xref: /openbmc/linux/arch/powerpc/kernel/process.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12 
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43 
44 #include <asm/interrupt.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
67 
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
70 
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
77 
78 extern unsigned long _get_SP(void);
79 
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 /*
82  * Are we running in "Suspend disabled" mode? If so we have to block any
83  * sigreturn that would get us into suspended state, and we also warn in some
84  * other paths that we should never reach with suspend disabled.
85  */
86 bool tm_suspend_disabled __ro_after_init = false;
87 
88 static void check_if_tm_restore_required(struct task_struct *tsk)
89 {
90 	/*
91 	 * If we are saving the current thread's registers, and the
92 	 * thread is in a transactional state, set the TIF_RESTORE_TM
93 	 * bit so that we know to restore the registers before
94 	 * returning to userspace.
95 	 */
96 	if (tsk == current && tsk->thread.regs &&
97 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98 	    !test_thread_flag(TIF_RESTORE_TM)) {
99 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
100 		set_thread_flag(TIF_RESTORE_TM);
101 	}
102 }
103 
104 #else
105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
107 
108 bool strict_msr_control;
109 EXPORT_SYMBOL(strict_msr_control);
110 
111 static int __init enable_strict_msr_control(char *str)
112 {
113 	strict_msr_control = true;
114 	pr_info("Enabling strict facility control\n");
115 
116 	return 0;
117 }
118 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
119 
120 /* notrace because it's called by restore_math */
121 unsigned long notrace msr_check_and_set(unsigned long bits)
122 {
123 	unsigned long oldmsr = mfmsr();
124 	unsigned long newmsr;
125 
126 	newmsr = oldmsr | bits;
127 
128 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129 		newmsr |= MSR_VSX;
130 
131 	if (oldmsr != newmsr)
132 		mtmsr_isync(newmsr);
133 
134 	return newmsr;
135 }
136 EXPORT_SYMBOL_GPL(msr_check_and_set);
137 
138 /* notrace because it's called by restore_math */
139 void notrace __msr_check_and_clear(unsigned long bits)
140 {
141 	unsigned long oldmsr = mfmsr();
142 	unsigned long newmsr;
143 
144 	newmsr = oldmsr & ~bits;
145 
146 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
147 		newmsr &= ~MSR_VSX;
148 
149 	if (oldmsr != newmsr)
150 		mtmsr_isync(newmsr);
151 }
152 EXPORT_SYMBOL(__msr_check_and_clear);
153 
154 #ifdef CONFIG_PPC_FPU
155 static void __giveup_fpu(struct task_struct *tsk)
156 {
157 	unsigned long msr;
158 
159 	save_fpu(tsk);
160 	msr = tsk->thread.regs->msr;
161 	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
162 	if (cpu_has_feature(CPU_FTR_VSX))
163 		msr &= ~MSR_VSX;
164 	tsk->thread.regs->msr = msr;
165 }
166 
167 void giveup_fpu(struct task_struct *tsk)
168 {
169 	check_if_tm_restore_required(tsk);
170 
171 	msr_check_and_set(MSR_FP);
172 	__giveup_fpu(tsk);
173 	msr_check_and_clear(MSR_FP);
174 }
175 EXPORT_SYMBOL(giveup_fpu);
176 
177 /*
178  * Make sure the floating-point register state in the
179  * the thread_struct is up to date for task tsk.
180  */
181 void flush_fp_to_thread(struct task_struct *tsk)
182 {
183 	if (tsk->thread.regs) {
184 		/*
185 		 * We need to disable preemption here because if we didn't,
186 		 * another process could get scheduled after the regs->msr
187 		 * test but before we have finished saving the FP registers
188 		 * to the thread_struct.  That process could take over the
189 		 * FPU, and then when we get scheduled again we would store
190 		 * bogus values for the remaining FP registers.
191 		 */
192 		preempt_disable();
193 		if (tsk->thread.regs->msr & MSR_FP) {
194 			/*
195 			 * This should only ever be called for current or
196 			 * for a stopped child process.  Since we save away
197 			 * the FP register state on context switch,
198 			 * there is something wrong if a stopped child appears
199 			 * to still have its FP state in the CPU registers.
200 			 */
201 			BUG_ON(tsk != current);
202 			giveup_fpu(tsk);
203 		}
204 		preempt_enable();
205 	}
206 }
207 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208 
209 void enable_kernel_fp(void)
210 {
211 	unsigned long cpumsr;
212 
213 	WARN_ON(preemptible());
214 
215 	cpumsr = msr_check_and_set(MSR_FP);
216 
217 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218 		check_if_tm_restore_required(current);
219 		/*
220 		 * If a thread has already been reclaimed then the
221 		 * checkpointed registers are on the CPU but have definitely
222 		 * been saved by the reclaim code. Don't need to and *cannot*
223 		 * giveup as this would save  to the 'live' structure not the
224 		 * checkpointed structure.
225 		 */
226 		if (!MSR_TM_ACTIVE(cpumsr) &&
227 		     MSR_TM_ACTIVE(current->thread.regs->msr))
228 			return;
229 		__giveup_fpu(current);
230 	}
231 }
232 EXPORT_SYMBOL(enable_kernel_fp);
233 #else
234 static inline void __giveup_fpu(struct task_struct *tsk) { }
235 #endif /* CONFIG_PPC_FPU */
236 
237 #ifdef CONFIG_ALTIVEC
238 static void __giveup_altivec(struct task_struct *tsk)
239 {
240 	unsigned long msr;
241 
242 	save_altivec(tsk);
243 	msr = tsk->thread.regs->msr;
244 	msr &= ~MSR_VEC;
245 	if (cpu_has_feature(CPU_FTR_VSX))
246 		msr &= ~MSR_VSX;
247 	tsk->thread.regs->msr = msr;
248 }
249 
250 void giveup_altivec(struct task_struct *tsk)
251 {
252 	check_if_tm_restore_required(tsk);
253 
254 	msr_check_and_set(MSR_VEC);
255 	__giveup_altivec(tsk);
256 	msr_check_and_clear(MSR_VEC);
257 }
258 EXPORT_SYMBOL(giveup_altivec);
259 
260 void enable_kernel_altivec(void)
261 {
262 	unsigned long cpumsr;
263 
264 	WARN_ON(preemptible());
265 
266 	cpumsr = msr_check_and_set(MSR_VEC);
267 
268 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
269 		check_if_tm_restore_required(current);
270 		/*
271 		 * If a thread has already been reclaimed then the
272 		 * checkpointed registers are on the CPU but have definitely
273 		 * been saved by the reclaim code. Don't need to and *cannot*
274 		 * giveup as this would save  to the 'live' structure not the
275 		 * checkpointed structure.
276 		 */
277 		if (!MSR_TM_ACTIVE(cpumsr) &&
278 		     MSR_TM_ACTIVE(current->thread.regs->msr))
279 			return;
280 		__giveup_altivec(current);
281 	}
282 }
283 EXPORT_SYMBOL(enable_kernel_altivec);
284 
285 /*
286  * Make sure the VMX/Altivec register state in the
287  * the thread_struct is up to date for task tsk.
288  */
289 void flush_altivec_to_thread(struct task_struct *tsk)
290 {
291 	if (tsk->thread.regs) {
292 		preempt_disable();
293 		if (tsk->thread.regs->msr & MSR_VEC) {
294 			BUG_ON(tsk != current);
295 			giveup_altivec(tsk);
296 		}
297 		preempt_enable();
298 	}
299 }
300 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
301 #endif /* CONFIG_ALTIVEC */
302 
303 #ifdef CONFIG_VSX
304 static void __giveup_vsx(struct task_struct *tsk)
305 {
306 	unsigned long msr = tsk->thread.regs->msr;
307 
308 	/*
309 	 * We should never be ssetting MSR_VSX without also setting
310 	 * MSR_FP and MSR_VEC
311 	 */
312 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
313 
314 	/* __giveup_fpu will clear MSR_VSX */
315 	if (msr & MSR_FP)
316 		__giveup_fpu(tsk);
317 	if (msr & MSR_VEC)
318 		__giveup_altivec(tsk);
319 }
320 
321 static void giveup_vsx(struct task_struct *tsk)
322 {
323 	check_if_tm_restore_required(tsk);
324 
325 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
326 	__giveup_vsx(tsk);
327 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
328 }
329 
330 void enable_kernel_vsx(void)
331 {
332 	unsigned long cpumsr;
333 
334 	WARN_ON(preemptible());
335 
336 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
337 
338 	if (current->thread.regs &&
339 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
340 		check_if_tm_restore_required(current);
341 		/*
342 		 * If a thread has already been reclaimed then the
343 		 * checkpointed registers are on the CPU but have definitely
344 		 * been saved by the reclaim code. Don't need to and *cannot*
345 		 * giveup as this would save  to the 'live' structure not the
346 		 * checkpointed structure.
