1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/hw_breakpoint.h> 38 #include <linux/uaccess.h> 39 #include <linux/pkeys.h> 40 #include <linux/seq_buf.h> 41 42 #include <asm/interrupt.h> 43 #include <asm/io.h> 44 #include <asm/processor.h> 45 #include <asm/mmu.h> 46 #include <asm/machdep.h> 47 #include <asm/time.h> 48 #include <asm/runlatch.h> 49 #include <asm/syscalls.h> 50 #include <asm/switch_to.h> 51 #include <asm/tm.h> 52 #include <asm/debug.h> 53 #ifdef CONFIG_PPC64 54 #include <asm/firmware.h> 55 #include <asm/hw_irq.h> 56 #endif 57 #include <asm/code-patching.h> 58 #include <asm/exec.h> 59 #include <asm/livepatch.h> 60 #include <asm/cpu_has_feature.h> 61 #include <asm/asm-prototypes.h> 62 #include <asm/stacktrace.h> 63 #include <asm/hw_breakpoint.h> 64 65 #include <linux/kprobes.h> 66 #include <linux/kdebug.h> 67 68 /* Transactional Memory debug */ 69 #ifdef TM_DEBUG_SW 70 #define TM_DEBUG(x...) printk(KERN_INFO x) 71 #else 72 #define TM_DEBUG(x...) do { } while(0) 73 #endif 74 75 extern unsigned long _get_SP(void); 76 77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 78 /* 79 * Are we running in "Suspend disabled" mode? If so we have to block any 80 * sigreturn that would get us into suspended state, and we also warn in some 81 * other paths that we should never reach with suspend disabled. 82 */ 83 bool tm_suspend_disabled __ro_after_init = false; 84 85 static void check_if_tm_restore_required(struct task_struct *tsk) 86 { 87 /* 88 * If we are saving the current thread's registers, and the 89 * thread is in a transactional state, set the TIF_RESTORE_TM 90 * bit so that we know to restore the registers before 91 * returning to userspace. 92 */ 93 if (tsk == current && tsk->thread.regs && 94 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 95 !test_thread_flag(TIF_RESTORE_TM)) { 96 regs_set_return_msr(&tsk->thread.ckpt_regs, 97 tsk->thread.regs->msr); 98 set_thread_flag(TIF_RESTORE_TM); 99 } 100 } 101 102 #else 103 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 104 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 105 106 bool strict_msr_control; 107 EXPORT_SYMBOL(strict_msr_control); 108 109 static int __init enable_strict_msr_control(char *str) 110 { 111 strict_msr_control = true; 112 pr_info("Enabling strict facility control\n"); 113 114 return 0; 115 } 116 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 117 118 /* notrace because it's called by restore_math */ 119 unsigned long notrace msr_check_and_set(unsigned long bits) 120 { 121 unsigned long oldmsr = mfmsr(); 122 unsigned long newmsr; 123 124 newmsr = oldmsr | bits; 125 126 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 127 newmsr |= MSR_VSX; 128 129 if (oldmsr != newmsr) 130 newmsr = mtmsr_isync_irqsafe(newmsr); 131 132 return newmsr; 133 } 134 EXPORT_SYMBOL_GPL(msr_check_and_set); 135 136 /* notrace because it's called by restore_math */ 137 void notrace __msr_check_and_clear(unsigned long bits) 138 { 139 unsigned long oldmsr = mfmsr(); 140 unsigned long newmsr; 141 142 newmsr = oldmsr & ~bits; 143 144 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 145 newmsr &= ~MSR_VSX; 146 147 if (oldmsr != newmsr) 148 mtmsr_isync_irqsafe(newmsr); 149 } 150 EXPORT_SYMBOL(__msr_check_and_clear); 151 152 #ifdef CONFIG_PPC_FPU 153 static void __giveup_fpu(struct task_struct *tsk) 154 { 155 unsigned long msr; 156 157 save_fpu(tsk); 158 msr = tsk->thread.regs->msr; 159 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 160 if (cpu_has_feature(CPU_FTR_VSX)) 161 msr &= ~MSR_VSX; 162 regs_set_return_msr(tsk->thread.regs, msr); 163 } 164 165 void giveup_fpu(struct task_struct *tsk) 166 { 167 check_if_tm_restore_required(tsk); 168 169 msr_check_and_set(MSR_FP); 170 __giveup_fpu(tsk); 171 msr_check_and_clear(MSR_FP); 172 } 173 EXPORT_SYMBOL(giveup_fpu); 174 175 /* 176 * Make sure the floating-point register state in the 177 * the thread_struct is up to date for task tsk. 178 */ 179 void flush_fp_to_thread(struct task_struct *tsk) 180 { 181 if (tsk->thread.regs) { 182 /* 183 * We need to disable preemption here because if we didn't, 184 * another process could get scheduled after the regs->msr 185 * test but before we have finished saving the FP registers 186 * to the thread_struct. That process could take over the 187 * FPU, and then when we get scheduled again we would store 188 * bogus values for the remaining FP registers. 189 */ 190 preempt_disable(); 191 if (tsk->thread.regs->msr & MSR_FP) { 192 /* 193 * This should only ever be called for current or 194 * for a stopped child process. Since we save away 195 * the FP register state on context switch, 196 * there is something wrong if a stopped child appears 197 * to still have its FP state in the CPU registers. 198 */ 199 BUG_ON(tsk != current); 200 giveup_fpu(tsk); 201 } 202 preempt_enable(); 203 } 204 } 205 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 206 207 void enable_kernel_fp(void) 208 { 209 unsigned long cpumsr; 210 211 WARN_ON(preemptible()); 212 213 cpumsr = msr_check_and_set(MSR_FP); 214 215 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 216 check_if_tm_restore_required(current); 217 /* 218 * If a thread has already been reclaimed then the 219 * checkpointed registers are on the CPU but have definitely 220 * been saved by the reclaim code. Don't need to and *cannot* 221 * giveup as this would save to the 'live' structure not the 222 * checkpointed structure. 223 */ 224 if (!MSR_TM_ACTIVE(cpumsr) && 225 MSR_TM_ACTIVE(current->thread.regs->msr)) 226 return; 227 __giveup_fpu(current); 228 } 229 } 230 EXPORT_SYMBOL(enable_kernel_fp); 231 #else 232 static inline void __giveup_fpu(struct task_struct *tsk) { } 233 #endif /* CONFIG_PPC_FPU */ 234 235 #ifdef CONFIG_ALTIVEC 236 static void __giveup_altivec(struct task_struct *tsk) 237 { 238 unsigned long msr; 239 240 save_altivec(tsk); 241 msr = tsk->thread.regs->msr; 242 msr &= ~MSR_VEC; 243 if (cpu_has_feature(CPU_FTR_VSX)) 244 msr &= ~MSR_VSX; 245 regs_set_return_msr(tsk->thread.regs, msr); 246 } 247 248 void giveup_altivec(struct task_struct *tsk) 249 { 250 check_if_tm_restore_required(tsk); 251 252 msr_check_and_set(MSR_VEC); 253 __giveup_altivec(tsk); 254 msr_check_and_clear(MSR_VEC); 255 } 256 EXPORT_SYMBOL(giveup_altivec); 257 258 void enable_kernel_altivec(void) 259 { 260 unsigned long cpumsr; 261 262 WARN_ON(preemptible()); 263 264 cpumsr = msr_check_and_set(MSR_VEC); 265 266 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 267 check_if_tm_restore_required(current); 268 /* 269 * If a thread has already been reclaimed then the 270 * checkpointed registers are on the CPU but have definitely 271 * been saved by the reclaim code. Don't need to and *cannot* 272 * giveup as this would save to the 'live' structure not the 273 * checkpointed structure. 