could take over the 194 * FPU, and then when we get scheduled again we would store 195 * bogus values for the remaining FP registers. 196 */ 197 preempt_disable(); 198 if (tsk->thread.regs->msr & MSR_FP) { 199 /* 200 * This should only ever be called for current or 201 * for a stopped child process. Since we save away 202 * the FP register state on context switch, 203 * there is something wrong if a stopped child appears 204 * to still have its FP state in the CPU registers. 205 */ 206 BUG_ON(tsk != current); 207 giveup_fpu(tsk); 208 } 209 preempt_enable(); 210 } 211 } 212 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 213 214 void enable_kernel_fp(void) 215 { 216 unsigned long cpumsr; 217 218 WARN_ON(preemptible()); 219 220 cpumsr = msr_check_and_set(MSR_FP); 221 222 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 223 check_if_tm_restore_required(current); 224 /* 225 * If a thread has already been reclaimed then the 226 * checkpointed registers are on the CPU but have definitely 227 * been saved by the reclaim code. Don't need to and *cannot* 228 * giveup as this would save to the 'live' structure not the 229 * checkpointed structure. 230 */ 231 if (!MSR_TM_ACTIVE(cpumsr) && 232 MSR_TM_ACTIVE(current->thread.regs->msr)) 233 return; 234 __giveup_fpu(current); 235 } 236 } 237 EXPORT_SYMBOL(enable_kernel_fp); 238 #endif /* CONFIG_PPC_FPU */ 239 240 #ifdef CONFIG_ALTIVEC 241 static void __giveup_altivec(struct task_struct *tsk) 242 { 243 unsigned long msr; 244 245 save_altivec(tsk); 246 msr = tsk->thread.regs->msr; 247 msr &= ~MSR_VEC; 248 #ifdef CONFIG_VSX 249 if (cpu_has_feature(CPU_FTR_VSX)) 250 msr &= ~MSR_VSX; 251 #endif 252 tsk->thread.regs->msr = msr; 253 } 254 255 void giveup_altivec(struct task_struct *tsk) 256 { 257 check_if_tm_restore_required(tsk); 258 259 msr_check_and_set(MSR_VEC); 260 __giveup_altivec(tsk); 261 msr_check_and_clear(MSR_VEC); 262 } 263 EXPORT_SYMBOL(giveup_altivec); 264 265 void enable_kernel_altivec(void) 266 { 267 unsigned long cpumsr; 268 269 WARN_ON(preemptible()); 270 271 cpumsr = msr_check_and_set(MSR_VEC); 272 273 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 274 check_if_tm_restore_required(current); 275 /* 276 * If a thread has already been reclaimed then the 277 * checkpointed registers are on the CPU but have definitely 278 * been saved by the reclaim code. Don't need to and *cannot* 279 * giveup as this would save to the 'live' structure not the 280 * checkpointed structure. 281 */ 282 if (!MSR_TM_ACTIVE(cpumsr) && 283 MSR_TM_ACTIVE(current->thread.regs->msr)) 284 return; 285 __giveup_altivec(current); 286 } 287 } 288 EXPORT_SYMBOL(enable_kernel_altivec); 289 290 /* 291 * Make sure the VMX/Altivec register state in the 292 * the thread_struct is up to date for task tsk. 293 */ 294 void flush_altivec_to_thread(struct task_struct *tsk) 295 { 296 if (tsk->thread.regs) { 297 preempt_disable(); 298 if (tsk->thread.regs->msr & MSR_VEC) { 299 BUG_ON(tsk != current); 300 giveup_altivec(tsk); 301 } 302 preempt_enable(); 303 } 304 } 305 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 306 #endif /* CONFIG_ALTIVEC */ 307 308 #ifdef CONFIG_VSX 309 static void __giveup_vsx(struct task_struct *tsk) 310 { 311 unsigned long msr = tsk->thread.regs->msr; 312 313 /* 314 * We should never be ssetting MSR_VSX without also setting 315 * MSR_FP and MSR_VEC 316 */ 317 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 318 319 /* __giveup_fpu will clear MSR_VSX */ 320 if (msr & MSR_FP) 321 __giveup_fpu(tsk); 322 if (msr & MSR_VEC) 323 __giveup_altivec(tsk); 324 } 325 326 static void giveup_vsx(struct task_struct *tsk) 327 { 328 check_if_tm_restore_required(tsk); 329 330 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 331 __giveup_vsx(tsk); 332 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 333 } 334 335 void enable_kernel_vsx(void) 336 { 337 unsigned long cpumsr; 338 339 WARN_ON(preemptible()); 340 341 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 342 343 if (current->thread.regs && 344 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 345 check_if_tm_restore_required(current); 346 /* 347 * If a thread has already been reclaimed then the 348 * checkpointed registers are on the CPU but have definitely 349 * been saved by the reclaim code. Don't need to and *cannot* 350 * giveup as this would save to the 'live' structure not the 351 * checkpointed structure. 352 */ 353 if (!MSR_TM_ACTIVE(cpumsr) && 354 MSR_TM_ACTIVE(current->thread.regs->msr)) 355 return; 356 __giveup_vsx(current); 357 } 358 } 359 EXPORT_SYMBOL(enable_kernel_vsx); 360 361 void flush_vsx_to_thread(struct task_struct *tsk) 362 { 363 if (tsk->thread.regs) { 364 preempt_disable(); 365 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 366 BUG_ON(tsk != current); 367 giveup_vsx(tsk); 368 } 369 preempt_enable(); 370 } 371 } 372 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 373 #endif /* CONFIG_VSX */ 374 375 #ifdef CONFIG_SPE 376 void giveup_spe(struct task_struct *tsk) 377 { 378 check_if_tm_restore_required(tsk); 379 380 msr_check_and_set(MSR_SPE); 381 __giveup_spe(tsk); 382 msr_check_and_clear(MSR_SPE); 383 } 384 EXPORT_SYMBOL(giveup_spe); 385 386 void enable_kernel_spe(void) 387 { 388 WARN_ON(preemptible()); 389 390 msr_check_and_set(MSR_SPE); 391 392 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 393 check_if_tm_restore_required(current); 394 __giveup_spe(current); 395 } 396 } 397 EXPORT_SYMBOL(enable_kernel_spe); 398 399 void flush_spe_to_thread(struct task_struct *tsk) 400 { 401 if (tsk->thread.regs) { 402 preempt_disable(); 403 if (tsk->thread.regs->msr & MSR_SPE) { 404 BUG_ON(tsk != current); 405 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 406 giveup_spe(tsk); 407 } 408 preempt_enable(); 409 } 410 } 411 #endif /* CONFIG_SPE */ 412 413 static unsigned long msr_all_available; 414 415 static int __init init_msr_all_available(void) 416 { 417 #ifdef CONFIG_PPC_FPU 418 msr_all_available |= MSR_FP; 419 #endif 420 #ifdef CONFIG_ALTIVEC 421 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 422 msr_all_available |= MSR_VEC; 423 #endif 424 #ifdef CONFIG_VSX 425 if (cpu_has_feature(CPU_FTR_VSX)) 426 msr_all_available |= MSR_VSX; 427 #endif 428 #ifdef CONFIG_SPE 429 if (cpu_has_feature(CPU_FTR_SPE)) 430 msr_all_available |= MSR_SPE; 431 #endif 432 433 return 0; 434 } 435 early_initcall(init_msr_all_available); 436 437 void giveup_all(struct task_struct *tsk) 438 { 439 unsigned long usermsr; 440 441 if (!tsk->thread.regs) 442 return; 443 444 check_if_tm_restore_required(tsk); 445 446 usermsr = tsk->thread.regs->msr; 447 448 if ((usermsr & msr_all_available) == 0) 449 return; 450 451 msr_check_and_set(msr_all_available); 452 453 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 454 455 #ifdef CONFIG_PPC_FPU 456 if (usermsr & MSR_FP) 457 __giveup_fpu(tsk); 458 #endif 459 #ifdef CONFIG_ALTIVEC 460 if (usermsr & MSR_VEC) 461 __giveup_altivec(tsk); 462 #endif 463 #ifdef CONFIG_SPE 464 if (usermsr & MSR_SPE) 465 __giveup_spe(tsk); 466 #endif 467 468 msr_check_and_clear(msr_all_available); 469 } 470 EXPORT_SYMBOL(giveup_all); 471 472 #ifdef CONFIG_PPC_BOOK3S_64 473 #ifdef CONFIG_PPC_FPU 474 static bool should_restore_fp(void) 475 { 476 if (current->thread.load_fp) { 477 current->thread.load_fp++; 478 return true; 479 } 480 return false; 481 } 482 483 static void do_restore_fp(void) 484 { 485 load_fp_state(¤t->thread.fp_state); 486 } 487 #else 488 static bool