347 		 */
348 		if (!MSR_TM_ACTIVE(cpumsr) &&
349 		     MSR_TM_ACTIVE(current->thread.regs->msr))
350 			return;
351 		__giveup_vsx(current);
352 	}
353 }
354 EXPORT_SYMBOL(enable_kernel_vsx);
355 
356 void flush_vsx_to_thread(struct task_struct *tsk)
357 {
358 	if (tsk->thread.regs) {
359 		preempt_disable();
360 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
361 			BUG_ON(tsk != current);
362 			giveup_vsx(tsk);
363 		}
364 		preempt_enable();
365 	}
366 }
367 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
368 #endif /* CONFIG_VSX */
369 
370 #ifdef CONFIG_SPE
371 void giveup_spe(struct task_struct *tsk)
372 {
373 	check_if_tm_restore_required(tsk);
374 
375 	msr_check_and_set(MSR_SPE);
376 	__giveup_spe(tsk);
377 	msr_check_and_clear(MSR_SPE);
378 }
379 EXPORT_SYMBOL(giveup_spe);
380 
381 void enable_kernel_spe(void)
382 {
383 	WARN_ON(preemptible());
384 
385 	msr_check_and_set(MSR_SPE);
386 
387 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
388 		check_if_tm_restore_required(current);
389 		__giveup_spe(current);
390 	}
391 }
392 EXPORT_SYMBOL(enable_kernel_spe);
393 
394 void flush_spe_to_thread(struct task_struct *tsk)
395 {
396 	if (tsk->thread.regs) {
397 		preempt_disable();
398 		if (tsk->thread.regs->msr & MSR_SPE) {
399 			BUG_ON(tsk != current);
400 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
401 			giveup_spe(tsk);
402 		}
403 		preempt_enable();
404 	}
405 }
406 #endif /* CONFIG_SPE */
407 
408 static unsigned long msr_all_available;
409 
410 static int __init init_msr_all_available(void)
411 {
412 	if (IS_ENABLED(CONFIG_PPC_FPU))
413 		msr_all_available |= MSR_FP;
414 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
415 		msr_all_available |= MSR_VEC;
416 	if (cpu_has_feature(CPU_FTR_VSX))
417 		msr_all_available |= MSR_VSX;
418 	if (cpu_has_feature(CPU_FTR_SPE))
419 		msr_all_available |= MSR_SPE;
420 
421 	return 0;
422 }
423 early_initcall(init_msr_all_available);
424 
425 void giveup_all(struct task_struct *tsk)
426 {
427 	unsigned long usermsr;
428 
429 	if (!tsk->thread.regs)
430 		return;
431 
432 	check_if_tm_restore_required(tsk);
433 
434 	usermsr = tsk->thread.regs->msr;
435 
436 	if ((usermsr & msr_all_available) == 0)
437 		return;
438 
439 	msr_check_and_set(msr_all_available);
440 
441 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
442 
443 	if (usermsr & MSR_FP)
444 		__giveup_fpu(tsk);
445 	if (usermsr & MSR_VEC)
446 		__giveup_altivec(tsk);
447 	if (usermsr & MSR_SPE)
448 		__giveup_spe(tsk);
449 
450 	msr_check_and_clear(msr_all_available);
451 }
452 EXPORT_SYMBOL(giveup_all);
453 
454 #ifdef CONFIG_PPC_BOOK3S_64
455 #ifdef CONFIG_PPC_FPU
456 static bool should_restore_fp(void)
457 {
458 	if (current->thread.load_fp) {
459 		current->thread.load_fp++;
460 		return true;
461 	}
462 	return false;
463 }
464 
465 static void do_restore_fp(void)
466 {
467 	load_fp_state(&current->thread.fp_state);
468 }
469 #else
470 static bool should_restore_fp(void) { return false; }
471 static void do_restore_fp(void) { }
472 #endif /* CONFIG_PPC_FPU */
473 
474 #ifdef CONFIG_ALTIVEC
475 static bool should_restore_altivec(void)
476 {
477 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
478 		current->thread.load_vec++;
479 		return true;
480 	}
481 	return false;
482 }
483 
484 static void do_restore_altivec(void)
485 {
486 	load_vr_state(&current->thread.vr_state);
487 	current->thread.used_vr = 1;
488 }
489 #else
490 static bool should_restore_altivec(void) { return false; }
491 static void do_restore_altivec(void) { }
492 #endif /* CONFIG_ALTIVEC */
493 
494 static bool should_restore_vsx(void)
495 {
496 	if (cpu_has_feature(CPU_FTR_VSX))
497 		return true;
498 	return false;
499 }
500 #ifdef CONFIG_VSX
501 static void do_restore_vsx(void)
502 {
503 	current->thread.used_vsr = 1;
504 }
505 #else
506 static void do_restore_vsx(void) { }
507 #endif /* CONFIG_VSX */
508 
509 /*
510  * The exception exit path calls restore_math() with interrupts hard disabled
511  * but the soft irq state not "reconciled". ftrace code that calls
512  * local_irq_save/restore causes warnings.
513  *
514  * Rather than complicate the exit path, just don't trace restore_math. This
515  * could be done by having ftrace entry code check for this un-reconciled
516  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
517  * temporarily fix it up for the duration of the ftrace call.
518  */
519 void notrace restore_math(struct pt_regs *regs)
520 {
521 	unsigned long msr;
522 	unsigned long new_msr = 0;
523 
524 	msr = regs->msr;
525 
526 	/*
527 	 * new_msr tracks the facilities that are to be restored. Only reload
528 	 * if the bit is not set in the user MSR (if it is set, the registers
529 	 * are live for the user thread).
530 	 */
531 	if ((!(msr & MSR_FP)) && should_restore_fp())
532 		new_msr |= MSR_FP;
533 
534 	if ((!(msr & MSR_VEC)) && should_restore_altivec())
535 		new_msr |= MSR_VEC;
536 
537 	if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
538 		if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
539 			new_msr |= MSR_VSX;
540 	}
541 
542 	if (new_msr) {
543 		unsigned long fpexc_mode = 0;
544 
545 		msr_check_and_set(new_msr);
546 
547 		if (new_msr & MSR_FP) {
548 			do_restore_fp();
549 
550 			// This also covers VSX, because VSX implies FP
551 			fpexc_mode = current->thread.fpexc_mode;
552 		}
553 
554 		if (new_msr & MSR_VEC)
555 			do_restore_altivec();
556 
557 		if (new_msr & MSR_VSX)
558 			do_restore_vsx();
559 
560 		msr_check_and_clear(new_msr);
561 
562 		regs->msr |= new_msr | fpexc_mode;
563 	}
564 }
565 #endif /* CONFIG_PPC_BOOK3S_64 */
566 
567 static void save_all(struct task_struct *tsk)
568 {
569 	unsigned long usermsr;
570 
571 	if (!tsk->thread.regs)
572 		return;
573 
574 	usermsr = tsk->thread.regs->msr;
575 
576 	if ((usermsr & msr_all_available) == 0)
577 		return;
578 
579 	msr_check_and_set(msr_all_available);
580 
581 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
582 
583 	if (usermsr & MSR_FP)
584 		save_fpu(tsk);
585 
586 	if (usermsr & MSR_VEC)
587 		save_altivec(tsk);
588 
589 	if (usermsr & MSR_SPE)
590 		__giveup_spe(tsk);
591 
592 	msr_check_and_clear(msr_all_available);
593 }
594 
595 void flush_all_to_thread(struct task_struct *tsk)
596 {
597 	if (tsk->thread.regs) {
598 		preempt_disable();
599 		BUG_ON(tsk != current);
600 #ifdef CONFIG_SPE
601 		if (tsk->thread.regs->msr & MSR_SPE)
602 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
603 #endif
604 		save_all(tsk);
605 
606 		preempt_enable();
607 	}
608 }
609 EXPORT_SYMBOL(flush_all_to_thread);
610 
611 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
612 void do_send_trap(struct pt_regs *regs, unsigned long address,
613 		  unsigned long error_code, int breakpt)
614 {
615 	current->thread.trap_nr = TRAP_HWBKPT;
616 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
617 			11, SIGSEGV) == NOTIFY_STOP)
618 		return;
619 
620 	/* Deliver the signal to userspace */
621 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
622 				    (void __user *)address);
623 }
624 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
625 
626 static void do_break_handler(struct pt_regs *regs)
627 {
628 	struct arch_hw_breakpoint null_brk = {0};
629 	struct arch_hw_breakpoint *info;
630 	struct ppc_inst instr = ppc_inst(0);
631 	int type = 0;
632 	int size = 0;
633 	unsigned long ea;
634 	int i;
635 
636 	/*
637 	 * If underneath hw supports only one watchpoint, we know it
638 	 * caused exception. 8xx also falls into this category.