274 */ 275 if (!MSR_TM_ACTIVE(cpumsr) && 276 MSR_TM_ACTIVE(current->thread.regs->msr)) 277 return; 278 __giveup_altivec(current); 279 } 280 } 281 EXPORT_SYMBOL(enable_kernel_altivec); 282 283 /* 284 * Make sure the VMX/Altivec register state in the 285 * the thread_struct is up to date for task tsk. 286 */ 287 void flush_altivec_to_thread(struct task_struct *tsk) 288 { 289 if (tsk->thread.regs) { 290 preempt_disable(); 291 if (tsk->thread.regs->msr & MSR_VEC) { 292 BUG_ON(tsk != current); 293 giveup_altivec(tsk); 294 } 295 preempt_enable(); 296 } 297 } 298 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 299 #endif /* CONFIG_ALTIVEC */ 300 301 #ifdef CONFIG_VSX 302 static void __giveup_vsx(struct task_struct *tsk) 303 { 304 unsigned long msr = tsk->thread.regs->msr; 305 306 /* 307 * We should never be setting MSR_VSX without also setting 308 * MSR_FP and MSR_VEC 309 */ 310 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 311 312 /* __giveup_fpu will clear MSR_VSX */ 313 if (msr & MSR_FP) 314 __giveup_fpu(tsk); 315 if (msr & MSR_VEC) 316 __giveup_altivec(tsk); 317 } 318 319 static void giveup_vsx(struct task_struct *tsk) 320 { 321 check_if_tm_restore_required(tsk); 322 323 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 324 __giveup_vsx(tsk); 325 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 326 } 327 328 void enable_kernel_vsx(void) 329 { 330 unsigned long cpumsr; 331 332 WARN_ON(preemptible()); 333 334 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 335 336 if (current->thread.regs && 337 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 338 check_if_tm_restore_required(current); 339 /* 340 * If a thread has already been reclaimed then the 341 * checkpointed registers are on the CPU but have definitely 342 * been saved by the reclaim code. Don't need to and *cannot* 343 * giveup as this would save to the 'live' structure not the 344 * checkpointed structure. 345 */ 346 if (!MSR_TM_ACTIVE(cpumsr) && 347 MSR_TM_ACTIVE(current->thread.regs->msr)) 348 return; 349 __giveup_vsx(current); 350 } 351 } 352 EXPORT_SYMBOL(enable_kernel_vsx); 353 354 void flush_vsx_to_thread(struct task_struct *tsk) 355 { 356 if (tsk->thread.regs) { 357 preempt_disable(); 358 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 359 BUG_ON(tsk != current); 360 giveup_vsx(tsk); 361 } 362 preempt_enable(); 363 } 364 } 365 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 366 #endif /* CONFIG_VSX */ 367 368 #ifdef CONFIG_SPE 369 void giveup_spe(struct task_struct *tsk) 370 { 371 check_if_tm_restore_required(tsk); 372 373 msr_check_and_set(MSR_SPE); 374 __giveup_spe(tsk); 375 msr_check_and_clear(MSR_SPE); 376 } 377 EXPORT_SYMBOL(giveup_spe); 378 379 void enable_kernel_spe(void) 380 { 381 WARN_ON(preemptible()); 382 383 msr_check_and_set(MSR_SPE); 384 385 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 386 check_if_tm_restore_required(current); 387 __giveup_spe(current); 388 } 389 } 390 EXPORT_SYMBOL(enable_kernel_spe); 391 392 void flush_spe_to_thread(struct task_struct *tsk) 393 { 394 if (tsk->thread.regs) { 395 preempt_disable(); 396 if (tsk->thread.regs->msr & MSR_SPE) { 397 BUG_ON(tsk != current); 398 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 399 giveup_spe(tsk); 400 } 401 preempt_enable(); 402 } 403 } 404 #endif /* CONFIG_SPE */ 405 406 static unsigned long msr_all_available; 407 408 static int __init init_msr_all_available(void) 409 { 410 if (IS_ENABLED(CONFIG_PPC_FPU)) 411 msr_all_available |= MSR_FP; 412 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 413 msr_all_available |= MSR_VEC; 414 if (cpu_has_feature(CPU_FTR_VSX)) 415 msr_all_available |= MSR_VSX; 416 if (cpu_has_feature(CPU_FTR_SPE)) 417 msr_all_available |= MSR_SPE; 418 419 return 0; 420 } 421 early_initcall(init_msr_all_available); 422 423 void giveup_all(struct task_struct *tsk) 424 { 425 unsigned long usermsr; 426 427 if (!tsk->thread.regs) 428 return; 429 430 check_if_tm_restore_required(tsk); 431 432 usermsr = tsk->thread.regs->msr; 433 434 if ((usermsr & msr_all_available) == 0) 435 return; 436 437 msr_check_and_set(msr_all_available); 438 439 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 440 441 if (usermsr & MSR_FP) 442 __giveup_fpu(tsk); 443 if (usermsr & MSR_VEC) 444 __giveup_altivec(tsk); 445 if (usermsr & MSR_SPE) 446 __giveup_spe(tsk); 447 448 msr_check_and_clear(msr_all_available); 449 } 450 EXPORT_SYMBOL(giveup_all); 451 452 #ifdef CONFIG_PPC_BOOK3S_64 453 #ifdef CONFIG_PPC_FPU 454 static bool should_restore_fp(void) 455 { 456 if (current->thread.load_fp) { 457 current->thread.load_fp++; 458 return true; 459 } 460 return false; 461 } 462 463 static void do_restore_fp(void) 464 { 465 load_fp_state(¤t->thread.fp_state); 466 } 467 #else 468 static bool should_restore_fp(void) { return false; } 469 static void do_restore_fp(void) { } 470 #endif /* CONFIG_PPC_FPU */ 471 472 #ifdef CONFIG_ALTIVEC 473 static bool should_restore_altivec(void) 474 { 475 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) { 476 current->thread.load_vec++; 477 return true; 478 } 479 return false; 480 } 481 482 static void do_restore_altivec(void) 483 { 484 load_vr_state(¤t->thread.vr_state); 485 current->thread.used_vr = 1; 486 } 487 #else 488 static bool should_restore_altivec(void) { return false; } 489 static void do_restore_altivec(void) { } 490 #endif /* CONFIG_ALTIVEC */ 491 492 static bool should_restore_vsx(void) 493 { 494 if (cpu_has_feature(CPU_FTR_VSX)) 495 return true; 496 return false; 497 } 498 #ifdef CONFIG_VSX 499 static void do_restore_vsx(void) 500 { 501 current->thread.used_vsr = 1; 502 } 503 #else 504 static void do_restore_vsx(void) { } 505 #endif /* CONFIG_VSX */ 506 507 /* 508 * The exception exit path calls restore_math() with interrupts hard disabled 509 * but the soft irq state not "reconciled". ftrace code that calls 510 * local_irq_save/restore causes warnings. 511 * 512 * Rather than complicate the exit path, just don't trace restore_math. This 513 * could be done by having ftrace entry code check for this un-reconciled 514 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 515 * temporarily fix it up for the duration of the ftrace call. 516 */ 517 void notrace restore_math(struct pt_regs *regs) 518 { 519 unsigned long msr; 520 unsigned long new_msr = 0; 521 522 msr = regs->msr; 523 524 /* 525 * new_msr tracks the facilities that are to be restored. Only reload 526 * if the bit is not set in the user MSR (if it is set, the registers 527 * are live for the user thread). 