should_restore_fp(void) { return false; } 489 static void do_restore_fp(void) { } 490 #endif /* CONFIG_PPC_FPU */ 491 492 #ifdef CONFIG_ALTIVEC 493 static bool should_restore_altivec(void) 494 { 495 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) { 496 current->thread.load_vec++; 497 return true; 498 } 499 return false; 500 } 501 502 static void do_restore_altivec(void) 503 { 504 load_vr_state(¤t->thread.vr_state); 505 current->thread.used_vr = 1; 506 } 507 #else 508 static bool should_restore_altivec(void) { return false; } 509 static void do_restore_altivec(void) { } 510 #endif /* CONFIG_ALTIVEC */ 511 512 #ifdef CONFIG_VSX 513 static bool should_restore_vsx(void) 514 { 515 if (cpu_has_feature(CPU_FTR_VSX)) 516 return true; 517 return false; 518 } 519 static void do_restore_vsx(void) 520 { 521 current->thread.used_vsr = 1; 522 } 523 #else 524 static bool should_restore_vsx(void) { return false; } 525 static void do_restore_vsx(void) { } 526 #endif /* CONFIG_VSX */ 527 528 /* 529 * The exception exit path calls restore_math() with interrupts hard disabled 530 * but the soft irq state not "reconciled". ftrace code that calls 531 * local_irq_save/restore causes warnings. 532 * 533 * Rather than complicate the exit path, just don't trace restore_math. This 534 * could be done by having ftrace entry code check for this un-reconciled 535 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 536 * temporarily fix it up for the duration of the ftrace call. 537 */ 538 void notrace restore_math(struct pt_regs *regs) 539 { 540 unsigned long msr; 541 unsigned long new_msr = 0; 542 543 msr = regs->msr; 544 545 /* 546 * new_msr tracks the facilities that are to be restored. Only reload 547 * if the bit is not set in the user MSR (if it is set, the registers 548 * are live for the user thread). 549 */ 550 if ((!(msr & MSR_FP)) && should_restore_fp()) 551 new_msr |= MSR_FP; 552 553 if ((!(msr & MSR_VEC)) && should_restore_altivec()) 554 new_msr |= MSR_VEC; 555 556 if ((!(msr & MSR_VSX)) && should_restore_vsx()) { 557 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) 558 new_msr |= MSR_VSX; 559 } 560 561 if (new_msr) { 562 unsigned long fpexc_mode = 0; 563 564 msr_check_and_set(new_msr); 565 566 if (new_msr & MSR_FP) { 567 do_restore_fp(); 568 569 // This also covers VSX, because VSX implies FP 570 fpexc_mode = current->thread.fpexc_mode; 571 } 572 573 if (new_msr & MSR_VEC) 574 do_restore_altivec(); 575 576 if (new_msr & MSR_VSX) 577 do_restore_vsx(); 578 579 msr_check_and_clear(new_msr); 580 581 regs->msr |= new_msr | fpexc_mode; 582 } 583 } 584 #endif 585 586 static void save_all(struct task_struct *tsk) 587 { 588 unsigned long usermsr; 589 590 if (!tsk->thread.regs) 591 return; 592 593 usermsr = tsk->thread.regs->msr; 594 595 if ((usermsr & msr_all_available) == 0) 596 return; 597 598 msr_check_and_set(msr_all_available); 599 600 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 601 602 if (usermsr & MSR_FP) 603 save_fpu(tsk); 604 605 if (usermsr & MSR_VEC) 606 save_altivec(tsk); 607 608 if (usermsr & MSR_SPE) 609 __giveup_spe(tsk); 610 611 msr_check_and_clear(msr_all_available); 612 thread_pkey_regs_save(&tsk->thread); 613 } 614 615 void flush_all_to_thread(struct task_struct *tsk) 616 { 617 if (tsk->thread.regs) { 618 preempt_disable(); 619 BUG_ON(tsk != current); 620 #ifdef CONFIG_SPE 621 if (tsk->thread.regs->msr & MSR_SPE) 622 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 623 #endif 624 save_all(tsk); 625 626 preempt_enable(); 627 } 628 } 629 EXPORT_SYMBOL(flush_all_to_thread); 630 631 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 632 void do_send_trap(struct pt_regs *regs, unsigned long address, 633 unsigned long error_code, int breakpt) 634 { 635 current->thread.trap_nr = TRAP_HWBKPT; 636 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 637 11, SIGSEGV) == NOTIFY_STOP) 638 return; 639 640 /* Deliver the signal to userspace */ 641 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 642 (void __user *)address); 643 } 644 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 645 void do_break (struct pt_regs *regs, unsigned long address, 646 unsigned long error_code) 647 { 648 current->thread.trap_nr = TRAP_HWBKPT; 649 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 650 11, SIGSEGV) == NOTIFY_STOP) 651 return; 652 653 if (debugger_break_match(regs)) 654 return; 655 656 /* Deliver the signal to userspace */ 657 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address); 658 } 659 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 660 661 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]); 662 663 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 664 /* 665 * Set the debug registers back to their default "safe" values. 666 */ 667 static void set_debug_reg_defaults(struct thread_struct *thread) 668 { 669 thread->debug.iac1 = thread->debug.iac2 = 0; 670 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 671 thread->debug.iac3 = thread->debug.iac4 = 0; 672 #endif 673 thread->debug.dac1 = thread->debug.dac2 = 0; 674 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 675 thread->debug.dvc1 = thread->debug.dvc2 = 0; 676 #endif 677 thread->debug.dbcr0 = 0; 678 #ifdef CONFIG_BOOKE 679 /* 680 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 681 */ 682 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 683 DBCR1_IAC3US | DBCR1_IAC4US; 684 /* 685 * Force Data Address Compare User/Supervisor bits to be User-only 686 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 687 */ 688 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 689 #else 690 thread->debug.dbcr1 = 0; 691 #endif 692 } 693 694 static void prime_debug_regs(struct debug_reg *debug) 695 { 696 /* 697 * We could have inherited MSR_DE from userspace, since 698 * it doesn't get cleared on exception entry. Make sure 699 * MSR_DE is clear before we enable any debug events. 700 */ 701 mtmsr(mfmsr() & ~MSR_DE); 702 703 mtspr(SPRN_IAC1, debug->iac1); 704 mtspr(SPRN_IAC2, debug->iac2); 705 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 706 mtspr(SPRN_IAC3, debug->iac3); 707 mtspr(SPRN_IAC4, debug->iac4); 708 #endif 709 mtspr(SPRN_DAC1, debug->dac1); 710 mtspr(SPRN_DAC2, debug->dac2); 711 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 712 mtspr(SPRN_DVC1, debug->dvc1); 713 mtspr(SPRN_DVC2, debug->dvc2); 714 #endif 715 mtspr(SPRN_DBCR0, debug->dbcr0); 716 mtspr(SPRN_DBCR1, debug->dbcr1); 717 #ifdef CONFIG_BOOKE 718 mtspr(SPRN_DBCR2, debug->dbcr2); 719 #endif 720 } 721 /* 722 * Unless neither the old or new thread are making use of the 723 * debug registers, set the debug registers from the values 724 * stored in the new thread. 