639 	 */
640 	if (nr_wp_slots() == 1) {
641 		__set_breakpoint(0, &null_brk);
642 		current->thread.hw_brk[0] = null_brk;
643 		current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
644 		return;
645 	}
646 
647 	/* Otherwise findout which DAWR caused exception and disable it. */
648 	wp_get_instr_detail(regs, &instr, &type, &size, &ea);
649 
650 	for (i = 0; i < nr_wp_slots(); i++) {
651 		info = &current->thread.hw_brk[i];
652 		if (!info->address)
653 			continue;
654 
655 		if (wp_check_constraints(regs, instr, ea, type, size, info)) {
656 			__set_breakpoint(i, &null_brk);
657 			current->thread.hw_brk[i] = null_brk;
658 			current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
659 		}
660 	}
661 }
662 
663 DEFINE_INTERRUPT_HANDLER(do_break)
664 {
665 	current->thread.trap_nr = TRAP_HWBKPT;
666 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
667 			11, SIGSEGV) == NOTIFY_STOP)
668 		return;
669 
670 	if (debugger_break_match(regs))
671 		return;
672 
673 	/*
674 	 * We reach here only when watchpoint exception is generated by ptrace
675 	 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
676 	 * watchpoint is already handled by hw_breakpoint_handler() so we don't
677 	 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
678 	 * we need to manually handle the watchpoint here.
679 	 */
680 	if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
681 		do_break_handler(regs);
682 
683 	/* Deliver the signal to userspace */
684 	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
685 }
686 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
687 
688 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
689 
690 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
691 /*
692  * Set the debug registers back to their default "safe" values.
693  */
694 static void set_debug_reg_defaults(struct thread_struct *thread)
695 {
696 	thread->debug.iac1 = thread->debug.iac2 = 0;
697 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
698 	thread->debug.iac3 = thread->debug.iac4 = 0;
699 #endif
700 	thread->debug.dac1 = thread->debug.dac2 = 0;
701 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
702 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
703 #endif
704 	thread->debug.dbcr0 = 0;
705 #ifdef CONFIG_BOOKE
706 	/*
707 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
708 	 */
709 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
710 			DBCR1_IAC3US | DBCR1_IAC4US;
711 	/*
712 	 * Force Data Address Compare User/Supervisor bits to be User-only
713 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
714 	 */
715 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
716 #else
717 	thread->debug.dbcr1 = 0;
718 #endif
719 }
720 
721 static void prime_debug_regs(struct debug_reg *debug)
722 {
723 	/*
724 	 * We could have inherited MSR_DE from userspace, since
725 	 * it doesn't get cleared on exception entry.  Make sure
726 	 * MSR_DE is clear before we enable any debug events.
727 	 */
728 	mtmsr(mfmsr() & ~MSR_DE);
729 
730 	mtspr(SPRN_IAC1, debug->iac1);
731 	mtspr(SPRN_IAC2, debug->iac2);
732 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
733 	mtspr(SPRN_IAC3, debug->iac3);
734 	mtspr(SPRN_IAC4, debug->iac4);
735 #endif
736 	mtspr(SPRN_DAC1, debug->dac1);
737 	mtspr(SPRN_DAC2, debug->dac2);
738 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
739 	mtspr(SPRN_DVC1, debug->dvc1);
740 	mtspr(SPRN_DVC2, debug->dvc2);
741 #endif
742 	mtspr(SPRN_DBCR0, debug->dbcr0);
743 	mtspr(SPRN_DBCR1, debug->dbcr1);
744 #ifdef CONFIG_BOOKE
745 	mtspr(SPRN_DBCR2, debug->dbcr2);
746 #endif
747 }
748 /*
749  * Unless neither the old or new thread are making use of the
750  * debug registers, set the debug registers from the values
751  * stored in the new thread.
752  */
753 void switch_booke_debug_regs(struct debug_reg *new_debug)
754 {
755 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
756 		|| (new_debug->dbcr0 & DBCR0_IDM))
757 			prime_debug_regs(new_debug);
758 }
759 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
760 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
761 #ifndef CONFIG_HAVE_HW_BREAKPOINT
762 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
763 {
764 	preempt_disable();
765 	__set_breakpoint(i, brk);
766 	preempt_enable();
767 }
768 
769 static void set_debug_reg_defaults(struct thread_struct *thread)
770 {
771 	int i;
772 	struct arch_hw_breakpoint null_brk = {0};
773 
774 	for (i = 0; i < nr_wp_slots(); i++) {
775 		thread->hw_brk[i] = null_brk;
776 		if (ppc_breakpoint_available())
777 			set_breakpoint(i, &thread->hw_brk[i]);
778 	}
779 }
780 
781 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
782 				struct arch_hw_breakpoint *b)
783 {
784 	if (a->address != b->address)
785 		return false;
786 	if (a->type != b->type)
787 		return false;
788 	if (a->len != b->len)
789 		return false;
790 	/* no need to check hw_len. it's calculated from address and len */
791 	return true;
792 }
793 
794 static void switch_hw_breakpoint(struct task_struct *new)
795 {
796 	int i;
797 
798 	for (i = 0; i < nr_wp_slots(); i++) {
799 		if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
800 					&new->thread.hw_brk[i])))
801 			continue;
802 
803 		__set_breakpoint(i, &new->thread.hw_brk[i]);
804 	}
805 }
806 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
807 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
808 
809 static inline int set_dabr(struct arch_hw_breakpoint *brk)
810 {
811 	unsigned long dabr, dabrx;
812 
813 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
814 	dabrx = ((brk->type >> 3) & 0x7);
815 
816 	if (ppc_md.set_dabr)
817 		return ppc_md.set_dabr(dabr, dabrx);
818 
819 	if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
820 		mtspr(SPRN_DAC1, dabr);
821 		if (IS_ENABLED(CONFIG_PPC_47x))
822 			isync();
823 		return 0;
824 	} else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
825 		mtspr(SPRN_DABR, dabr);
826 		if (cpu_has_feature(CPU_FTR_DABRX))
827 			mtspr(SPRN_DABRX, dabrx);
828 		return 0;
829 	} else {
830 		return -EINVAL;
831 	}
832 }
833 
834 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
835 {
836 	unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
837 			       LCTRL1_CRWF_RW;
838 	unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
839 	unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
840 	unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
841 
842 	if (start_addr == 0)
843 		lctrl2 |= LCTRL2_LW0LA_F;
844 	else if (end_addr == 0)
845 		lctrl2 |= LCTRL2_LW0LA_E;
846 	else
847 		lctrl2 |= LCTRL2_LW0LA_EandF;
848 
849 	mtspr(SPRN_LCTRL2, 0);
850 
851 	if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
852 		return 0;
853 
854 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
855 		lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
856 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
857 		lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
858 
859 	mtspr(SPRN_CMPE, start_addr - 1);
860 	mtspr(SPRN_CMPF, end_addr);
861 	mtspr(SPRN_LCTRL1, lctrl1);
862 	mtspr(SPRN_LCTRL2, lctrl2);
863 
864 	return 0;
865 }
866 
867 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
868 {
869 	memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
870 
871 	if (dawr_enabled())
872 		// Power8 or later
873 		set_dawr(nr, brk);
874 	else if (IS_ENABLED(CONFIG_PPC_8xx))
875 		set_breakpoint_8xx(brk);
876 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
877 		// Power7 or earlier
878 		set_dabr(brk);
879 	else
880 		// Shouldn't happen due to higher level checks
881 		WARN_ON_ONCE(1);
882 }
883 
884 /* Check if we have DAWR or DABR hardware */
885 bool ppc_breakpoint_available(void)
886 {
887 	if (dawr_enabled())
888 		return true; /* POWER8 DAWR or POWER9 forced DAWR */
889 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
890 		return false; /* POWER9 with DAWR disabled */
891 	/* DABR: Everything but POWER8 and POWER9 */
892 	return true;
893 }
894 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
895 
896 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
897 
898 static inline bool tm_enabled(struct task_struct *tsk)
899 {
900 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
901 }
902 
903 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
904 {
905 	/*
906 	 * Use the current MSR TM suspended bit to track if we have
907 	 * checkpointed state outstanding.
908 	 * On signal delivery, we'd normally reclaim the checkpointed
909 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
910 	 * This will then directly return to userspace without going
911 	 * through __switch_to(). However, if the stack frame is bad,
912 	 * we need to exit this thread which calls __switch_to() which
913 	 * will again attempt to reclaim the already saved tm state.
914 	 * Hence we need to check that we've not already reclaimed
915 	 * this state.
916 	 * We do this using the current MSR, rather tracking it in
917 	 * some specific thread_struct bit, as it has the additional
918 	 * benefit of checking for a potential TM bad thing exception.