528 */ 529 if ((!(msr & MSR_FP)) && should_restore_fp()) 530 new_msr |= MSR_FP; 531 532 if ((!(msr & MSR_VEC)) && should_restore_altivec()) 533 new_msr |= MSR_VEC; 534 535 if ((!(msr & MSR_VSX)) && should_restore_vsx()) { 536 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) 537 new_msr |= MSR_VSX; 538 } 539 540 if (new_msr) { 541 unsigned long fpexc_mode = 0; 542 543 msr_check_and_set(new_msr); 544 545 if (new_msr & MSR_FP) { 546 do_restore_fp(); 547 548 // This also covers VSX, because VSX implies FP 549 fpexc_mode = current->thread.fpexc_mode; 550 } 551 552 if (new_msr & MSR_VEC) 553 do_restore_altivec(); 554 555 if (new_msr & MSR_VSX) 556 do_restore_vsx(); 557 558 msr_check_and_clear(new_msr); 559 560 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode); 561 } 562 } 563 #endif /* CONFIG_PPC_BOOK3S_64 */ 564 565 static void save_all(struct task_struct *tsk) 566 { 567 unsigned long usermsr; 568 569 if (!tsk->thread.regs) 570 return; 571 572 usermsr = tsk->thread.regs->msr; 573 574 if ((usermsr & msr_all_available) == 0) 575 return; 576 577 msr_check_and_set(msr_all_available); 578 579 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 580 581 if (usermsr & MSR_FP) 582 save_fpu(tsk); 583 584 if (usermsr & MSR_VEC) 585 save_altivec(tsk); 586 587 if (usermsr & MSR_SPE) 588 __giveup_spe(tsk); 589 590 msr_check_and_clear(msr_all_available); 591 } 592 593 void flush_all_to_thread(struct task_struct *tsk) 594 { 595 if (tsk->thread.regs) { 596 preempt_disable(); 597 BUG_ON(tsk != current); 598 #ifdef CONFIG_SPE 599 if (tsk->thread.regs->msr & MSR_SPE) 600 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 601 #endif 602 save_all(tsk); 603 604 preempt_enable(); 605 } 606 } 607 EXPORT_SYMBOL(flush_all_to_thread); 608 609 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 610 void do_send_trap(struct pt_regs *regs, unsigned long address, 611 unsigned long error_code, int breakpt) 612 { 613 current->thread.trap_nr = TRAP_HWBKPT; 614 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 615 11, SIGSEGV) == NOTIFY_STOP) 616 return; 617 618 /* Deliver the signal to userspace */ 619 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 620 (void __user *)address); 621 } 622 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 623 624 static void do_break_handler(struct pt_regs *regs) 625 { 626 struct arch_hw_breakpoint null_brk = {0}; 627 struct arch_hw_breakpoint *info; 628 ppc_inst_t instr = ppc_inst(0); 629 int type = 0; 630 int size = 0; 631 unsigned long ea; 632 int i; 633 634 /* 635 * If underneath hw supports only one watchpoint, we know it 636 * caused exception. 8xx also falls into this category. 637 */ 638 if (nr_wp_slots() == 1) { 639 __set_breakpoint(0, &null_brk); 640 current->thread.hw_brk[0] = null_brk; 641 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED; 642 return; 643 } 644 645 /* Otherwise find out which DAWR caused exception and disable it. */ 646 wp_get_instr_detail(regs, &instr, &type, &size, &ea); 647 648 for (i = 0; i < nr_wp_slots(); i++) { 649 info = ¤t->thread.hw_brk[i]; 650 if (!info->address) 651 continue; 652 653 if (wp_check_constraints(regs, instr, ea, type, size, info)) { 654 __set_breakpoint(i, &null_brk); 655 current->thread.hw_brk[i] = null_brk; 656 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED; 657 } 658 } 659 } 660 661 DEFINE_INTERRUPT_HANDLER(do_break) 662 { 663 current->thread.trap_nr = TRAP_HWBKPT; 664 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr, 665 11, SIGSEGV) == NOTIFY_STOP) 666 return; 667 668 if (debugger_break_match(regs)) 669 return; 670 671 /* 672 * We reach here only when watchpoint exception is generated by ptrace 673 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set, 674 * watchpoint is already handled by hw_breakpoint_handler() so we don't 675 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set, 676 * we need to manually handle the watchpoint here. 677 */ 678 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT)) 679 do_break_handler(regs); 680 681 /* Deliver the signal to userspace */ 682 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar); 683 } 684 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 685 686 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]); 687 688 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 689 /* 690 * Set the debug registers back to their default "safe" values. 691 */ 692 static void set_debug_reg_defaults(struct thread_struct *thread) 693 { 694 thread->debug.iac1 = thread->debug.iac2 = 0; 695 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 696 thread->debug.iac3 = thread->debug.iac4 = 0; 697 #endif 698 thread->debug.dac1 = thread->debug.dac2 = 0; 699 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 700 thread->debug.dvc1 = thread->debug.dvc2 = 0; 701 #endif 702 thread->debug.dbcr0 = 0; 703 #ifdef CONFIG_BOOKE 704 /* 705 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 706 */ 707 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 708 DBCR1_IAC3US | DBCR1_IAC4US; 709 /* 710 * Force Data Address Compare User/Supervisor bits to be User-only 711 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 712 */ 713 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 714 #else 715 thread->debug.dbcr1 = 0; 716 #endif 717 } 718 719 static void prime_debug_regs(struct debug_reg *debug) 720 { 721 /* 722 * We could have inherited MSR_DE from userspace, since 723 * it doesn't get cleared on exception entry. Make sure 724 * MSR_DE is clear before we enable any debug events. 725 */ 726 mtmsr(mfmsr() & ~MSR_DE); 727 728 mtspr(SPRN_IAC1, debug->iac1); 729 mtspr(SPRN_IAC2, debug->iac2); 730 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 731 mtspr(SPRN_IAC3, debug->iac3); 732 mtspr(SPRN_IAC4, debug->iac4); 733 #endif 734 mtspr(SPRN_DAC1, debug->dac1); 735 mtspr(SPRN_DAC2, debug->dac2); 736 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 737 mtspr(SPRN_DVC1, debug->dvc1); 738 mtspr(SPRN_DVC2, debug->dvc2); 739 #endif 740 mtspr(SPRN_DBCR0, debug->dbcr0); 741 mtspr(SPRN_DBCR1, debug->dbcr1); 742 #ifdef CONFIG_BOOKE 743 mtspr(SPRN_DBCR2, debug->dbcr2); 744 #endif 745 } 746 /* 747 * Unless neither the old or new thread are making use of the 748 * debug registers, set the debug registers from the values 749 * stored in the new thread. 