725 */ 726 void switch_booke_debug_regs(struct debug_reg *new_debug) 727 { 728 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 729 || (new_debug->dbcr0 & DBCR0_IDM)) 730 prime_debug_regs(new_debug); 731 } 732 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 733 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 734 #ifndef CONFIG_HAVE_HW_BREAKPOINT 735 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk) 736 { 737 preempt_disable(); 738 __set_breakpoint(i, brk); 739 preempt_enable(); 740 } 741 742 static void set_debug_reg_defaults(struct thread_struct *thread) 743 { 744 int i; 745 struct arch_hw_breakpoint null_brk = {0}; 746 747 for (i = 0; i < nr_wp_slots(); i++) { 748 thread->hw_brk[i] = null_brk; 749 if (ppc_breakpoint_available()) 750 set_breakpoint(i, &thread->hw_brk[i]); 751 } 752 } 753 754 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 755 struct arch_hw_breakpoint *b) 756 { 757 if (a->address != b->address) 758 return false; 759 if (a->type != b->type) 760 return false; 761 if (a->len != b->len) 762 return false; 763 /* no need to check hw_len. it's calculated from address and len */ 764 return true; 765 } 766 767 static void switch_hw_breakpoint(struct task_struct *new) 768 { 769 int i; 770 771 for (i = 0; i < nr_wp_slots(); i++) { 772 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]), 773 &new->thread.hw_brk[i]))) 774 continue; 775 776 __set_breakpoint(i, &new->thread.hw_brk[i]); 777 } 778 } 779 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 780 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 781 782 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 783 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 784 { 785 mtspr(SPRN_DAC1, dabr); 786 #ifdef CONFIG_PPC_47x 787 isync(); 788 #endif 789 return 0; 790 } 791 #elif defined(CONFIG_PPC_BOOK3S) 792 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 793 { 794 mtspr(SPRN_DABR, dabr); 795 if (cpu_has_feature(CPU_FTR_DABRX)) 796 mtspr(SPRN_DABRX, dabrx); 797 return 0; 798 } 799 #else 800 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 801 { 802 return -EINVAL; 803 } 804 #endif 805 806 static inline int set_dabr(struct arch_hw_breakpoint *brk) 807 { 808 unsigned long dabr, dabrx; 809 810 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 811 dabrx = ((brk->type >> 3) & 0x7); 812 813 if (ppc_md.set_dabr) 814 return ppc_md.set_dabr(dabr, dabrx); 815 816 return __set_dabr(dabr, dabrx); 817 } 818 819 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk) 820 { 821 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW | 822 LCTRL1_CRWF_RW; 823 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN; 824 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE); 825 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE); 826 827 if (start_addr == 0) 828 lctrl2 |= LCTRL2_LW0LA_F; 829 else if (end_addr == 0) 830 lctrl2 |= LCTRL2_LW0LA_E; 831 else 832 lctrl2 |= LCTRL2_LW0LA_EandF; 833 834 mtspr(SPRN_LCTRL2, 0); 835 836 if ((brk->type & HW_BRK_TYPE_RDWR) == 0) 837 return 0; 838 839 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 840 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO; 841 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 842 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO; 843 844 mtspr(SPRN_CMPE, start_addr - 1); 845 mtspr(SPRN_CMPF, end_addr); 846 mtspr(SPRN_LCTRL1, lctrl1); 847 mtspr(SPRN_LCTRL2, lctrl2); 848 849 return 0; 850 } 851 852 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk) 853 { 854 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk)); 855 856 if (dawr_enabled()) 857 // Power8 or later 858 set_dawr(nr, brk); 859 else if (IS_ENABLED(CONFIG_PPC_8xx)) 860 set_breakpoint_8xx(brk); 861 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 862 // Power7 or earlier 863 set_dabr(brk); 864 else 865 // Shouldn't happen due to higher level checks 866 WARN_ON_ONCE(1); 867 } 868 869 /* Check if we have DAWR or DABR hardware */ 870 bool ppc_breakpoint_available(void) 871 { 872 if (dawr_enabled()) 873 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 874 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 875 return false; /* POWER9 with DAWR disabled */ 876 /* DABR: Everything but POWER8 and POWER9 */ 877 return true; 878 } 879 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 880 881 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 882 883 static inline bool tm_enabled(struct task_struct *tsk) 884 { 885 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 886 } 887 888 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 889 { 890 /* 891 * Use the current MSR TM suspended bit to track if we have 892 * checkpointed state outstanding. 893 * On signal delivery, we'd normally reclaim the checkpointed 894 * state to obtain stack pointer (see:get_tm_stackpointer()). 895 * This will then directly return to userspace without going 896 * through __switch_to(). However, if the stack frame is bad, 897 * we need to exit this thread which calls __switch_to() which 898 * will again attempt to reclaim the already saved tm state. 899 * Hence we need to check that we've not already reclaimed 900 * this state. 901 * We do this using the current MSR, rather tracking it in 902 * some specific thread_struct bit, as it has the additional 903 * benefit of checking for a potential TM bad thing exception. 904 */ 905 if (!MSR_TM_SUSPENDED(mfmsr())) 906 return; 907 908 giveup_all(container_of(thr, struct task_struct, thread)); 909 910 tm_reclaim(thr, cause); 911 912 /* 913 * If we are in a transaction and FP is off then we can't have 914 * used FP inside that transaction. Hence the checkpointed 915 * state is the same as the live state. We need to copy the 916 * live state to the checkpointed state so that when the 917 * transaction is restored, the checkpointed state is correct 918 * and the aborted transaction sees the correct state. We use 919 * ckpt_regs.msr here as that's what tm_reclaim will use to 920 * determine if it's going to write the checkpointed state or 921 * not. So either this will write the checkpointed registers, 922 * or reclaim will. Similarly for VMX. 923 */ 924 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 925 memcpy(&thr->ckfp_state, &thr->fp_state, 926 sizeof(struct thread_fp_state)); 927 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 928 memcpy(&thr->ckvr_state, &thr->vr_state, 929 sizeof(struct thread_vr_state)); 930 } 931 932 void tm_reclaim_current(uint8_t cause) 933 { 934 tm_enable(); 935 tm_reclaim_thread(¤t->thread, cause); 936 } 937 938 static inline void tm_reclaim_task(struct task_struct *tsk) 939 { 940 /* We have to work out if we're switching from/to a task that's in the 941 * middle of a transaction. 942 * 943 * In switching we need to maintain a 2nd register state as 944 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 945 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 946 * ckvr_state 947 * 948 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 949 */ 950 struct thread_struct *thr = &tsk->thread; 951 952 if (!thr->regs) 953 return; 954 955 if (!MSR_TM_ACTIVE(thr->regs->msr)) 956 goto out_and_saveregs; 957 958 WARN_ON(tm_suspend_disabled); 959 960 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 961 "ccr=%lx, msr=%lx, trap=%lx)\n", 962 tsk->pid, thr->regs->nip, 963 thr->regs->ccr, thr->regs->msr, 964 thr->regs->trap); 965 966 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 967 968 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 969 tsk->pid); 970 971 out_and_saveregs: 972 /* Always save the regs here, even if a transaction's not active. 973 * This context-switches a thread's TM info SPRs. We do it here to 974 * be consistent with the restore path (in recheckpoint) which 975 * cannot happen later in _switch(). 976 */ 977 tm_save_sprs(thr); 978 } 979 980 extern void __tm_recheckpoint(struct thread_struct *thread); 981 982 void tm_recheckpoint(struct thread_struct *thread) 983 { 984 unsigned long flags; 985 986 if (!(thread->regs->msr & MSR_TM)) 987 return; 988 989 /* We really can't be interrupted here as the TEXASR registers can't 990 * change and later in the trecheckpoint code, we have a userspace R1. 991 * So let's hard disable over this region. 