919 	 */
920 	if (!MSR_TM_SUSPENDED(mfmsr()))
921 		return;
922 
923 	giveup_all(container_of(thr, struct task_struct, thread));
924 
925 	tm_reclaim(thr, cause);
926 
927 	/*
928 	 * If we are in a transaction and FP is off then we can't have
929 	 * used FP inside that transaction. Hence the checkpointed
930 	 * state is the same as the live state. We need to copy the
931 	 * live state to the checkpointed state so that when the
932 	 * transaction is restored, the checkpointed state is correct
933 	 * and the aborted transaction sees the correct state. We use
934 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
935 	 * determine if it's going to write the checkpointed state or
936 	 * not. So either this will write the checkpointed registers,
937 	 * or reclaim will. Similarly for VMX.
938 	 */
939 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
940 		memcpy(&thr->ckfp_state, &thr->fp_state,
941 		       sizeof(struct thread_fp_state));
942 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
943 		memcpy(&thr->ckvr_state, &thr->vr_state,
944 		       sizeof(struct thread_vr_state));
945 }
946 
947 void tm_reclaim_current(uint8_t cause)
948 {
949 	tm_enable();
950 	tm_reclaim_thread(&current->thread, cause);
951 }
952 
953 static inline void tm_reclaim_task(struct task_struct *tsk)
954 {
955 	/* We have to work out if we're switching from/to a task that's in the
956 	 * middle of a transaction.
957 	 *
958 	 * In switching we need to maintain a 2nd register state as
959 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
960 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
961 	 * ckvr_state
962 	 *
963 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
964 	 */
965 	struct thread_struct *thr = &tsk->thread;
966 
967 	if (!thr->regs)
968 		return;
969 
970 	if (!MSR_TM_ACTIVE(thr->regs->msr))
971 		goto out_and_saveregs;
972 
973 	WARN_ON(tm_suspend_disabled);
974 
975 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
976 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
977 		 tsk->pid, thr->regs->nip,
978 		 thr->regs->ccr, thr->regs->msr,
979 		 thr->regs->trap);
980 
981 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
982 
983 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
984 		 tsk->pid);
985 
986 out_and_saveregs:
987 	/* Always save the regs here, even if a transaction's not active.
988 	 * This context-switches a thread's TM info SPRs.  We do it here to
989 	 * be consistent with the restore path (in recheckpoint) which
990 	 * cannot happen later in _switch().
991 	 */
992 	tm_save_sprs(thr);
993 }
994 
995 extern void __tm_recheckpoint(struct thread_struct *thread);
996 
997 void tm_recheckpoint(struct thread_struct *thread)
998 {
999 	unsigned long flags;
1000 
1001 	if (!(thread->regs->msr & MSR_TM))
1002 		return;
1003 
1004 	/* We really can't be interrupted here as the TEXASR registers can't
1005 	 * change and later in the trecheckpoint code, we have a userspace R1.
1006 	 * So let's hard disable over this region.
1007 	 */
1008 	local_irq_save(flags);
1009 	hard_irq_disable();
1010 
1011 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
1012 	 * before the trecheckpoint and no explosion occurs.
1013 	 */
1014 	tm_restore_sprs(thread);
1015 
1016 	__tm_recheckpoint(thread);
1017 
1018 	local_irq_restore(flags);
1019 }
1020 
1021 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1022 {
1023 	if (!cpu_has_feature(CPU_FTR_TM))
1024 		return;
1025 
1026 	/* Recheckpoint the registers of the thread we're about to switch to.
1027 	 *
1028 	 * If the task was using FP, we non-lazily reload both the original and
1029 	 * the speculative FP register states.  This is because the kernel
1030 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
1031 	 * unavailable later, we are unable to determine which set of FP regs
1032 	 * need to be restored.
1033 	 */
1034 	if (!tm_enabled(new))
1035 		return;
1036 
1037 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1038 		tm_restore_sprs(&new->thread);
1039 		return;
1040 	}
1041 	/* Recheckpoint to restore original checkpointed register state. */
1042 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1043 		 new->pid, new->thread.regs->msr);
1044 
1045 	tm_recheckpoint(&new->thread);
1046 
1047 	/*
1048 	 * The checkpointed state has been restored but the live state has
1049 	 * not, ensure all the math functionality is turned off to trigger
1050 	 * restore_math() to reload.
1051 	 */
1052 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1053 
1054 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1055 		 "(kernel msr 0x%lx)\n",
1056 		 new->pid, mfmsr());
1057 }
1058 
1059 static inline void __switch_to_tm(struct task_struct *prev,
1060 		struct task_struct *new)
1061 {
1062 	if (cpu_has_feature(CPU_FTR_TM)) {
1063 		if (tm_enabled(prev) || tm_enabled(new))
1064 			tm_enable();
1065 
1066 		if (tm_enabled(prev)) {
1067 			prev->thread.load_tm++;
1068 			tm_reclaim_task(prev);
1069 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1070 				prev->thread.regs->msr &= ~MSR_TM;
1071 		}
1072 
1073 		tm_recheckpoint_new_task(new);
1074 	}
1075 }
1076 
1077 /*
1078  * This is called if we are on the way out to userspace and the
1079  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1080  * FP and/or vector state and does so if necessary.
1081  * If userspace is inside a transaction (whether active or
1082  * suspended) and FP/VMX/VSX instructions have ever been enabled
1083  * inside that transaction, then we have to keep them enabled
1084  * and keep the FP/VMX/VSX state loaded while ever the transaction
1085  * continues.  The reason is that if we didn't, and subsequently
1086  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1087  * we don't know whether it's the same transaction, and thus we
1088  * don't know which of the checkpointed state and the transactional
1089  * state to use.
1090  */
1091 void restore_tm_state(struct pt_regs *regs)
1092 {
1093 	unsigned long msr_diff;
1094 
1095 	/*
1096 	 * This is the only moment we should clear TIF_RESTORE_TM as
1097 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1098 	 * again, anything else could lead to an incorrect ckpt_msr being
1099 	 * saved and therefore incorrect signal contexts.
1100 	 */
1101 	clear_thread_flag(TIF_RESTORE_TM);
1102 	if (!MSR_TM_ACTIVE(regs->msr))
1103 		return;
1104 
1105 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1106 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1107 
1108 	/* Ensure that restore_math() will restore */
1109 	if (msr_diff & MSR_FP)
1110 		current->thread.load_fp = 1;
1111 #ifdef CONFIG_ALTIVEC
1112 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1113 		current->thread.load_vec = 1;
1114 #endif
1115 	restore_math(regs);
1116 
1117 	regs->msr |= msr_diff;
1118 }
1119 
1120 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1121 #define tm_recheckpoint_new_task(new)
1122 #define __switch_to_tm(prev, new)
1123 void tm_reclaim_current(uint8_t cause) {}
1124 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1125 
1126 static inline void save_sprs(struct thread_struct *t)
1127 {
1128 #ifdef CONFIG_ALTIVEC
1129 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1130 		t->vrsave = mfspr(SPRN_VRSAVE);
1131 #endif
1132 #ifdef CONFIG_PPC_BOOK3S_64
1133 	if (cpu_has_feature(CPU_FTR_DSCR))
1134 		t->dscr = mfspr(SPRN_DSCR);
1135 
1136 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1137 		t->bescr = mfspr(SPRN_BESCR);
1138 		t->ebbhr = mfspr(SPRN_EBBHR);
1139 		t->ebbrr = mfspr(SPRN_EBBRR);
1140 
1141 		t->fscr = mfspr(SPRN_FSCR);
1142 
1143 		/*
1144 		 * Note that the TAR is not available for use in the kernel.
1145 		 * (To provide this, the TAR should be backed up/restored on
1146 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1147 		 * this should be in pt_regs anyway (for debug).)