750 */ 751 void switch_booke_debug_regs(struct debug_reg *new_debug) 752 { 753 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 754 || (new_debug->dbcr0 & DBCR0_IDM)) 755 prime_debug_regs(new_debug); 756 } 757 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 758 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 759 #ifndef CONFIG_HAVE_HW_BREAKPOINT 760 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk) 761 { 762 preempt_disable(); 763 __set_breakpoint(i, brk); 764 preempt_enable(); 765 } 766 767 static void set_debug_reg_defaults(struct thread_struct *thread) 768 { 769 int i; 770 struct arch_hw_breakpoint null_brk = {0}; 771 772 for (i = 0; i < nr_wp_slots(); i++) { 773 thread->hw_brk[i] = null_brk; 774 if (ppc_breakpoint_available()) 775 set_breakpoint(i, &thread->hw_brk[i]); 776 } 777 } 778 779 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 780 struct arch_hw_breakpoint *b) 781 { 782 if (a->address != b->address) 783 return false; 784 if (a->type != b->type) 785 return false; 786 if (a->len != b->len) 787 return false; 788 /* no need to check hw_len. it's calculated from address and len */ 789 return true; 790 } 791 792 static void switch_hw_breakpoint(struct task_struct *new) 793 { 794 int i; 795 796 for (i = 0; i < nr_wp_slots(); i++) { 797 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]), 798 &new->thread.hw_brk[i]))) 799 continue; 800 801 __set_breakpoint(i, &new->thread.hw_brk[i]); 802 } 803 } 804 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 805 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 806 807 static inline int set_dabr(struct arch_hw_breakpoint *brk) 808 { 809 unsigned long dabr, dabrx; 810 811 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 812 dabrx = ((brk->type >> 3) & 0x7); 813 814 if (ppc_md.set_dabr) 815 return ppc_md.set_dabr(dabr, dabrx); 816 817 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) { 818 mtspr(SPRN_DAC1, dabr); 819 if (IS_ENABLED(CONFIG_PPC_47x)) 820 isync(); 821 return 0; 822 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { 823 mtspr(SPRN_DABR, dabr); 824 if (cpu_has_feature(CPU_FTR_DABRX)) 825 mtspr(SPRN_DABRX, dabrx); 826 return 0; 827 } else { 828 return -EINVAL; 829 } 830 } 831 832 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk) 833 { 834 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW | 835 LCTRL1_CRWF_RW; 836 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN; 837 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE); 838 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE); 839 840 if (start_addr == 0) 841 lctrl2 |= LCTRL2_LW0LA_F; 842 else if (end_addr == 0) 843 lctrl2 |= LCTRL2_LW0LA_E; 844 else 845 lctrl2 |= LCTRL2_LW0LA_EandF; 846 847 mtspr(SPRN_LCTRL2, 0); 848 849 if ((brk->type & HW_BRK_TYPE_RDWR) == 0) 850 return 0; 851 852 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 853 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO; 854 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 855 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO; 856 857 mtspr(SPRN_CMPE, start_addr - 1); 858 mtspr(SPRN_CMPF, end_addr); 859 mtspr(SPRN_LCTRL1, lctrl1); 860 mtspr(SPRN_LCTRL2, lctrl2); 861 862 return 0; 863 } 864 865 static void set_hw_breakpoint(int nr, struct arch_hw_breakpoint *brk) 866 { 867 if (dawr_enabled()) 868 // Power8 or later 869 set_dawr(nr, brk); 870 else if (IS_ENABLED(CONFIG_PPC_8xx)) 871 set_breakpoint_8xx(brk); 872 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 873 // Power7 or earlier 874 set_dabr(brk); 875 else 876 // Shouldn't happen due to higher level checks 877 WARN_ON_ONCE(1); 878 } 879 880 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk) 881 { 882 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk)); 883 set_hw_breakpoint(nr, brk); 884 } 885 886 /* Check if we have DAWR or DABR hardware */ 887 bool ppc_breakpoint_available(void) 888 { 889 if (dawr_enabled()) 890 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 891 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 892 return false; /* POWER9 with DAWR disabled */ 893 /* DABR: Everything but POWER8 and POWER9 */ 894 return true; 895 } 896 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 897 898 /* Disable the breakpoint in hardware without touching current_brk[] */ 899 void suspend_breakpoints(void) 900 { 901 struct arch_hw_breakpoint brk = {0}; 902 int i; 903 904 if (!ppc_breakpoint_available()) 905 return; 906 907 for (i = 0; i < nr_wp_slots(); i++) 908 set_hw_breakpoint(i, &brk); 909 } 910 911 /* 912 * Re-enable breakpoints suspended by suspend_breakpoints() in hardware 913 * from current_brk[] 914 */ 915 void restore_breakpoints(void) 916 { 917 int i; 918 919 if (!ppc_breakpoint_available()) 920 return; 921 922 for (i = 0; i < nr_wp_slots(); i++) 923 set_hw_breakpoint(i, this_cpu_ptr(¤t_brk[i])); 924 } 925 926 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 927 928 static inline bool tm_enabled(struct task_struct *tsk) 929 { 930 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 931 } 932 933 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 934 { 935 /* 936 * Use the current MSR TM suspended bit to track if we have 937 * checkpointed state outstanding. 938 * On signal delivery, we'd normally reclaim the checkpointed 939 * state to obtain stack pointer (see:get_tm_stackpointer()). 940 * This will then directly return to userspace without going 941 * through __switch_to(). However, if the stack frame is bad, 942 * we need to exit this thread which calls __switch_to() which 943 * will again attempt to reclaim the already saved tm state. 944 * Hence we need to check that we've not already reclaimed 945 * this state. 946 * We do this using the current MSR, rather tracking it in 947 * some specific thread_struct bit, as it has the additional 948 * benefit of checking for a potential TM bad thing exception. 