992 */ 993 local_irq_save(flags); 994 hard_irq_disable(); 995 996 /* The TM SPRs are restored here, so that TEXASR.FS can be set 997 * before the trecheckpoint and no explosion occurs. 998 */ 999 tm_restore_sprs(thread); 1000 1001 __tm_recheckpoint(thread); 1002 1003 local_irq_restore(flags); 1004 } 1005 1006 static inline void tm_recheckpoint_new_task(struct task_struct *new) 1007 { 1008 if (!cpu_has_feature(CPU_FTR_TM)) 1009 return; 1010 1011 /* Recheckpoint the registers of the thread we're about to switch to. 1012 * 1013 * If the task was using FP, we non-lazily reload both the original and 1014 * the speculative FP register states. This is because the kernel 1015 * doesn't see if/when a TM rollback occurs, so if we take an FP 1016 * unavailable later, we are unable to determine which set of FP regs 1017 * need to be restored. 1018 */ 1019 if (!tm_enabled(new)) 1020 return; 1021 1022 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 1023 tm_restore_sprs(&new->thread); 1024 return; 1025 } 1026 /* Recheckpoint to restore original checkpointed register state. */ 1027 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1028 new->pid, new->thread.regs->msr); 1029 1030 tm_recheckpoint(&new->thread); 1031 1032 /* 1033 * The checkpointed state has been restored but the live state has 1034 * not, ensure all the math functionality is turned off to trigger 1035 * restore_math() to reload. 1036 */ 1037 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1038 1039 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1040 "(kernel msr 0x%lx)\n", 1041 new->pid, mfmsr()); 1042 } 1043 1044 static inline void __switch_to_tm(struct task_struct *prev, 1045 struct task_struct *new) 1046 { 1047 if (cpu_has_feature(CPU_FTR_TM)) { 1048 if (tm_enabled(prev) || tm_enabled(new)) 1049 tm_enable(); 1050 1051 if (tm_enabled(prev)) { 1052 prev->thread.load_tm++; 1053 tm_reclaim_task(prev); 1054 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1055 prev->thread.regs->msr &= ~MSR_TM; 1056 } 1057 1058 tm_recheckpoint_new_task(new); 1059 } 1060 } 1061 1062 /* 1063 * This is called if we are on the way out to userspace and the 1064 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1065 * FP and/or vector state and does so if necessary. 1066 * If userspace is inside a transaction (whether active or 1067 * suspended) and FP/VMX/VSX instructions have ever been enabled 1068 * inside that transaction, then we have to keep them enabled 1069 * and keep the FP/VMX/VSX state loaded while ever the transaction 1070 * continues. The reason is that if we didn't, and subsequently 1071 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1072 * we don't know whether it's the same transaction, and thus we 1073 * don't know which of the checkpointed state and the transactional 1074 * state to use. 1075 */ 1076 void restore_tm_state(struct pt_regs *regs) 1077 { 1078 unsigned long msr_diff; 1079 1080 /* 1081 * This is the only moment we should clear TIF_RESTORE_TM as 1082 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1083 * again, anything else could lead to an incorrect ckpt_msr being 1084 * saved and therefore incorrect signal contexts. 1085 */ 1086 clear_thread_flag(TIF_RESTORE_TM); 1087 if (!MSR_TM_ACTIVE(regs->msr)) 1088 return; 1089 1090 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1091 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1092 1093 /* Ensure that restore_math() will restore */ 1094 if (msr_diff & MSR_FP) 1095 current->thread.load_fp = 1; 1096 #ifdef CONFIG_ALTIVEC 1097 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1098 current->thread.load_vec = 1; 1099 #endif 1100 restore_math(regs); 1101 1102 regs->msr |= msr_diff; 1103 } 1104 1105 #else 1106 #define tm_recheckpoint_new_task(new) 1107 #define __switch_to_tm(prev, new) 1108 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1109 1110 static inline void save_sprs(struct thread_struct *t) 1111 { 1112 #ifdef CONFIG_ALTIVEC 1113 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1114 t->vrsave = mfspr(SPRN_VRSAVE); 1115 #endif 1116 #ifdef CONFIG_PPC_BOOK3S_64 1117 if (cpu_has_feature(CPU_FTR_DSCR)) 1118 t->dscr = mfspr(SPRN_DSCR); 1119 1120 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1121 t->bescr = mfspr(SPRN_BESCR); 1122 t->ebbhr = mfspr(SPRN_EBBHR); 1123 t->ebbrr = mfspr(SPRN_EBBRR); 1124 1125 t->fscr = mfspr(SPRN_FSCR); 1126 1127 /* 1128 * Note that the TAR is not available for use in the kernel. 1129 * (To provide this, the TAR should be backed up/restored on 1130 * exception entry/exit instead, and be in pt_regs. FIXME, 1131 * this should be in pt_regs anyway (for debug).) 1132 */ 1133 t->tar = mfspr(SPRN_TAR); 1134 } 1135 #endif 1136 1137 thread_pkey_regs_save(t); 1138 } 1139 1140 static inline void restore_sprs(struct thread_struct *old_thread, 1141 struct thread_struct *new_thread) 1142 { 1143 #ifdef CONFIG_ALTIVEC 1144 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1145 old_thread->vrsave != new_thread->vrsave) 1146 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1147 #endif 1148 #ifdef CONFIG_PPC_BOOK3S_64 1149 if (cpu_has_feature(CPU_FTR_DSCR)) { 1150 u64 dscr = get_paca()->dscr_default; 1151 if (new_thread->dscr_inherit) 1152 dscr = new_thread->dscr; 1153 1154 if (old_thread->dscr != dscr) 1155 mtspr(SPRN_DSCR, dscr); 1156 } 1157 1158 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1159 if (old_thread->bescr != new_thread->bescr) 1160 mtspr(SPRN_BESCR, new_thread->bescr); 1161 if (old_thread->ebbhr != new_thread->ebbhr) 1162 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1163 if (old_thread->ebbrr != new_thread->ebbrr) 1164 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1165 1166 if (old_thread->fscr != new_thread->fscr) 1167 mtspr(SPRN_FSCR, new_thread->fscr); 1168 1169 if (old_thread->tar != new_thread->tar) 1170 mtspr(SPRN_TAR, new_thread->tar); 1171 } 1172 1173 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1174 old_thread->tidr != new_thread->tidr) 1175 mtspr(SPRN_TIDR, new_thread->tidr); 1176 #endif 1177 1178 thread_pkey_regs_restore(new_thread, old_thread); 1179 } 1180 1181 struct task_struct *__switch_to(struct task_struct *prev, 1182 struct task_struct *new) 1183 { 1184 struct thread_struct *new_thread, *old_thread; 1185 struct task_struct *last; 1186 #ifdef CONFIG_PPC_BOOK3S_64 1187 struct ppc64_tlb_batch *batch; 1188 #endif 1189 1190 new_thread = &new->thread; 1191 old_thread = ¤t->thread; 1192 1193 WARN_ON(!irqs_disabled()); 1194 1195 #ifdef CONFIG_PPC_BOOK3S_64 1196 batch = this_cpu_ptr(&ppc64_tlb_batch); 1197 if (batch->active) { 1198 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1199 if (batch->index) 1200 __flush_tlb_pending(batch); 1201 batch->active = 0; 1202 } 1203 #endif /* CONFIG_PPC_BOOK3S_64 */ 1204 1205 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1206 switch_booke_debug_regs(&new->thread.debug); 1207 #else 1208 /* 1209 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1210 * schedule DABR 1211 */ 1212 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1213 switch_hw_breakpoint(new); 1214 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1215 #endif 1216 1217 /* 1218 * We need to save SPRs before treclaim/trecheckpoint as these will 1219 * change a number of them. 1220 */ 1221 save_sprs(&prev->thread); 1222 1223 /* Save FPU, Altivec, VSX and SPE state */ 1224 giveup_all(prev); 1225 1226 __switch_to_tm(prev, new); 1227 1228 if (!radix_enabled()) { 1229 /* 1230 * We can't take a PMU exception inside _switch() since there 1231 * is a window where the kernel stack SLB and the kernel stack 1232 * are out of sync. Hard disable here. 1233 */ 1234 hard_irq_disable(); 1235 } 1236 1237 /* 1238 * Call restore_sprs() before calling _switch(). If we move it after 1239 * _switch() then we miss out on calling it for new tasks. The reason 1240 * for this is we manually create a stack frame for new tasks that 1241 * directly returns through ret_from_fork() or 1242 * ret_from_kernel_thread(). See copy_thread() for details. 