1148 		 */
1149 		t->tar = mfspr(SPRN_TAR);
1150 	}
1151 #endif
1152 }
1153 
1154 static inline void restore_sprs(struct thread_struct *old_thread,
1155 				struct thread_struct *new_thread)
1156 {
1157 #ifdef CONFIG_ALTIVEC
1158 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1159 	    old_thread->vrsave != new_thread->vrsave)
1160 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1161 #endif
1162 #ifdef CONFIG_PPC_BOOK3S_64
1163 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1164 		u64 dscr = get_paca()->dscr_default;
1165 		if (new_thread->dscr_inherit)
1166 			dscr = new_thread->dscr;
1167 
1168 		if (old_thread->dscr != dscr)
1169 			mtspr(SPRN_DSCR, dscr);
1170 	}
1171 
1172 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1173 		if (old_thread->bescr != new_thread->bescr)
1174 			mtspr(SPRN_BESCR, new_thread->bescr);
1175 		if (old_thread->ebbhr != new_thread->ebbhr)
1176 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1177 		if (old_thread->ebbrr != new_thread->ebbrr)
1178 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1179 
1180 		if (old_thread->fscr != new_thread->fscr)
1181 			mtspr(SPRN_FSCR, new_thread->fscr);
1182 
1183 		if (old_thread->tar != new_thread->tar)
1184 			mtspr(SPRN_TAR, new_thread->tar);
1185 	}
1186 
1187 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1188 	    old_thread->tidr != new_thread->tidr)
1189 		mtspr(SPRN_TIDR, new_thread->tidr);
1190 #endif
1191 
1192 }
1193 
1194 struct task_struct *__switch_to(struct task_struct *prev,
1195 	struct task_struct *new)
1196 {
1197 	struct thread_struct *new_thread, *old_thread;
1198 	struct task_struct *last;
1199 #ifdef CONFIG_PPC_BOOK3S_64
1200 	struct ppc64_tlb_batch *batch;
1201 #endif
1202 
1203 	new_thread = &new->thread;
1204 	old_thread = &current->thread;
1205 
1206 	WARN_ON(!irqs_disabled());
1207 
1208 #ifdef CONFIG_PPC_BOOK3S_64
1209 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1210 	if (batch->active) {
1211 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1212 		if (batch->index)
1213 			__flush_tlb_pending(batch);
1214 		batch->active = 0;
1215 	}
1216 #endif /* CONFIG_PPC_BOOK3S_64 */
1217 
1218 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1219 	switch_booke_debug_regs(&new->thread.debug);
1220 #else
1221 /*
1222  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1223  * schedule DABR
1224  */
1225 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1226 	switch_hw_breakpoint(new);
1227 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1228 #endif
1229 
1230 	/*
1231 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1232 	 * change a number of them.
1233 	 */
1234 	save_sprs(&prev->thread);
1235 
1236 	/* Save FPU, Altivec, VSX and SPE state */
1237 	giveup_all(prev);
1238 
1239 	__switch_to_tm(prev, new);
1240 
1241 	if (!radix_enabled()) {
1242 		/*
1243 		 * We can't take a PMU exception inside _switch() since there
1244 		 * is a window where the kernel stack SLB and the kernel stack
1245 		 * are out of sync. Hard disable here.
1246 		 */
1247 		hard_irq_disable();
1248 	}
1249 
1250 	/*
1251 	 * Call restore_sprs() before calling _switch(). If we move it after
1252 	 * _switch() then we miss out on calling it for new tasks. The reason
1253 	 * for this is we manually create a stack frame for new tasks that
1254 	 * directly returns through ret_from_fork() or
1255 	 * ret_from_kernel_thread(). See copy_thread() for details.
1256 	 */
1257 	restore_sprs(old_thread, new_thread);
1258 
1259 #ifdef CONFIG_PPC32
1260 	kuap_assert_locked();
1261 #endif
1262 	last = _switch(old_thread, new_thread);
1263 
1264 #ifdef CONFIG_PPC_BOOK3S_64
1265 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1266 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1267 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1268 		batch->active = 1;
1269 	}
1270 
1271 	if (current->thread.regs) {
1272 		restore_math(current->thread.regs);
1273 
1274 		/*
1275 		 * On POWER9 the copy-paste buffer can only paste into
1276 		 * foreign real addresses, so unprivileged processes can not
1277 		 * see the data or use it in any way unless they have
1278 		 * foreign real mappings. If the new process has the foreign
1279 		 * real address mappings, we must issue a cp_abort to clear
1280 		 * any state and prevent snooping, corruption or a covert
1281 		 * channel. ISA v3.1 supports paste into local memory.
1282 		 */
1283 		if (current->mm &&
1284 			(cpu_has_feature(CPU_FTR_ARCH_31) ||
1285 			atomic_read(&current->mm->context.vas_windows)))
1286 			asm volatile(PPC_CP_ABORT);
1287 	}
1288 #endif /* CONFIG_PPC_BOOK3S_64 */
1289 
1290 	return last;
1291 }
1292 
1293 #define NR_INSN_TO_PRINT	16
1294 
1295 static void show_instructions(struct pt_regs *regs)
1296 {
1297 	int i;
1298 	unsigned long nip = regs->nip;
1299 	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1300 
1301 	printk("Instruction dump:");
1302 
1303 	/*
1304 	 * If we were executing with the MMU off for instructions, adjust pc
1305 	 * rather than printing XXXXXXXX.
1306 	 */
1307 	if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1308 		pc = (unsigned long)phys_to_virt(pc);
1309 		nip = (unsigned long)phys_to_virt(regs->nip);
1310 	}
1311 
1312 	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1313 		int instr;
1314 
1315 		if (!(i % 8))
1316 			pr_cont("\n");
1317 
1318 		if (!__kernel_text_address(pc) ||
1319 		    get_kernel_nofault(instr, (const void *)pc)) {
1320 			pr_cont("XXXXXXXX ");
1321 		} else {
1322 			if (nip == pc)
1323 				pr_cont("<%08x> ", instr);
1324 			else
1325 				pr_cont("%08x ", instr);
1326 		}
1327 
1328 		pc += sizeof(int);
1329 	}
1330 
1331 	pr_cont("\n");
1332 }
1333 
1334 void show_user_instructions(struct pt_regs *regs)
1335 {
1336 	unsigned long pc;
1337 	int n = NR_INSN_TO_PRINT;
1338 	struct seq_buf s;
1339 	char buf[96]; /* enough for 8 times 9 + 2 chars */
1340 
1341 	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1342 
1343 	seq_buf_init(&s, buf, sizeof(buf));
1344 
1345 	while (n) {
1346 		int i;
1347 
1348 		seq_buf_clear(&s);
1349 
1350 		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1351 			int instr;
1352 
1353 			if (copy_from_user_nofault(&instr, (void __user *)pc,
1354 					sizeof(instr))) {
1355 				seq_buf_printf(&s, "XXXXXXXX ");
1356 				continue;
1357 			}
1358 			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1359 		}
1360 
1361 		if (!seq_buf_has_overflowed(&s))
1362 			pr_info("%s[%d]: code: %s\n", current->comm,
1363 				current->pid, s.buffer);
1364 	}
1365 }
1366 
1367 struct regbit {
1368 	unsigned long bit;
1369 	const char *name;
1370 };
1371 
1372 static struct regbit msr_bits[] = {
1373 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1374 	{MSR_SF,	"SF"},
1375 	{MSR_HV,	"HV"},
1376 #endif
1377 	{MSR_VEC,	"VEC"},
1378 	{MSR_VSX,	"VSX"},
1379 #ifdef CONFIG_BOOKE
1380 	{MSR_CE,	"CE"},
1381 #endif
1382 	{MSR_EE,	"EE"},
1383 	{MSR_PR,	"PR"},
1384 	{MSR_FP,	"FP"},
1385 	{MSR_ME,	"ME"},
1386 #ifdef CONFIG_BOOKE
1387 	{MSR_DE,	"DE"},
1388 #else
1389 	{MSR_SE,	"SE"},
1390 	{MSR_BE,	"BE"},
1391 #endif
1392 	{MSR_IR,	"IR"},
1393 	{MSR_DR,	"DR"},
1394 	{MSR_PMM,	"PMM"},
1395 #ifndef CONFIG_BOOKE
1396 	{MSR_RI,	"RI"},
1397 	{MSR_LE,	"LE"},
1398 #endif
1399 	{0,		NULL}
1400 };
1401 
1402 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1403 {
1404 	const char *s = "";
1405 
1406 	for (; bits->bit; ++bits)
1407 		if (val & bits->bit) {
1408 			pr_cont("%s%s", s, bits->name);
1409 			s = sep;
1410 		}
1411 }
1412 
1413 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1414 static struct regbit msr_tm_bits[] = {
1415 	{MSR_TS_T,	"T"},
1416 	{MSR_TS_S,	"S"},
1417 	{MSR_TM,	"E"},
1418 	{0,		NULL}
1419 };
1420 
1421 static void print_tm_bits(unsigned long val)
1422 {
1423 /*
1424  * This only prints something if at least one of the TM bit is set.