949 */ 950 if (!MSR_TM_SUSPENDED(mfmsr())) 951 return; 952 953 giveup_all(container_of(thr, struct task_struct, thread)); 954 955 tm_reclaim(thr, cause); 956 957 /* 958 * If we are in a transaction and FP is off then we can't have 959 * used FP inside that transaction. Hence the checkpointed 960 * state is the same as the live state. We need to copy the 961 * live state to the checkpointed state so that when the 962 * transaction is restored, the checkpointed state is correct 963 * and the aborted transaction sees the correct state. We use 964 * ckpt_regs.msr here as that's what tm_reclaim will use to 965 * determine if it's going to write the checkpointed state or 966 * not. So either this will write the checkpointed registers, 967 * or reclaim will. Similarly for VMX. 968 */ 969 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 970 memcpy(&thr->ckfp_state, &thr->fp_state, 971 sizeof(struct thread_fp_state)); 972 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 973 memcpy(&thr->ckvr_state, &thr->vr_state, 974 sizeof(struct thread_vr_state)); 975 } 976 977 void tm_reclaim_current(uint8_t cause) 978 { 979 tm_enable(); 980 tm_reclaim_thread(¤t->thread, cause); 981 } 982 983 static inline void tm_reclaim_task(struct task_struct *tsk) 984 { 985 /* We have to work out if we're switching from/to a task that's in the 986 * middle of a transaction. 987 * 988 * In switching we need to maintain a 2nd register state as 989 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 990 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 991 * ckvr_state 992 * 993 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 994 */ 995 struct thread_struct *thr = &tsk->thread; 996 997 if (!thr->regs) 998 return; 999 1000 if (!MSR_TM_ACTIVE(thr->regs->msr)) 1001 goto out_and_saveregs; 1002 1003 WARN_ON(tm_suspend_disabled); 1004 1005 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 1006 "ccr=%lx, msr=%lx, trap=%lx)\n", 1007 tsk->pid, thr->regs->nip, 1008 thr->regs->ccr, thr->regs->msr, 1009 thr->regs->trap); 1010 1011 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 1012 1013 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 1014 tsk->pid); 1015 1016 out_and_saveregs: 1017 /* Always save the regs here, even if a transaction's not active. 1018 * This context-switches a thread's TM info SPRs. We do it here to 1019 * be consistent with the restore path (in recheckpoint) which 1020 * cannot happen later in _switch(). 1021 */ 1022 tm_save_sprs(thr); 1023 } 1024 1025 extern void __tm_recheckpoint(struct thread_struct *thread); 1026 1027 void tm_recheckpoint(struct thread_struct *thread) 1028 { 1029 unsigned long flags; 1030 1031 if (!(thread->regs->msr & MSR_TM)) 1032 return; 1033 1034 /* We really can't be interrupted here as the TEXASR registers can't 1035 * change and later in the trecheckpoint code, we have a userspace R1. 1036 * So let's hard disable over this region. 1037 */ 1038 local_irq_save(flags); 1039 hard_irq_disable(); 1040 1041 /* The TM SPRs are restored here, so that TEXASR.FS can be set 1042 * before the trecheckpoint and no explosion occurs. 1043 */ 1044 tm_restore_sprs(thread); 1045 1046 __tm_recheckpoint(thread); 1047 1048 local_irq_restore(flags); 1049 } 1050 1051 static inline void tm_recheckpoint_new_task(struct task_struct *new) 1052 { 1053 if (!cpu_has_feature(CPU_FTR_TM)) 1054 return; 1055 1056 /* Recheckpoint the registers of the thread we're about to switch to. 1057 * 1058 * If the task was using FP, we non-lazily reload both the original and 1059 * the speculative FP register states. This is because the kernel 1060 * doesn't see if/when a TM rollback occurs, so if we take an FP 1061 * unavailable later, we are unable to determine which set of FP regs 1062 * need to be restored. 1063 */ 1064 if (!tm_enabled(new)) 1065 return; 1066 1067 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 1068 tm_restore_sprs(&new->thread); 1069 return; 1070 } 1071 /* Recheckpoint to restore original checkpointed register state. */ 1072 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1073 new->pid, new->thread.regs->msr); 1074 1075 tm_recheckpoint(&new->thread); 1076 1077 /* 1078 * The checkpointed state has been restored but the live state has 1079 * not, ensure all the math functionality is turned off to trigger 1080 * restore_math() to reload. 1081 */ 1082 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1083 1084 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1085 "(kernel msr 0x%lx)\n", 1086 new->pid, mfmsr()); 1087 } 1088 1089 static inline void __switch_to_tm(struct task_struct *prev, 1090 struct task_struct *new) 1091 { 1092 if (cpu_has_feature(CPU_FTR_TM)) { 1093 if (tm_enabled(prev) || tm_enabled(new)) 1094 tm_enable(); 1095 1096 if (tm_enabled(prev)) { 1097 prev->thread.load_tm++; 1098 tm_reclaim_task(prev); 1099 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1100 prev->thread.regs->msr &= ~MSR_TM; 1101 } 1102 1103 tm_recheckpoint_new_task(new); 1104 } 1105 } 1106 1107 /* 1108 * This is called if we are on the way out to userspace and the 1109 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1110 * FP and/or vector state and does so if necessary. 1111 * If userspace is inside a transaction (whether active or 1112 * suspended) and FP/VMX/VSX instructions have ever been enabled 1113 * inside that transaction, then we have to keep them enabled 1114 * and keep the FP/VMX/VSX state loaded while ever the transaction 1115 * continues. The reason is that if we didn't, and subsequently 1116 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1117 * we don't know whether it's the same transaction, and thus we 1118 * don't know which of the checkpointed state and the transactional 1119 * state to use. 1120 */ 1121 void restore_tm_state(struct pt_regs *regs) 1122 { 1123 unsigned long msr_diff; 1124 1125 /* 1126 * This is the only moment we should clear TIF_RESTORE_TM as 1127 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1128 * again, anything else could lead to an incorrect ckpt_msr being 1129 * saved and therefore incorrect signal contexts. 1130 */ 1131 clear_thread_flag(TIF_RESTORE_TM); 1132 if (!MSR_TM_ACTIVE(regs->msr)) 1133 return; 1134 1135 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1136 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1137 1138 /* Ensure that restore_math() will restore */ 1139 if (msr_diff & MSR_FP) 1140 current->thread.load_fp = 1; 1141 #ifdef CONFIG_ALTIVEC 1142 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1143 current->thread.load_vec = 1; 1144 #endif 1145 restore_math(regs); 1146 1147 regs_set_return_msr(regs, regs->msr | msr_diff); 1148 } 1149 1150 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */ 1151 #define tm_recheckpoint_new_task(new) 1152 #define __switch_to_tm(prev, new) 1153 void tm_reclaim_current(uint8_t cause) {} 1154 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1155 1156 static inline void save_sprs(struct thread_struct *t) 1157 { 1158 #ifdef CONFIG_ALTIVEC 1159 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1160 t->vrsave = mfspr(SPRN_VRSAVE); 1161 #endif 1162 #ifdef CONFIG_SPE 1163 if (cpu_has_feature(CPU_FTR_SPE)) 1164 t->spefscr = mfspr(SPRN_SPEFSCR); 1165 #endif 1166 #ifdef CONFIG_PPC_BOOK3S_64 1167 if (cpu_has_feature(CPU_FTR_DSCR)) 1168 t->dscr = mfspr(SPRN_DSCR); 1169 1170 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1171 t->bescr = mfspr(SPRN_BESCR); 1172 t->ebbhr = mfspr(SPRN_EBBHR); 1173 t->ebbrr = mfspr(SPRN_EBBRR); 1174 1175 t->fscr = mfspr(SPRN_FSCR); 1176 1177 /* 1178 * Note that the TAR is not available for use in the kernel. 