1243 */ 1244 restore_sprs(old_thread, new_thread); 1245 1246 last = _switch(old_thread, new_thread); 1247 1248 #ifdef CONFIG_PPC_BOOK3S_64 1249 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1250 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1251 batch = this_cpu_ptr(&ppc64_tlb_batch); 1252 batch->active = 1; 1253 } 1254 1255 if (current->thread.regs) { 1256 restore_math(current->thread.regs); 1257 1258 /* 1259 * The copy-paste buffer can only store into foreign real 1260 * addresses, so unprivileged processes can not see the 1261 * data or use it in any way unless they have foreign real 1262 * mappings. If the new process has the foreign real address 1263 * mappings, we must issue a cp_abort to clear any state and 1264 * prevent snooping, corruption or a covert channel. 1265 */ 1266 if (current->mm && 1267 atomic_read(¤t->mm->context.vas_windows)) 1268 asm volatile(PPC_CP_ABORT); 1269 } 1270 #endif /* CONFIG_PPC_BOOK3S_64 */ 1271 1272 return last; 1273 } 1274 1275 #define NR_INSN_TO_PRINT 16 1276 1277 static void show_instructions(struct pt_regs *regs) 1278 { 1279 int i; 1280 unsigned long nip = regs->nip; 1281 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1282 1283 printk("Instruction dump:"); 1284 1285 /* 1286 * If we were executing with the MMU off for instructions, adjust pc 1287 * rather than printing XXXXXXXX. 1288 */ 1289 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) { 1290 pc = (unsigned long)phys_to_virt(pc); 1291 nip = (unsigned long)phys_to_virt(regs->nip); 1292 } 1293 1294 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1295 int instr; 1296 1297 if (!(i % 8)) 1298 pr_cont("\n"); 1299 1300 if (!__kernel_text_address(pc) || 1301 get_kernel_nofault(instr, (const void *)pc)) { 1302 pr_cont("XXXXXXXX "); 1303 } else { 1304 if (nip == pc) 1305 pr_cont("<%08x> ", instr); 1306 else 1307 pr_cont("%08x ", instr); 1308 } 1309 1310 pc += sizeof(int); 1311 } 1312 1313 pr_cont("\n"); 1314 } 1315 1316 void show_user_instructions(struct pt_regs *regs) 1317 { 1318 unsigned long pc; 1319 int n = NR_INSN_TO_PRINT; 1320 struct seq_buf s; 1321 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1322 1323 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1324 1325 seq_buf_init(&s, buf, sizeof(buf)); 1326 1327 while (n) { 1328 int i; 1329 1330 seq_buf_clear(&s); 1331 1332 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1333 int instr; 1334 1335 if (copy_from_user_nofault(&instr, (void __user *)pc, 1336 sizeof(instr))) { 1337 seq_buf_printf(&s, "XXXXXXXX "); 1338 continue; 1339 } 1340 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1341 } 1342 1343 if (!seq_buf_has_overflowed(&s)) 1344 pr_info("%s[%d]: code: %s\n", current->comm, 1345 current->pid, s.buffer); 1346 } 1347 } 1348 1349 struct regbit { 1350 unsigned long bit; 1351 const char *name; 1352 }; 1353 1354 static struct regbit msr_bits[] = { 1355 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1356 {MSR_SF, "SF"}, 1357 {MSR_HV, "HV"}, 1358 #endif 1359 {MSR_VEC, "VEC"}, 1360 {MSR_VSX, "VSX"}, 1361 #ifdef CONFIG_BOOKE 1362 {MSR_CE, "CE"}, 1363 #endif 1364 {MSR_EE, "EE"}, 1365 {MSR_PR, "PR"}, 1366 {MSR_FP, "FP"}, 1367 {MSR_ME, "ME"}, 1368 #ifdef CONFIG_BOOKE 1369 {MSR_DE, "DE"}, 1370 #else 1371 {MSR_SE, "SE"}, 1372 {MSR_BE, "BE"}, 1373 #endif 1374 {MSR_IR, "IR"}, 1375 {MSR_DR, "DR"}, 1376 {MSR_PMM, "PMM"}, 1377 #ifndef CONFIG_BOOKE 1378 {MSR_RI, "RI"}, 1379 {MSR_LE, "LE"}, 1380 #endif 1381 {0, NULL} 1382 }; 1383 1384 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1385 { 1386 const char *s = ""; 1387 1388 for (; bits->bit; ++bits) 1389 if (val & bits->bit) { 1390 pr_cont("%s%s", s, bits->name); 1391 s = sep; 1392 } 1393 } 1394 1395 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1396 static struct regbit msr_tm_bits[] = { 1397 {MSR_TS_T, "T"}, 1398 {MSR_TS_S, "S"}, 1399 {MSR_TM, "E"}, 1400 {0, NULL} 1401 }; 1402 1403 static void print_tm_bits(unsigned long val) 1404 { 1405 /* 1406 * This only prints something if at least one of the TM bit is set. 1407 * Inside the TM[], the output means: 1408 * E: Enabled (bit 32) 1409 * S: Suspended (bit 33) 1410 * T: Transactional (bit 34) 1411 */ 1412 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1413 pr_cont(",TM["); 1414 print_bits(val, msr_tm_bits, ""); 1415 pr_cont("]"); 1416 } 1417 } 1418 #else 1419 static void print_tm_bits(unsigned long val) {} 1420 #endif 1421 1422 static void print_msr_bits(unsigned long val) 1423 { 1424 pr_cont("<"); 1425 print_bits(val, msr_bits, ","); 1426 print_tm_bits(val); 1427 pr_cont(">"); 1428 } 1429 1430 #ifdef CONFIG_PPC64 1431 #define REG "%016lx" 1432 #define REGS_PER_LINE 4 1433 #define LAST_VOLATILE 13 1434 #else 1435 #define REG "%08lx" 1436 #define REGS_PER_LINE 8 1437 #define LAST_VOLATILE 12 1438 #endif 1439 1440 void show_regs(struct pt_regs * regs) 1441 { 1442 int i, trap; 1443 1444 show_regs_print_info(KERN_DEFAULT); 1445 1446 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1447 regs->nip, regs->link, regs->ctr); 1448 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1449 regs, regs->trap, print_tainted(), init_utsname()->release); 1450 printk("MSR: "REG" ", regs->msr); 1451 print_msr_bits(regs->msr); 1452 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1453 trap = TRAP(regs); 1454 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR)) 1455 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1456 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1457 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1458 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1459 #else 1460 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1461 #endif 1462 #ifdef CONFIG_PPC64 1463 pr_cont("IRQMASK: %lx ", regs->softe); 1464 #endif 1465 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1466 if (MSR_TM_ACTIVE(regs->msr)) 1467 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1468 #endif 1469 1470 for (i = 0; i < 32; i++) { 1471 if ((i % REGS_PER_LINE) == 0) 1472 pr_cont("\nGPR%02d: ", i); 1473 pr_cont(REG " ", regs->gpr[i]); 1474 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1475 break; 1476 } 1477 pr_cont("\n"); 1478 #ifdef CONFIG_KALLSYMS 1479 /* 1480 * Lookup NIP late so we have the best change of getting the 1481 * above info out without failing 1482 */ 1483 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1484 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1485 #endif 1486 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT); 1487 if (!user_mode(regs)) 1488 show_instructions(regs); 1489 } 1490 1491 void flush_thread(void) 1492 { 1493 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1494 flush_ptrace_hw_breakpoint(current); 1495 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1496 set_debug_reg_defaults(¤t->thread); 1497 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1498 } 1499 1500 #ifdef CONFIG_PPC_BOOK3S_64 1501 void arch_setup_new_exec(void) 1502 { 1503 if (radix_enabled()) 1504 return; 1505 hash__setup_new_exec(); 1506 } 1507 #endif 1508 1509 #ifdef CONFIG_PPC64 1510 /** 1511 * Assign a TIDR (thread ID) for task @t and set it in the thread 1512 * structure. For now, we only support setting TIDR for 'current' task. 1513 * 1514 * Since the TID value is a truncated form of it PID, it is possible 1515 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1516 * that 2 threads share the same TID and are waiting, one of the following 1517 * cases will happen: 1518 * 1519 * 1. The correct thread is running, the wrong thread is not 1520 * In this situation, the correct thread is woken and proceeds to pass it's 1521 * condition check. 