1425  * Inside the TM[], the output means:
1426  *   E: Enabled		(bit 32)
1427  *   S: Suspended	(bit 33)
1428  *   T: Transactional	(bit 34)
1429  */
1430 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1431 		pr_cont(",TM[");
1432 		print_bits(val, msr_tm_bits, "");
1433 		pr_cont("]");
1434 	}
1435 }
1436 #else
1437 static void print_tm_bits(unsigned long val) {}
1438 #endif
1439 
1440 static void print_msr_bits(unsigned long val)
1441 {
1442 	pr_cont("<");
1443 	print_bits(val, msr_bits, ",");
1444 	print_tm_bits(val);
1445 	pr_cont(">");
1446 }
1447 
1448 #ifdef CONFIG_PPC64
1449 #define REG		"%016lx"
1450 #define REGS_PER_LINE	4
1451 #else
1452 #define REG		"%08lx"
1453 #define REGS_PER_LINE	8
1454 #endif
1455 
1456 static void __show_regs(struct pt_regs *regs)
1457 {
1458 	int i, trap;
1459 
1460 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1461 	       regs->nip, regs->link, regs->ctr);
1462 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1463 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1464 	printk("MSR:  "REG" ", regs->msr);
1465 	print_msr_bits(regs->msr);
1466 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1467 	trap = TRAP(regs);
1468 	if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1469 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1470 	if (trap == INTERRUPT_MACHINE_CHECK ||
1471 	    trap == INTERRUPT_DATA_STORAGE ||
1472 	    trap == INTERRUPT_ALIGNMENT) {
1473 		if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1474 			pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1475 		else
1476 			pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1477 	}
1478 
1479 #ifdef CONFIG_PPC64
1480 	pr_cont("IRQMASK: %lx ", regs->softe);
1481 #endif
1482 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1483 	if (MSR_TM_ACTIVE(regs->msr))
1484 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1485 #endif
1486 
1487 	for (i = 0;  i < 32;  i++) {
1488 		if ((i % REGS_PER_LINE) == 0)
1489 			pr_cont("\nGPR%02d: ", i);
1490 		pr_cont(REG " ", regs->gpr[i]);
1491 	}
1492 	pr_cont("\n");
1493 	/*
1494 	 * Lookup NIP late so we have the best change of getting the
1495 	 * above info out without failing
1496 	 */
1497 	if (IS_ENABLED(CONFIG_KALLSYMS)) {
1498 		printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1499 		printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1500 	}
1501 }
1502 
1503 void show_regs(struct pt_regs *regs)
1504 {
1505 	show_regs_print_info(KERN_DEFAULT);
1506 	__show_regs(regs);
1507 	show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1508 	if (!user_mode(regs))
1509 		show_instructions(regs);
1510 }
1511 
1512 void flush_thread(void)
1513 {
1514 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1515 	flush_ptrace_hw_breakpoint(current);
1516 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1517 	set_debug_reg_defaults(&current->thread);
1518 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1519 }
1520 
1521 void arch_setup_new_exec(void)
1522 {
1523 
1524 #ifdef CONFIG_PPC_BOOK3S_64
1525 	if (!radix_enabled())
1526 		hash__setup_new_exec();
1527 #endif
1528 	/*
1529 	 * If we exec out of a kernel thread then thread.regs will not be
1530 	 * set.  Do it now.
1531 	 */
1532 	if (!current->thread.regs) {
1533 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1534 		current->thread.regs = regs - 1;
1535 	}
1536 
1537 #ifdef CONFIG_PPC_MEM_KEYS
1538 	current->thread.regs->amr  = default_amr;
1539 	current->thread.regs->iamr  = default_iamr;
1540 #endif
1541 }
1542 
1543 #ifdef CONFIG_PPC64
1544 /**
1545  * Assign a TIDR (thread ID) for task @t and set it in the thread
1546  * structure. For now, we only support setting TIDR for 'current' task.
1547  *
1548  * Since the TID value is a truncated form of it PID, it is possible
1549  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1550  * that 2 threads share the same TID and are waiting, one of the following
1551  * cases will happen:
1552  *
1553  * 1. The correct thread is running, the wrong thread is not
1554  * In this situation, the correct thread is woken and proceeds to pass it's
1555  * condition check.
1556  *
1557  * 2. Neither threads are running
1558  * In this situation, neither thread will be woken. When scheduled, the waiting
1559  * threads will execute either a wait, which will return immediately, followed
1560  * by a condition check, which will pass for the correct thread and fail
1561  * for the wrong thread, or they will execute the condition check immediately.
1562  *
1563  * 3. The wrong thread is running, the correct thread is not
1564  * The wrong thread will be woken, but will fail it's condition check and
1565  * re-execute wait. The correct thread, when scheduled, will execute either
1566  * it's condition check (which will pass), or wait, which returns immediately
1567  * when called the first time after the thread is scheduled, followed by it's
1568  * condition check (which will pass).
1569  *
1570  * 4. Both threads are running
1571  * Both threads will be woken. The wrong thread will fail it's condition check
1572  * and execute another wait, while the correct thread will pass it's condition
1573  * check.
1574  *
1575  * @t: the task to set the thread ID for
1576  */
1577 int set_thread_tidr(struct task_struct *t)
1578 {
1579 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1580 		return -EINVAL;
1581 
1582 	if (t != current)
1583 		return -EINVAL;
1584 
1585 	if (t->thread.tidr)
1586 		return 0;
1587 
1588 	t->thread.tidr = (u16)task_pid_nr(t);
1589 	mtspr(SPRN_TIDR, t->thread.tidr);
1590 
1591 	return 0;
1592 }
1593 EXPORT_SYMBOL_GPL(set_thread_tidr);
1594 
1595 #endif /* CONFIG_PPC64 */
1596 
1597 void
1598 release_thread(struct task_struct *t)
1599 {
1600 }
1601 
1602 /*
1603  * this gets called so that we can store coprocessor state into memory and
1604  * copy the current task into the new thread.
1605  */
1606 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1607 {
1608 	flush_all_to_thread(src);
1609 	/*
1610 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1611 	 * flush but it removes the checkpointed state from the current CPU and
1612 	 * transitions the CPU out of TM mode.  Hence we need to call
1613 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1614 	 * checkpointed state back and the TM mode.
1615 	 *
1616 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1617 	 * dst is only important for __switch_to()
1618 	 */
1619 	__switch_to_tm(src, src);
1620 
1621 	*dst = *src;
1622 
1623 	clear_task_ebb(dst);
1624 
1625 	return 0;
1626 }
1627 
1628 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1629 {
1630 #ifdef CONFIG_PPC_BOOK3S_64
1631 	unsigned long sp_vsid;
1632 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1633 
1634 	if (radix_enabled())
1635 		return;
1636 
1637 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1638 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1639 			<< SLB_VSID_SHIFT_1T;
1640 	else
1641 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1642 			<< SLB_VSID_SHIFT;
1643 	sp_vsid |= SLB_VSID_KERNEL | llp;
1644 	p->thread.ksp_vsid = sp_vsid;
1645 #endif
1646 }
1647 
1648 /*
1649  * Copy a thread..
1650  */
1651 
1652 /*
1653  * Copy architecture-specific thread state
1654  */
1655 int copy_thread(unsigned long clone_flags, unsigned long usp,
1656 		unsigned long kthread_arg, struct task_struct *p,
1657 		unsigned long tls)
1658 {
1659 	struct pt_regs *childregs, *kregs;
1660 	extern void ret_from_fork(void);
1661 	extern void ret_from_fork_scv(void);
1662 	extern void ret_from_kernel_thread(void);
1663 	void (*f)(void);
1664 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1665 	struct thread_info *ti = task_thread_info(p);
1666 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1667 	int i;
1668 #endif
1669 
1670 	klp_init_thread_info(p);
1671 
1672 	/* Copy registers */
1673 	sp -= sizeof(struct pt_regs);
1674 	childregs = (struct pt_regs *) sp;
1675 	if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
1676 		/* kernel thread */
1677 		memset(childregs, 0, sizeof(struct pt_regs));
1678 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1679 		/* function */
1680 		if (usp)
1681 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1682 #ifdef CONFIG_PPC64
1683 		clear_tsk_thread_flag(p, TIF_32BIT);
1684 		childregs->softe = IRQS_ENABLED;
1685 #endif
1686 		childregs->gpr[15] = kthread_arg;
1687 		p->thread.regs = NULL;	/* no user register state */
1688 		ti->flags |= _TIF_RESTOREALL;
1689 		f = ret_from_kernel_thread;
1690 	} else {
1691 		/* user thread */
1692 		struct pt_regs *regs = current_pt_regs();
1693 		*childregs = *regs;
1694 		if (usp)
1695 			childregs->gpr[1] = usp;
1696 		p->thread.regs = childregs;
1697 		/* 64s sets this in ret_from_fork */
1698 		if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1699 			childregs->gpr[3] = 0;  /* Result from fork() */
1700 		if (clone_flags & CLONE_SETTLS) {
1701 			if (!is_32bit_task())
1702 				childregs->gpr[13] = tls;
1703 			else
1704 				childregs->gpr[2] = tls;
1705 		}
1706 
1707 		if (trap_is_scv(regs))
1708 			f = ret_from_fork_scv;
1709 		else
1710 			f = ret_from_fork;
1711 	}
1712 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1713 	sp -= STACK_FRAME_OVERHEAD;
1714 
1715 	/*
1716 	 * The way this works is that at some point in the future
1717 	 * some task will call _switch to switch to the new task.