1179 * (To provide this, the TAR should be backed up/restored on 1180 * exception entry/exit instead, and be in pt_regs. FIXME, 1181 * this should be in pt_regs anyway (for debug).) 1182 */ 1183 t->tar = mfspr(SPRN_TAR); 1184 } 1185 #endif 1186 } 1187 1188 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1189 void kvmppc_save_user_regs(void) 1190 { 1191 unsigned long usermsr; 1192 1193 if (!current->thread.regs) 1194 return; 1195 1196 usermsr = current->thread.regs->msr; 1197 1198 if (usermsr & MSR_FP) 1199 save_fpu(current); 1200 1201 if (usermsr & MSR_VEC) 1202 save_altivec(current); 1203 1204 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1205 if (usermsr & MSR_TM) { 1206 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 1207 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 1208 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 1209 current->thread.regs->msr &= ~MSR_TM; 1210 } 1211 #endif 1212 } 1213 EXPORT_SYMBOL_GPL(kvmppc_save_user_regs); 1214 1215 void kvmppc_save_current_sprs(void) 1216 { 1217 save_sprs(¤t->thread); 1218 } 1219 EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs); 1220 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1221 1222 static inline void restore_sprs(struct thread_struct *old_thread, 1223 struct thread_struct *new_thread) 1224 { 1225 #ifdef CONFIG_ALTIVEC 1226 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1227 old_thread->vrsave != new_thread->vrsave) 1228 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1229 #endif 1230 #ifdef CONFIG_SPE 1231 if (cpu_has_feature(CPU_FTR_SPE) && 1232 old_thread->spefscr != new_thread->spefscr) 1233 mtspr(SPRN_SPEFSCR, new_thread->spefscr); 1234 #endif 1235 #ifdef CONFIG_PPC_BOOK3S_64 1236 if (cpu_has_feature(CPU_FTR_DSCR)) { 1237 u64 dscr = get_paca()->dscr_default; 1238 if (new_thread->dscr_inherit) 1239 dscr = new_thread->dscr; 1240 1241 if (old_thread->dscr != dscr) 1242 mtspr(SPRN_DSCR, dscr); 1243 } 1244 1245 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1246 if (old_thread->bescr != new_thread->bescr) 1247 mtspr(SPRN_BESCR, new_thread->bescr); 1248 if (old_thread->ebbhr != new_thread->ebbhr) 1249 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1250 if (old_thread->ebbrr != new_thread->ebbrr) 1251 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1252 1253 if (old_thread->fscr != new_thread->fscr) 1254 mtspr(SPRN_FSCR, new_thread->fscr); 1255 1256 if (old_thread->tar != new_thread->tar) 1257 mtspr(SPRN_TAR, new_thread->tar); 1258 } 1259 1260 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1261 old_thread->tidr != new_thread->tidr) 1262 mtspr(SPRN_TIDR, new_thread->tidr); 1263 #endif 1264 1265 } 1266 1267 struct task_struct *__switch_to(struct task_struct *prev, 1268 struct task_struct *new) 1269 { 1270 struct thread_struct *new_thread, *old_thread; 1271 struct task_struct *last; 1272 #ifdef CONFIG_PPC_64S_HASH_MMU 1273 struct ppc64_tlb_batch *batch; 1274 #endif 1275 1276 new_thread = &new->thread; 1277 old_thread = ¤t->thread; 1278 1279 WARN_ON(!irqs_disabled()); 1280 1281 #ifdef CONFIG_PPC_64S_HASH_MMU 1282 batch = this_cpu_ptr(&ppc64_tlb_batch); 1283 if (batch->active) { 1284 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1285 if (batch->index) 1286 __flush_tlb_pending(batch); 1287 batch->active = 0; 1288 } 1289 1290 /* 1291 * On POWER9 the copy-paste buffer can only paste into 1292 * foreign real addresses, so unprivileged processes can not 1293 * see the data or use it in any way unless they have 1294 * foreign real mappings. If the new process has the foreign 1295 * real address mappings, we must issue a cp_abort to clear 1296 * any state and prevent snooping, corruption or a covert 1297 * channel. ISA v3.1 supports paste into local memory. 1298 */ 1299 if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) || 1300 atomic_read(&new->mm->context.vas_windows))) 1301 asm volatile(PPC_CP_ABORT); 1302 #endif /* CONFIG_PPC_BOOK3S_64 */ 1303 1304 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1305 switch_booke_debug_regs(&new->thread.debug); 1306 #else 1307 /* 1308 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1309 * schedule DABR 1310 */ 1311 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1312 switch_hw_breakpoint(new); 1313 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1314 #endif 1315 1316 /* 1317 * We need to save SPRs before treclaim/trecheckpoint as these will 1318 * change a number of them. 1319 */ 1320 save_sprs(&prev->thread); 1321 1322 /* Save FPU, Altivec, VSX and SPE state */ 1323 giveup_all(prev); 1324 1325 __switch_to_tm(prev, new); 1326 1327 if (!radix_enabled()) { 1328 /* 1329 * We can't take a PMU exception inside _switch() since there 1330 * is a window where the kernel stack SLB and the kernel stack 1331 * are out of sync. Hard disable here. 1332 */ 1333 hard_irq_disable(); 1334 } 1335 1336 /* 1337 * Call restore_sprs() and set_return_regs_changed() before calling 1338 * _switch(). If we move it after _switch() then we miss out on calling 1339 * it for new tasks. The reason for this is we manually create a stack 1340 * frame for new tasks that directly returns through ret_from_fork() or 1341 * ret_from_kernel_thread(). See copy_thread() for details. 1342 */ 1343 restore_sprs(old_thread, new_thread); 1344 1345 set_return_regs_changed(); /* _switch changes stack (and regs) */ 1346 1347 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64)) 1348 kuap_assert_locked(); 1349 1350 last = _switch(old_thread, new_thread); 1351 1352 /* 1353 * Nothing after _switch will be run for newly created tasks, 1354 * because they switch directly to ret_from_fork/ret_from_kernel_thread 1355 * etc. Code added here should have a comment explaining why that is 1356 * okay. 1357 */ 1358 1359 #ifdef CONFIG_PPC_BOOK3S_64 1360 #ifdef CONFIG_PPC_64S_HASH_MMU 1361 /* 1362 * This applies to a process that was context switched while inside 1363 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was 1364 * deactivated above, before _switch(). This will never be the case 1365 * for new tasks. 