1522 * 1523 * 2. Neither threads are running 1524 * In this situation, neither thread will be woken. When scheduled, the waiting 1525 * threads will execute either a wait, which will return immediately, followed 1526 * by a condition check, which will pass for the correct thread and fail 1527 * for the wrong thread, or they will execute the condition check immediately. 1528 * 1529 * 3. The wrong thread is running, the correct thread is not 1530 * The wrong thread will be woken, but will fail it's condition check and 1531 * re-execute wait. The correct thread, when scheduled, will execute either 1532 * it's condition check (which will pass), or wait, which returns immediately 1533 * when called the first time after the thread is scheduled, followed by it's 1534 * condition check (which will pass). 1535 * 1536 * 4. Both threads are running 1537 * Both threads will be woken. The wrong thread will fail it's condition check 1538 * and execute another wait, while the correct thread will pass it's condition 1539 * check. 1540 * 1541 * @t: the task to set the thread ID for 1542 */ 1543 int set_thread_tidr(struct task_struct *t) 1544 { 1545 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1546 return -EINVAL; 1547 1548 if (t != current) 1549 return -EINVAL; 1550 1551 if (t->thread.tidr) 1552 return 0; 1553 1554 t->thread.tidr = (u16)task_pid_nr(t); 1555 mtspr(SPRN_TIDR, t->thread.tidr); 1556 1557 return 0; 1558 } 1559 EXPORT_SYMBOL_GPL(set_thread_tidr); 1560 1561 #endif /* CONFIG_PPC64 */ 1562 1563 void 1564 release_thread(struct task_struct *t) 1565 { 1566 } 1567 1568 /* 1569 * this gets called so that we can store coprocessor state into memory and 1570 * copy the current task into the new thread. 1571 */ 1572 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1573 { 1574 flush_all_to_thread(src); 1575 /* 1576 * Flush TM state out so we can copy it. __switch_to_tm() does this 1577 * flush but it removes the checkpointed state from the current CPU and 1578 * transitions the CPU out of TM mode. Hence we need to call 1579 * tm_recheckpoint_new_task() (on the same task) to restore the 1580 * checkpointed state back and the TM mode. 1581 * 1582 * Can't pass dst because it isn't ready. Doesn't matter, passing 1583 * dst is only important for __switch_to() 1584 */ 1585 __switch_to_tm(src, src); 1586 1587 *dst = *src; 1588 1589 clear_task_ebb(dst); 1590 1591 return 0; 1592 } 1593 1594 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1595 { 1596 #ifdef CONFIG_PPC_BOOK3S_64 1597 unsigned long sp_vsid; 1598 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1599 1600 if (radix_enabled()) 1601 return; 1602 1603 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1604 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1605 << SLB_VSID_SHIFT_1T; 1606 else 1607 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1608 << SLB_VSID_SHIFT; 1609 sp_vsid |= SLB_VSID_KERNEL | llp; 1610 p->thread.ksp_vsid = sp_vsid; 1611 #endif 1612 } 1613 1614 /* 1615 * Copy a thread.. 1616 */ 1617 1618 /* 1619 * Copy architecture-specific thread state 1620 */ 1621 int copy_thread(unsigned long clone_flags, unsigned long usp, 1622 unsigned long kthread_arg, struct task_struct *p, 1623 unsigned long tls) 1624 { 1625 struct pt_regs *childregs, *kregs; 1626 extern void ret_from_fork(void); 1627 extern void ret_from_fork_scv(void); 1628 extern void ret_from_kernel_thread(void); 1629 void (*f)(void); 1630 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1631 struct thread_info *ti = task_thread_info(p); 1632 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1633 int i; 1634 #endif 1635 1636 klp_init_thread_info(p); 1637 1638 /* Copy registers */ 1639 sp -= sizeof(struct pt_regs); 1640 childregs = (struct pt_regs *) sp; 1641 if (unlikely(p->flags & PF_KTHREAD)) { 1642 /* kernel thread */ 1643 memset(childregs, 0, sizeof(struct pt_regs)); 1644 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1645 /* function */ 1646 if (usp) 1647 childregs->gpr[14] = ppc_function_entry((void *)usp); 1648 #ifdef CONFIG_PPC64 1649 clear_tsk_thread_flag(p, TIF_32BIT); 1650 childregs->softe = IRQS_ENABLED; 1651 #endif 1652 childregs->gpr[15] = kthread_arg; 1653 p->thread.regs = NULL; /* no user register state */ 1654 ti->flags |= _TIF_RESTOREALL; 1655 f = ret_from_kernel_thread; 1656 } else { 1657 /* user thread */ 1658 struct pt_regs *regs = current_pt_regs(); 1659 CHECK_FULL_REGS(regs); 1660 *childregs = *regs; 1661 if (usp) 1662 childregs->gpr[1] = usp; 1663 p->thread.regs = childregs; 1664 /* 64s sets this in ret_from_fork */ 1665 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64)) 1666 childregs->gpr[3] = 0; /* Result from fork() */ 1667 if (clone_flags & CLONE_SETTLS) { 1668 if (!is_32bit_task()) 1669 childregs->gpr[13] = tls; 1670 else 1671 childregs->gpr[2] = tls; 1672 } 1673 1674 if (trap_is_scv(regs)) 1675 f = ret_from_fork_scv; 1676 else 1677 f = ret_from_fork; 1678 } 1679 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1680 sp -= STACK_FRAME_OVERHEAD; 1681 1682 /* 1683 * The way this works is that at some point in the future 1684 * some task will call _switch to switch to the new task. 1685 * That will pop off the stack frame created below and start 1686 * the new task running at ret_from_fork. The new task will 1687 * do some house keeping and then return from the fork or clone 1688 * system call, using the stack frame created above. 1689 */ 1690 ((unsigned long *)sp)[0] = 0; 1691 sp -= sizeof(struct pt_regs); 1692 kregs = (struct pt_regs *) sp; 1693 sp -= STACK_FRAME_OVERHEAD; 1694 p->thread.ksp = sp; 1695 #ifdef CONFIG_PPC32 1696 p->thread.ksp_limit = (unsigned long)end_of_stack(p); 1697 #endif 1698 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1699 for (i = 0; i < nr_wp_slots(); i++) 1700 p->thread.ptrace_bps[i] = NULL; 1701 #endif 1702 1703 p->thread.fp_save_area = NULL; 1704 #ifdef CONFIG_ALTIVEC 1705 p->thread.vr_save_area = NULL; 1706 #endif 1707 1708 setup_ksp_vsid(p, sp); 1709 1710 #ifdef CONFIG_PPC64 1711 if (cpu_has_feature(CPU_FTR_DSCR)) { 1712 p->thread.dscr_inherit = current->thread.dscr_inherit; 1713 p->thread.dscr = mfspr(SPRN_DSCR); 1714 } 1715 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1716 childregs->ppr = DEFAULT_PPR; 1717 1718 p->thread.tidr = 0; 1719 #endif 1720 kregs->nip = ppc_function_entry(f); 1721 return 0; 1722 } 1723 1724 void preload_new_slb_context(unsigned long start, unsigned long sp); 1725 1726 /* 1727 * Set up a thread for executing a new program 1728 */ 1729 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1730 { 1731 #ifdef CONFIG_PPC64 1732 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1733 1734 #ifdef CONFIG_PPC_BOOK3S_64 1735 if (!radix_enabled()) 1736 preload_new_slb_context(start, sp); 1737 #endif 1738 #endif 1739 1740 /* 1741 * If we exec out of a kernel thread then thread.regs will not be 1742 * set. Do it now. 1743 */ 1744 if (!current->thread.regs) { 1745 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1746 current->thread.regs = regs - 1; 1747 } 1748 1749 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1750 /* 1751 * Clear any transactional state, we're exec()ing. The cause is 1752 * not important as there will never be a recheckpoint so it's not 1753 * user visible. 