1718 	 * That will pop off the stack frame created below and start
1719 	 * the new task running at ret_from_fork.  The new task will
1720 	 * do some house keeping and then return from the fork or clone
1721 	 * system call, using the stack frame created above.
1722 	 */
1723 	((unsigned long *)sp)[0] = 0;
1724 	sp -= sizeof(struct pt_regs);
1725 	kregs = (struct pt_regs *) sp;
1726 	sp -= STACK_FRAME_OVERHEAD;
1727 	p->thread.ksp = sp;
1728 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1729 	for (i = 0; i < nr_wp_slots(); i++)
1730 		p->thread.ptrace_bps[i] = NULL;
1731 #endif
1732 
1733 #ifdef CONFIG_PPC_FPU_REGS
1734 	p->thread.fp_save_area = NULL;
1735 #endif
1736 #ifdef CONFIG_ALTIVEC
1737 	p->thread.vr_save_area = NULL;
1738 #endif
1739 
1740 	setup_ksp_vsid(p, sp);
1741 
1742 #ifdef CONFIG_PPC64
1743 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1744 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1745 		p->thread.dscr = mfspr(SPRN_DSCR);
1746 	}
1747 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1748 		childregs->ppr = DEFAULT_PPR;
1749 
1750 	p->thread.tidr = 0;
1751 #endif
1752 	/*
1753 	 * Run with the current AMR value of the kernel
1754 	 */
1755 #ifdef CONFIG_PPC_PKEY
1756 	if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP))
1757 		kregs->amr = AMR_KUAP_BLOCKED;
1758 
1759 	if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP))
1760 		kregs->iamr = AMR_KUEP_BLOCKED;
1761 #endif
1762 	kregs->nip = ppc_function_entry(f);
1763 	return 0;
1764 }
1765 
1766 void preload_new_slb_context(unsigned long start, unsigned long sp);
1767 
1768 /*
1769  * Set up a thread for executing a new program
1770  */
1771 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1772 {
1773 #ifdef CONFIG_PPC64
1774 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1775 
1776 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1777 		preload_new_slb_context(start, sp);
1778 #endif
1779 
1780 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1781 	/*
1782 	 * Clear any transactional state, we're exec()ing. The cause is
1783 	 * not important as there will never be a recheckpoint so it's not
1784 	 * user visible.
1785 	 */
1786 	if (MSR_TM_SUSPENDED(mfmsr()))
1787 		tm_reclaim_current(0);
1788 #endif
1789 
1790 	memset(regs->gpr, 0, sizeof(regs->gpr));
1791 	regs->ctr = 0;
1792 	regs->link = 0;
1793 	regs->xer = 0;
1794 	regs->ccr = 0;
1795 	regs->gpr[1] = sp;
1796 
1797 #ifdef CONFIG_PPC32
1798 	regs->mq = 0;
1799 	regs->nip = start;
1800 	regs->msr = MSR_USER;
1801 #else
1802 	if (!is_32bit_task()) {
1803 		unsigned long entry;
1804 
1805 		if (is_elf2_task()) {
1806 			/* Look ma, no function descriptors! */
1807 			entry = start;
1808 
1809 			/*
1810 			 * Ulrich says:
1811 			 *   The latest iteration of the ABI requires that when
1812 			 *   calling a function (at its global entry point),
1813 			 *   the caller must ensure r12 holds the entry point
1814 			 *   address (so that the function can quickly
1815 			 *   establish addressability).
1816 			 */
1817 			regs->gpr[12] = start;
1818 			/* Make sure that's restored on entry to userspace. */
1819 			set_thread_flag(TIF_RESTOREALL);
1820 		} else {
1821 			unsigned long toc;
1822 
1823 			/* start is a relocated pointer to the function
1824 			 * descriptor for the elf _start routine.  The first
1825 			 * entry in the function descriptor is the entry
1826 			 * address of _start and the second entry is the TOC
1827 			 * value we need to use.
1828 			 */
1829 			__get_user(entry, (unsigned long __user *)start);
1830 			__get_user(toc, (unsigned long __user *)start+1);
1831 
1832 			/* Check whether the e_entry function descriptor entries
1833 			 * need to be relocated before we can use them.
1834 			 */
1835 			if (load_addr != 0) {
1836 				entry += load_addr;
1837 				toc   += load_addr;
1838 			}
1839 			regs->gpr[2] = toc;
1840 		}
1841 		regs->nip = entry;
1842 		regs->msr = MSR_USER64;
1843 	} else {
1844 		regs->nip = start;
1845 		regs->gpr[2] = 0;
1846 		regs->msr = MSR_USER32;
1847 	}
1848 #endif
1849 #ifdef CONFIG_VSX
1850 	current->thread.used_vsr = 0;
1851 #endif
1852 	current->thread.load_slb = 0;
1853 	current->thread.load_fp = 0;
1854 #ifdef CONFIG_PPC_FPU_REGS
1855 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1856 	current->thread.fp_save_area = NULL;
1857 #endif
1858 #ifdef CONFIG_ALTIVEC
1859 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1860 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1861 	current->thread.vr_save_area = NULL;
1862 	current->thread.vrsave = 0;
1863 	current->thread.used_vr = 0;
1864 	current->thread.load_vec = 0;
1865 #endif /* CONFIG_ALTIVEC */
1866 #ifdef CONFIG_SPE
1867 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1868 	current->thread.acc = 0;
1869 	current->thread.spefscr = 0;
1870 	current->thread.used_spe = 0;
1871 #endif /* CONFIG_SPE */
1872 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1873 	current->thread.tm_tfhar = 0;
1874 	current->thread.tm_texasr = 0;
1875 	current->thread.tm_tfiar = 0;
1876 	current->thread.load_tm = 0;
1877 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1878 
1879 }
1880 EXPORT_SYMBOL(start_thread);
1881 
1882 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1883 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1884 
1885 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1886 {
1887 	struct pt_regs *regs = tsk->thread.regs;
1888 
1889 	/* This is a bit hairy.  If we are an SPE enabled  processor
1890 	 * (have embedded fp) we store the IEEE exception enable flags in
1891 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1892 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1893 	if (val & PR_FP_EXC_SW_ENABLE) {
1894 		if (cpu_has_feature(CPU_FTR_SPE)) {
1895 			/*
1896 			 * When the sticky exception bits are set
1897 			 * directly by userspace, it must call prctl
1898 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1899 			 * in the existing prctl settings) or
1900 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1901 			 * the bits being set).  <fenv.h> functions
1902 			 * saving and restoring the whole
1903 			 * floating-point environment need to do so
1904 			 * anyway to restore the prctl settings from
1905 			 * the saved environment.
1906 			 */
1907 #ifdef CONFIG_SPE
1908 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1909 			tsk->thread.fpexc_mode = val &
1910 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1911 #endif
1912 			return 0;
1913 		} else {
1914 			return -EINVAL;
1915 		}
1916 	}
1917 
1918 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1919 	 * __pack_fe01 use do not overlap with bits used for
1920 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1921 	 * on CONFIG_SPE implementations are reserved so writing to
1922 	 * them does not change anything */
1923 	if (val > PR_FP_EXC_PRECISE)
1924 		return -EINVAL;
1925 	tsk->thread.fpexc_mode = __pack_fe01(val);
1926 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1927 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1928 			| tsk->thread.fpexc_mode;
1929 	return 0;
1930 }
1931 
1932 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1933 {
1934 	unsigned int val = 0;
1935 
1936 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
1937 		if (cpu_has_feature(CPU_FTR_SPE)) {
1938 			/*
1939 			 * When the sticky exception bits are set
1940 			 * directly by userspace, it must call prctl
1941 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1942 			 * in the existing prctl settings) or
1943 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1944 			 * the bits being set).  <fenv.h> functions
1945 			 * saving and restoring the whole
1946 			 * floating-point environment need to do so
1947 			 * anyway to restore the prctl settings from
1948 			 * the saved environment.
1949 			 */
1950 #ifdef CONFIG_SPE
1951 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1952 			val = tsk->thread.fpexc_mode;
1953 #endif
1954 		} else
1955 			return -EINVAL;
1956 	} else {
1957 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1958 	}
1959 	return put_user(val, (unsigned int __user *) adr);
1960 }
1961 
1962 int set_endian(struct task_struct *tsk, unsigned int val)
1963 {
1964 	struct pt_regs *regs = tsk->thread.regs;
1965 
1966 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1967 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1968 		return -EINVAL;
1969 
1970 	if (regs == NULL)
1971 		return -EINVAL;
1972 
1973 	if (val == PR_ENDIAN_BIG)
1974 		regs->msr &= ~MSR_LE;
1975 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1976 		regs->msr |= MSR_LE;
1977 	else
1978 		return -EINVAL;
1979 
1980 	return 0;
1981 }
1982 
1983 int get_endian(struct task_struct *tsk, unsigned long adr)
1984 {
1985 	struct pt_regs *regs = tsk->thread.regs;
1986 	unsigned int val;
1987 
1988 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1989 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1990 		return -EINVAL;
1991 
1992 	if (regs == NULL)
1993 		return -EINVAL;
1994 
1995 	if (regs->msr & MSR_LE) {
1996 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1997 			val = PR_ENDIAN_LITTLE;
1998 		else
1999 			val = PR_ENDIAN_PPC_LITTLE;
2000 	} else
2001 		val = PR_ENDIAN_BIG;
2002 
2003 	return put_user(val, (unsigned int __user *)adr);
2004 }
2005 
2006 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2007 {
2008 	tsk->thread.align_ctl = val;
2009 	return 0;
2010 }
2011 
2012 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2013 {
2014 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2015 }
2016 
2017 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2018 				  unsigned long nbytes)
2019 {
2020 	unsigned long stack_page;
2021 	unsigned long cpu = task_cpu(p);
2022 
2023 	stack_page = (unsigned long)hardirq_ctx[cpu];
2024 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2025 		return 1;
2026 
2027 	stack_page = (unsigned long)softirq_ctx[cpu];
2028 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2029 		return 1;
2030 
2031 	return 0;
2032 }
2033 
2034 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2035 					unsigned long nbytes)
2036 {
2037 #ifdef CONFIG_PPC64
2038 	unsigned long stack_page;
2039 	unsigned long cpu = task_cpu(p);
2040 
2041 	if (!paca_ptrs)
2042 		return 0;
2043 
2044 	stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2045 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2046 		return 1;
2047 
2048 # ifdef CONFIG_PPC_BOOK3S_64
2049 	stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2050 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2051 		return 1;
2052 
2053 	stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2054 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2055 		return 1;
2056 # endif
2057 #endif
2058 
2059 	return 0;
2060 }
2061 
2062 
2063 int validate_sp(unsigned long sp, struct task_struct *p,
2064 		       unsigned long nbytes)
2065 {
2066 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2067 
2068 	if (sp < THREAD_SIZE)
2069 		return 0;
2070 
2071 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2072 		return 1;
2073 
2074 	if (valid_irq_stack(sp, p, nbytes))
2075 		return 1;
2076 
2077 	return valid_emergency_stack(sp, p, nbytes);
2078 }
2079 
2080 EXPORT_SYMBOL(validate_sp);
2081 
2082 static unsigned long __get_wchan(struct task_struct *p)
2083 {
2084 	unsigned long ip, sp;
2085 	int count = 0;
2086 
2087 	if (!p || p == current || p->state == TASK_RUNNING)
2088 		return 0;
2089 
2090 	sp = p->thread.ksp;
2091 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2092 		return 0;
2093 
2094 	do {
2095 		sp = *(unsigned long *)sp;
2096 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2097 		    p->state == TASK_RUNNING)
2098 			return 0;
2099 		if (count > 0) {
2100 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2101 			if (!in_sched_functions(ip))
2102 				return ip;
2103 		}
2104 	} while (count++ < 16);
2105 	return 0;
2106 }
2107 
2108 unsigned long get_wchan(struct task_struct *p)
2109 {
2110 	unsigned long ret;
2111 
2112 	if (!try_get_task_stack(p))
2113 		return 0;
2114 
2115 	ret = __get_wchan(p);
2116 
2117 	put_task_stack(p);
2118 
2119 	return ret;
2120 }
2121 
2122 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2123 
2124 void show_stack(struct task_struct *tsk, unsigned long *stack,
2125 		const char *loglvl)
2126 {
2127 	unsigned long sp, ip, lr, newsp;
2128 	int count = 0;
2129 	int firstframe = 1;
2130 	unsigned long ret_addr;
2131 	int ftrace_idx = 0;
2132 
2133 	if (tsk == NULL)
2134 		tsk = current;
2135 
2136 	if (!try_get_task_stack(tsk))
2137 		return;
2138 
2139 	sp = (unsigned long) stack;
2140 	if (sp == 0) {
2141 		if (tsk == current)
2142 			sp = current_stack_frame();
2143 		else
2144 			sp = tsk->thread.ksp;
2145 	}
2146 
2147 	lr = 0;
2148 	printk("%sCall Trace:\n", loglvl);
2149 	do {
2150 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2151 			break;
2152 
2153 		stack = (unsigned long *) sp;
2154 		newsp = stack[0];
2155 		ip = stack[STACK_FRAME_LR_SAVE];
2156 		if (!firstframe || ip != lr) {
2157 			printk("%s["REG"] ["REG"] %pS",
2158 				loglvl, sp, ip, (void *)ip);
2159 			ret_addr = ftrace_graph_ret_addr(current,
2160 						&ftrace_idx, ip, stack);
2161 			if (ret_addr != ip)
2162 				pr_cont(" (%pS)", (void *)ret_addr);
2163 			if (firstframe)
2164 				pr_cont(" (unreliable)");
2165 			pr_cont("\n");
2166 		}
2167 		firstframe = 0;
2168 
2169 		/*
2170 		 * See if this is an exception frame.
2171 		 * We look for the "regshere" marker in the current frame.
2172 		 */
2173 		if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
2174 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2175 			struct pt_regs *regs = (struct pt_regs *)
2176 				(sp + STACK_FRAME_OVERHEAD);
2177 
2178 			lr = regs->link;
2179 			printk("%s--- interrupt: %lx at %pS\n",
2180 			       loglvl, regs->trap, (void *)regs->nip);
2181 			__show_regs(regs);
2182 			printk("%s--- interrupt: %lx\n",
2183 			       loglvl, regs->trap);
2184 
2185 			firstframe = 1;
2186 		}
2187 
2188 		sp = newsp;
2189 	} while (count++ < kstack_depth_to_print);
2190 
2191 	put_task_stack(tsk);
2192 }
2193 
2194 #ifdef CONFIG_PPC64
2195 /* Called with hard IRQs off */
2196 void notrace __ppc64_runlatch_on(void)
2197 {
2198 	struct thread_info *ti = current_thread_info();
2199 
2200 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2201 		/*
2202 		 * Least significant bit (RUN) is the only writable bit of
2203 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2204 		 * earliest ISA where this is the case, but it's convenient.
2205 		 */
2206 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2207 	} else {
2208 		unsigned long ctrl;
2209 
2210 		/*
2211 		 * Some architectures (e.g., Cell) have writable fields other
2212 		 * than RUN, so do the read-modify-write.
2213 		 */
2214 		ctrl = mfspr(SPRN_CTRLF);
2215 		ctrl |= CTRL_RUNLATCH;
2216 		mtspr(SPRN_CTRLT, ctrl);
2217 	}
2218 
2219 	ti->local_flags |= _TLF_RUNLATCH;
2220 }
2221 
2222 /* Called with hard IRQs off */
2223 void notrace __ppc64_runlatch_off(void)
2224 {
2225 	struct thread_info *ti = current_thread_info();
2226 
2227 	ti->local_flags &= ~_TLF_RUNLATCH;
2228 
2229 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2230 		mtspr(SPRN_CTRLT, 0);
2231 	} else {
2232 		unsigned long ctrl;
2233 
2234 		ctrl = mfspr(SPRN_CTRLF);
2235 		ctrl &= ~CTRL_RUNLATCH;
2236 		mtspr(SPRN_CTRLT, ctrl);
2237 	}
2238 }
2239 #endif /* CONFIG_PPC64 */
2240 
2241 unsigned long arch_align_stack(unsigned long sp)
2242 {
2243 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2244 		sp -= get_random_int() & ~PAGE_MASK;
2245 	return sp & ~0xf;
2246 }
2247 
2248 static inline unsigned long brk_rnd(void)
2249 {
2250         unsigned long rnd = 0;
2251 
2252 	/* 8MB for 32bit, 1GB for 64bit */
2253 	if (is_32bit_task())
2254 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2255 	else
2256 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2257 
2258 	return rnd << PAGE_SHIFT;
2259 }
2260 
2261 unsigned long arch_randomize_brk(struct mm_struct *mm)
2262 {
2263 	unsigned long base = mm->brk;
2264 	unsigned long ret;
2265 
2266 #ifdef CONFIG_PPC_BOOK3S_64
2267 	/*
2268 	 * If we are using 1TB segments and we are allowed to randomise
2269 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2270 	 * segment. Otherwise the heap will be in the bottom 1TB
2271 	 * which always uses 256MB segments and this may result in a
2272 	 * performance penalty. We don't need to worry about radix. For
2273 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2274 	 */
2275 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2276 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2277 #endif
2278 
2279 	ret = PAGE_ALIGN(base + brk_rnd());
2280 
2281 	if (ret < mm->brk)
2282 		return mm->brk;
2283 
2284 	return ret;
2285 }
2286 
2287