1754 */ 1755 if (MSR_TM_SUSPENDED(mfmsr())) 1756 tm_reclaim_current(0); 1757 #endif 1758 1759 memset(regs->gpr, 0, sizeof(regs->gpr)); 1760 regs->ctr = 0; 1761 regs->link = 0; 1762 regs->xer = 0; 1763 regs->ccr = 0; 1764 regs->gpr[1] = sp; 1765 1766 /* 1767 * We have just cleared all the nonvolatile GPRs, so make 1768 * FULL_REGS(regs) return true. This is necessary to allow 1769 * ptrace to examine the thread immediately after exec. 1770 */ 1771 SET_FULL_REGS(regs); 1772 1773 #ifdef CONFIG_PPC32 1774 regs->mq = 0; 1775 regs->nip = start; 1776 regs->msr = MSR_USER; 1777 #else 1778 if (!is_32bit_task()) { 1779 unsigned long entry; 1780 1781 if (is_elf2_task()) { 1782 /* Look ma, no function descriptors! */ 1783 entry = start; 1784 1785 /* 1786 * Ulrich says: 1787 * The latest iteration of the ABI requires that when 1788 * calling a function (at its global entry point), 1789 * the caller must ensure r12 holds the entry point 1790 * address (so that the function can quickly 1791 * establish addressability). 1792 */ 1793 regs->gpr[12] = start; 1794 /* Make sure that's restored on entry to userspace. */ 1795 set_thread_flag(TIF_RESTOREALL); 1796 } else { 1797 unsigned long toc; 1798 1799 /* start is a relocated pointer to the function 1800 * descriptor for the elf _start routine. The first 1801 * entry in the function descriptor is the entry 1802 * address of _start and the second entry is the TOC 1803 * value we need to use. 1804 */ 1805 __get_user(entry, (unsigned long __user *)start); 1806 __get_user(toc, (unsigned long __user *)start+1); 1807 1808 /* Check whether the e_entry function descriptor entries 1809 * need to be relocated before we can use them. 1810 */ 1811 if (load_addr != 0) { 1812 entry += load_addr; 1813 toc += load_addr; 1814 } 1815 regs->gpr[2] = toc; 1816 } 1817 regs->nip = entry; 1818 regs->msr = MSR_USER64; 1819 } else { 1820 regs->nip = start; 1821 regs->gpr[2] = 0; 1822 regs->msr = MSR_USER32; 1823 } 1824 #endif 1825 #ifdef CONFIG_VSX 1826 current->thread.used_vsr = 0; 1827 #endif 1828 current->thread.load_slb = 0; 1829 current->thread.load_fp = 0; 1830 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1831 current->thread.fp_save_area = NULL; 1832 #ifdef CONFIG_ALTIVEC 1833 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1834 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1835 current->thread.vr_save_area = NULL; 1836 current->thread.vrsave = 0; 1837 current->thread.used_vr = 0; 1838 current->thread.load_vec = 0; 1839 #endif /* CONFIG_ALTIVEC */ 1840 #ifdef CONFIG_SPE 1841 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1842 current->thread.acc = 0; 1843 current->thread.spefscr = 0; 1844 current->thread.used_spe = 0; 1845 #endif /* CONFIG_SPE */ 1846 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1847 current->thread.tm_tfhar = 0; 1848 current->thread.tm_texasr = 0; 1849 current->thread.tm_tfiar = 0; 1850 current->thread.load_tm = 0; 1851 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1852 1853 thread_pkey_regs_init(¤t->thread); 1854 } 1855 EXPORT_SYMBOL(start_thread); 1856 1857 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1858 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1859 1860 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1861 { 1862 struct pt_regs *regs = tsk->thread.regs; 1863 1864 /* This is a bit hairy. If we are an SPE enabled processor 1865 * (have embedded fp) we store the IEEE exception enable flags in 1866 * fpexc_mode. fpexc_mode is also used for setting FP exception 1867 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1868 if (val & PR_FP_EXC_SW_ENABLE) { 1869 #ifdef CONFIG_SPE 1870 if (cpu_has_feature(CPU_FTR_SPE)) { 1871 /* 1872 * When the sticky exception bits are set 1873 * directly by userspace, it must call prctl 1874 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1875 * in the existing prctl settings) or 1876 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1877 * the bits being set). <fenv.h> functions 1878 * saving and restoring the whole 1879 * floating-point environment need to do so 1880 * anyway to restore the prctl settings from 1881 * the saved environment. 1882 */ 1883 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1884 tsk->thread.fpexc_mode = val & 1885 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1886 return 0; 1887 } else { 1888 return -EINVAL; 1889 } 1890 #else 1891 return -EINVAL; 1892 #endif 1893 } 1894 1895 /* on a CONFIG_SPE this does not hurt us. The bits that 1896 * __pack_fe01 use do not overlap with bits used for 1897 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1898 * on CONFIG_SPE implementations are reserved so writing to 1899 * them does not change anything */ 1900 if (val > PR_FP_EXC_PRECISE) 1901 return -EINVAL; 1902 tsk->thread.fpexc_mode = __pack_fe01(val); 1903 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1904 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1905 | tsk->thread.fpexc_mode; 1906 return 0; 1907 } 1908 1909 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1910 { 1911 unsigned int val; 1912 1913 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1914 #ifdef CONFIG_SPE 1915 if (cpu_has_feature(CPU_FTR_SPE)) { 1916 /* 1917 * When the sticky exception bits are set 1918 * directly by userspace, it must call prctl 1919 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1920 * in the existing prctl settings) or 1921 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1922 * the bits being set). <fenv.h> functions 1923 * saving and restoring the whole 1924 * floating-point environment need to do so 1925 * anyway to restore the prctl settings from 1926 * the saved environment. 1927 */ 1928 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1929 val = tsk->thread.fpexc_mode; 1930 } else 1931 return -EINVAL; 1932 #else 1933 return -EINVAL; 1934 #endif 1935 else 1936 val = __unpack_fe01(tsk->thread.fpexc_mode); 1937 return put_user(val, (unsigned int __user *) adr); 1938 } 1939 1940 int set_endian(struct task_struct *tsk, unsigned int val) 1941 { 1942 struct pt_regs *regs = tsk->thread.regs; 1943 1944 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1945 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1946 return -EINVAL; 1947 1948 if (regs == NULL) 1949 return -EINVAL; 1950 1951 if (val == PR_ENDIAN_BIG) 1952 regs->msr &= ~MSR_LE; 1953 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1954 regs->msr |= MSR_LE; 1955 else 1956 return -EINVAL; 1957 1958 return 0; 1959 } 1960 1961 int get_endian(struct task_struct *tsk, unsigned long adr) 1962 { 1963 struct pt_regs *regs = tsk->thread.regs; 1964 unsigned int val; 1965 1966 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1967 !cpu_has_feature(CPU_FTR_REAL_LE)) 1968 return -EINVAL; 1969 1970 if (regs == NULL) 1971 return -EINVAL; 1972 1973 if (regs->msr & MSR_LE) { 1974 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1975 val = PR_ENDIAN_LITTLE; 1976 else 1977 val = PR_ENDIAN_PPC_LITTLE; 1978 } else 1979 val = PR_ENDIAN_BIG; 1980 1981 return put_user(val, (unsigned int __user *)adr); 1982 } 1983 1984 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1985 { 1986 tsk->thread.align_ctl = val; 1987 return 0; 1988 } 1989 1990 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1991 { 1992 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1993 } 1994 1995 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1996 unsigned long nbytes) 1997 { 1998 unsigned long stack_page; 1999 unsigned long cpu = task_cpu(p); 2000 2001 stack_page = (unsigned long)hardirq_ctx[cpu]; 2002 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2003 return 1; 2004 2005 stack_page = (unsigned long)softirq_ctx[cpu]; 2006 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2007 return 1; 2008 2009 return 0; 2010 } 2011 2012 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p, 2013 unsigned long nbytes) 2014 { 2015 #ifdef CONFIG_PPC64 2016 unsigned long stack_page; 2017 unsigned long cpu = task_cpu(p); 2018 2019 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE; 2020 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2021 return 1; 2022 2023 # ifdef CONFIG_PPC_BOOK3S_64 2024 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE; 2025 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2026 return 1; 2027 2028 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE; 2029 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2030 return 1; 2031 # endif 2032 #endif 2033 2034 return 0; 2035 } 2036 2037 2038 int validate_sp(unsigned long sp, struct task_struct *p, 2039 unsigned long nbytes) 2040 { 2041 unsigned long stack_page = (unsigned long)task_stack_page(p); 2042 2043 if (sp < THREAD_SIZE) 2044 return 0; 2045 2046 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2047 return 1; 2048 2049 if (valid_irq_stack(sp, p, nbytes)) 2050 return 1; 2051 2052 return valid_emergency_stack(sp, p, nbytes); 2053 } 2054 2055 EXPORT_SYMBOL(validate_sp); 2056 2057 static unsigned long __get_wchan(struct task_struct *p) 2058 { 2059 unsigned long ip, sp; 2060 int count = 0; 2061 2062 if (!p || p == current || p->state == TASK_RUNNING) 2063 return 0; 2064 2065 sp = p->thread.ksp; 2066 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2067 return 0; 2068 2069 do { 2070 sp = *(unsigned long *)sp; 2071 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2072 p->state == TASK_RUNNING) 2073 return 0; 2074 if (count > 0) { 2075 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2076 if (!in_sched_functions(ip)) 2077 return ip; 2078 } 2079 } while (count++ < 16); 2080 return 0; 2081 } 2082 2083 unsigned long get_wchan(struct task_struct *p) 2084 { 2085 unsigned long ret; 2086 2087 if (!try_get_task_stack(p)) 2088 return 0; 2089 2090 ret = __get_wchan(p); 2091 2092 put_task_stack(p); 2093 2094 return ret; 2095 } 2096 2097 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2098 2099 void show_stack(struct task_struct *tsk, unsigned long *stack, 2100 const char *loglvl) 2101 { 2102 unsigned long sp, ip, lr, newsp; 2103 int count = 0; 2104 int firstframe = 1; 2105 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2106 unsigned long ret_addr; 2107 int ftrace_idx = 0; 2108 #endif 2109 2110 if (tsk == NULL) 2111 tsk = current; 2112 2113 if (!try_get_task_stack(tsk)) 2114 return; 2115 2116 sp = (unsigned long) stack; 2117 if (sp == 0) { 2118 if (tsk == current) 2119 sp = current_stack_frame(); 2120 else 2121 sp = tsk->thread.ksp; 2122 } 2123 2124 lr = 0; 2125 printk("%sCall Trace:\n", loglvl); 2126 do { 2127 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2128 break; 2129 2130 stack = (unsigned long *) sp; 2131 newsp = stack[0]; 2132 ip = stack[STACK_FRAME_LR_SAVE]; 2133 if (!firstframe || ip != lr) { 2134 printk("%s["REG"] ["REG"] %pS", 2135 loglvl, sp, ip, (void *)ip); 2136 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2137 ret_addr = ftrace_graph_ret_addr(current, 2138 &ftrace_idx, ip, stack); 2139 if (ret_addr != ip) 2140 pr_cont(" (%pS)", (void *)ret_addr); 2141 #endif 2142 if (firstframe) 2143 pr_cont(" (unreliable)"); 2144 pr_cont("\n"); 2145 } 2146 firstframe = 0; 2147 2148 /* 2149 * See if this is an exception frame. 2150 * We look for the "regshere" marker in the current frame. 2151 */ 2152 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2153 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2154 struct pt_regs *regs = (struct pt_regs *) 2155 (sp + STACK_FRAME_OVERHEAD); 2156 lr = regs->link; 2157 printk("%s--- interrupt: %lx at %pS\n LR = %pS\n", 2158 loglvl, regs->trap, 2159 (void *)regs->nip, (void *)lr); 2160 firstframe = 1; 2161 } 2162 2163 sp = newsp; 2164 } while (count++ < kstack_depth_to_print); 2165 2166 put_task_stack(tsk); 2167 } 2168 2169 #ifdef CONFIG_PPC64 2170 /* Called with hard IRQs off */ 2171 void notrace __ppc64_runlatch_on(void) 2172 { 2173 struct thread_info *ti = current_thread_info(); 2174 2175 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2176 /* 2177 * Least significant bit (RUN) is the only writable bit of 2178 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2179 * earliest ISA where this is the case, but it's convenient. 2180 */ 2181 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2182 } else { 2183 unsigned long ctrl; 2184 2185 /* 2186 * Some architectures (e.g., Cell) have writable fields other 2187 * than RUN, so do the read-modify-write. 2188 */ 2189 ctrl = mfspr(SPRN_CTRLF); 2190 ctrl |= CTRL_RUNLATCH; 2191 mtspr(SPRN_CTRLT, ctrl); 2192 } 2193 2194 ti->local_flags |= _TLF_RUNLATCH; 2195 } 2196 2197 /* Called with hard IRQs off */ 2198 void notrace __ppc64_runlatch_off(void) 2199 { 2200 struct thread_info *ti = current_thread_info(); 2201 2202 ti->local_flags &= ~_TLF_RUNLATCH; 2203 2204 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2205 mtspr(SPRN_CTRLT, 0); 2206 } else { 2207 unsigned long ctrl; 2208 2209 ctrl = mfspr(SPRN_CTRLF); 2210 ctrl &= ~CTRL_RUNLATCH; 2211 mtspr(SPRN_CTRLT, ctrl); 2212 } 2213 } 2214 #endif /* CONFIG_PPC64 */ 2215 2216 unsigned long arch_align_stack(unsigned long sp) 2217 { 2218 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2219 sp -= get_random_int() & ~PAGE_MASK; 2220 return sp & ~0xf; 2221 } 2222 2223 static inline unsigned long brk_rnd(void) 2224 { 2225 unsigned long rnd = 0; 2226 2227 /* 8MB for 32bit, 1GB for 64bit */ 2228 if (is_32bit_task()) 2229 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2230 else 2231 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2232 2233 return rnd << PAGE_SHIFT; 2234 } 2235 2236 unsigned long arch_randomize_brk(struct mm_struct *mm) 2237 { 2238 unsigned long base = mm->brk; 2239 unsigned long ret; 2240 2241 #ifdef CONFIG_PPC_BOOK3S_64 2242 /* 2243 * If we are using 1TB segments and we are allowed to randomise 2244 * the heap, we can put it above 1TB so it is backed by a 1TB 2245 * segment. Otherwise the heap will be in the bottom 1TB 2246 * which always uses 256MB segments and this may result in a 2247 * performance penalty. We don't need to worry about radix. For 2248 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2249 */ 2250 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2251 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2252 #endif 2253 2254 ret = PAGE_ALIGN(base + brk_rnd()); 2255 2256 if (ret < mm->brk) 2257 return mm->brk; 2258 2259 return ret; 2260 } 2261 2262