1366 */ 1367 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1368 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1369 batch = this_cpu_ptr(&ppc64_tlb_batch); 1370 batch->active = 1; 1371 } 1372 #endif 1373 1374 /* 1375 * Math facilities are masked out of the child MSR in copy_thread. 1376 * A new task does not need to restore_math because it will 1377 * demand fault them. 1378 */ 1379 if (current->thread.regs) 1380 restore_math(current->thread.regs); 1381 #endif /* CONFIG_PPC_BOOK3S_64 */ 1382 1383 return last; 1384 } 1385 1386 #define NR_INSN_TO_PRINT 16 1387 1388 static void show_instructions(struct pt_regs *regs) 1389 { 1390 int i; 1391 unsigned long nip = regs->nip; 1392 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1393 1394 printk("Code: "); 1395 1396 /* 1397 * If we were executing with the MMU off for instructions, adjust pc 1398 * rather than printing XXXXXXXX. 1399 */ 1400 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) { 1401 pc = (unsigned long)phys_to_virt(pc); 1402 nip = (unsigned long)phys_to_virt(regs->nip); 1403 } 1404 1405 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1406 int instr; 1407 1408 if (get_kernel_nofault(instr, (const void *)pc)) { 1409 pr_cont("XXXXXXXX "); 1410 } else { 1411 if (nip == pc) 1412 pr_cont("<%08x> ", instr); 1413 else 1414 pr_cont("%08x ", instr); 1415 } 1416 1417 pc += sizeof(int); 1418 } 1419 1420 pr_cont("\n"); 1421 } 1422 1423 void show_user_instructions(struct pt_regs *regs) 1424 { 1425 unsigned long pc; 1426 int n = NR_INSN_TO_PRINT; 1427 struct seq_buf s; 1428 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1429 1430 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1431 1432 seq_buf_init(&s, buf, sizeof(buf)); 1433 1434 while (n) { 1435 int i; 1436 1437 seq_buf_clear(&s); 1438 1439 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1440 int instr; 1441 1442 if (copy_from_user_nofault(&instr, (void __user *)pc, 1443 sizeof(instr))) { 1444 seq_buf_printf(&s, "XXXXXXXX "); 1445 continue; 1446 } 1447 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1448 } 1449 1450 if (!seq_buf_has_overflowed(&s)) 1451 pr_info("%s[%d]: code: %s\n", current->comm, 1452 current->pid, s.buffer); 1453 } 1454 } 1455 1456 struct regbit { 1457 unsigned long bit; 1458 const char *name; 1459 }; 1460 1461 static struct regbit msr_bits[] = { 1462 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1463 {MSR_SF, "SF"}, 1464 {MSR_HV, "HV"}, 1465 #endif 1466 {MSR_VEC, "VEC"}, 1467 {MSR_VSX, "VSX"}, 1468 #ifdef CONFIG_BOOKE 1469 {MSR_CE, "CE"}, 1470 #endif 1471 {MSR_EE, "EE"}, 1472 {MSR_PR, "PR"}, 1473 {MSR_FP, "FP"}, 1474 {MSR_ME, "ME"}, 1475 #ifdef CONFIG_BOOKE 1476 {MSR_DE, "DE"}, 1477 #else 1478 {MSR_SE, "SE"}, 1479 {MSR_BE, "BE"}, 1480 #endif 1481 {MSR_IR, "IR"}, 1482 {MSR_DR, "DR"}, 1483 {MSR_PMM, "PMM"}, 1484 #ifndef CONFIG_BOOKE 1485 {MSR_RI, "RI"}, 1486 {MSR_LE, "LE"}, 1487 #endif 1488 {0, NULL} 1489 }; 1490 1491 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1492 { 1493 const char *s = ""; 1494 1495 for (; bits->bit; ++bits) 1496 if (val & bits->bit) { 1497 pr_cont("%s%s", s, bits->name); 1498 s = sep; 1499 } 1500 } 1501 1502 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1503 static struct regbit msr_tm_bits[] = { 1504 {MSR_TS_T, "T"}, 1505 {MSR_TS_S, "S"}, 1506 {MSR_TM, "E"}, 1507 {0, NULL} 1508 }; 1509 1510 static void print_tm_bits(unsigned long val) 1511 { 1512 /* 1513 * This only prints something if at least one of the TM bit is set. 1514 * Inside the TM[], the output means: 1515 * E: Enabled (bit 32) 1516 * S: Suspended (bit 33) 1517 * T: Transactional (bit 34) 1518 */ 1519 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1520 pr_cont(",TM["); 1521 print_bits(val, msr_tm_bits, ""); 1522 pr_cont("]"); 1523 } 1524 } 1525 #else 1526 static void print_tm_bits(unsigned long val) {} 1527 #endif 1528 1529 static void print_msr_bits(unsigned long val) 1530 { 1531 pr_cont("<"); 1532 print_bits(val, msr_bits, ","); 1533 print_tm_bits(val); 1534 pr_cont(">"); 1535 } 1536 1537 #ifdef CONFIG_PPC64 1538 #define REG "%016lx" 1539 #define REGS_PER_LINE 4 1540 #else 1541 #define REG "%08lx" 1542 #define REGS_PER_LINE 8 1543 #endif 1544 1545 static void __show_regs(struct pt_regs *regs) 1546 { 1547 int i, trap; 1548 1549 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1550 regs->nip, regs->link, regs->ctr); 1551 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1552 regs, regs->trap, print_tainted(), init_utsname()->release); 1553 printk("MSR: "REG" ", regs->msr); 1554 print_msr_bits(regs->msr); 1555 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1556 trap = TRAP(regs); 1557 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR)) 1558 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1559 if (trap == INTERRUPT_MACHINE_CHECK || 1560 trap == INTERRUPT_DATA_STORAGE || 1561 trap == INTERRUPT_ALIGNMENT) { 1562 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE)) 1563 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr); 1564 else 1565 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1566 } 1567 1568 #ifdef CONFIG_PPC64 1569 pr_cont("IRQMASK: %lx ", regs->softe); 1570 #endif 1571 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1572 if (MSR_TM_ACTIVE(regs->msr)) 1573 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1574 #endif 1575 1576 for (i = 0; i < 32; i++) { 1577 if ((i % REGS_PER_LINE) == 0) 1578 pr_cont("\nGPR%02d: ", i); 1579 pr_cont(REG " ", regs->gpr[i]); 1580 } 1581 pr_cont("\n"); 1582 /* 1583 * Lookup NIP late so we have the best change of getting the 1584 * above info out without failing 1585 */ 1586 if (IS_ENABLED(CONFIG_KALLSYMS)) { 1587 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1588 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1589 } 1590 } 1591 1592 void show_regs(struct pt_regs *regs) 1593 { 1594 show_regs_print_info(KERN_DEFAULT); 1595 __show_regs(regs); 1596 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT); 1597 if (!user_mode(regs)) 1598 show_instructions(regs); 1599 } 1600 1601 void flush_thread(void) 1602 { 1603 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1604 flush_ptrace_hw_breakpoint(current); 1605 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1606 set_debug_reg_defaults(¤t->thread); 1607 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1608 } 1609 1610 void arch_setup_new_exec(void) 1611 { 1612 1613 #ifdef CONFIG_PPC_BOOK3S_64 1614 if (!radix_enabled()) 1615 hash__setup_new_exec(); 1616 #endif 1617 /* 1618 * If we exec out of a kernel thread then thread.regs will not be 1619 * set. Do it now. 1620 */ 1621 if (!current->thread.regs) { 1622 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1623 current->thread.regs = regs - 1; 1624 } 1625 1626 #ifdef CONFIG_PPC_MEM_KEYS 1627 current->thread.regs->amr = default_amr; 1628 current->thread.regs->iamr = default_iamr; 1629 #endif 1630 } 1631 1632 #ifdef CONFIG_PPC64 1633 /* 1634 * Assign a TIDR (thread ID) for task @t and set it in the thread 1635 * structure. For now, we only support setting TIDR for 'current' task. 1636 * 1637 * Since the TID value is a truncated form of it PID, it is possible 1638 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1639 * that 2 threads share the same TID and are waiting, one of the following 1640 * cases will happen: 1641 * 1642 * 1. The correct thread is running, the wrong thread is not 1643 * In this situation, the correct thread is woken and proceeds to pass it's 1644 * condition check. 1645 * 1646 * 2. Neither threads are running 1647 * In this situation, neither thread will be woken. When scheduled, the waiting 1648 * threads will execute either a wait, which will return immediately, followed 1649 * by a condition check, which will pass for the correct thread and fail 1650 * for the wrong thread, or they will execute the condition check immediately. 1651 * 1652 * 3. The wrong thread is running, the correct thread is not 1653 * The wrong thread will be woken, but will fail it's condition check and 1654 * re-execute wait. The correct thread, when scheduled, will execute either 1655 * it's condition check (which will pass), or wait, which returns immediately 1656 * when called the first time after the thread is scheduled, followed by it's 1657 * condition check (which will pass). 1658 * 1659 * 4. Both threads are running 1660 * Both threads will be woken. The wrong thread will fail it's condition check 1661 * and execute another wait, while the correct thread will pass it's condition 1662 * check. 1663 * 1664 * @t: the task to set the thread ID for 1665 */ 1666 int set_thread_tidr(struct task_struct *t) 1667 { 1668 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1669 return -EINVAL; 1670 1671 if (t != current) 1672 return -EINVAL; 1673 1674 if (t->thread.tidr) 1675 return 0; 1676 1677 t->thread.tidr = (u16)task_pid_nr(t); 1678 mtspr(SPRN_TIDR, t->thread.tidr); 1679 1680 return 0; 1681 } 1682 EXPORT_SYMBOL_GPL(set_thread_tidr); 1683 1684 #endif /* CONFIG_PPC64 */ 1685 1686 /* 1687 * this gets called so that we can store coprocessor state into memory and 1688 * copy the current task into the new thread. 1689 */ 1690 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1691 { 1692 flush_all_to_thread(src); 1693 /* 1694 * Flush TM state out so we can copy it. __switch_to_tm() does this 1695 * flush but it removes the checkpointed state from the current CPU and 1696 * transitions the CPU out of TM mode. Hence we need to call 1697 * tm_recheckpoint_new_task() (on the same task) to restore the 1698 * checkpointed state back and the TM mode. 1699 * 1700 * Can't pass dst because it isn't ready. Doesn't matter, passing 1701 * dst is only important for __switch_to() 1702 */ 1703 __switch_to_tm(src, src); 1704 1705 *dst = *src; 1706 1707 clear_task_ebb(dst); 1708 1709 return 0; 1710 } 1711 1712 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1713 { 1714 #ifdef CONFIG_PPC_64S_HASH_MMU 1715 unsigned long sp_vsid; 1716 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1717 1718 if (radix_enabled()) 1719 return; 1720 1721 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1722 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1723 << SLB_VSID_SHIFT_1T; 1724 else 1725 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1726 << SLB_VSID_SHIFT; 1727 sp_vsid |= SLB_VSID_KERNEL | llp; 1728 p->thread.ksp_vsid = sp_vsid; 1729 #endif 1730 } 1731 1732 /* 1733 * Copy a thread.. 1734 */ 1735 1736 /* 1737 * Copy architecture-specific thread state 1738 */ 1739 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 1740 { 1741 struct pt_regs *kregs; /* Switch frame regs */ 1742 extern void ret_from_fork(void); 1743 extern void ret_from_fork_scv(void); 1744 extern void ret_from_kernel_user_thread(void); 1745 extern void start_kernel_thread(void); 1746 void (*f)(void); 1747 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1748 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1749 int i; 1750 #endif 1751 1752 klp_init_thread_info(p); 1753 1754 if (unlikely(p->flags & PF_KTHREAD)) { 1755 /* kernel thread */ 1756 1757 /* Create initial minimum stack frame. */ 1758 sp -= STACK_FRAME_MIN_SIZE; 1759 ((unsigned long *)sp)[0] = 0; 1760 1761 f = start_kernel_thread; 1762 p->thread.regs = NULL; /* no user register state */ 1763 clear_tsk_compat_task(p); 1764 } else { 1765 /* user thread */ 1766 struct pt_regs *childregs; 1767 1768 /* Create initial user return stack frame. */ 1769 sp -= STACK_USER_INT_FRAME_SIZE; 1770 *(unsigned long *)(sp + STACK_INT_FRAME_MARKER) = STACK_FRAME_REGS_MARKER; 1771 1772 childregs = (struct pt_regs *)(sp + STACK_INT_FRAME_REGS); 1773 1774 if (unlikely(args->fn)) { 1775 /* 1776 * A user space thread, but it first runs a kernel 1777 * thread, and then returns as though it had called 1778 * execve rather than fork, so user regs will be 1779 * filled in (e.g., by kernel_execve()). 1780 */ 1781 ((unsigned long *)sp)[0] = 0; 1782 memset(childregs, 0, sizeof(struct pt_regs)); 1783 #ifdef CONFIG_PPC64 1784 childregs->softe = IRQS_ENABLED; 1785 #endif 1786 f = ret_from_kernel_user_thread; 1787 } else { 1788 struct pt_regs *regs = current_pt_regs(); 1789 unsigned long clone_flags = args->flags; 1790 unsigned long usp = args->stack; 1791 1792 /* Copy registers */ 1793 *childregs = *regs; 1794 if (usp) 1795 childregs->gpr[1] = usp; 1796 ((unsigned long *)sp)[0] = childregs->gpr[1]; 1797 #ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG 1798 WARN_ON_ONCE(childregs->softe != IRQS_ENABLED); 1799 #endif 1800 if (clone_flags & CLONE_SETTLS) { 1801 unsigned long tls = args->tls; 1802 1803 if (!is_32bit_task()) 1804 childregs->gpr[13] = tls; 1805 else 1806 childregs->gpr[2] = tls; 1807 } 1808 1809 if (trap_is_scv(regs)) 1810 f = ret_from_fork_scv; 1811 else 1812 f = ret_from_fork; 1813 } 1814 1815 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1816 p->thread.regs = childregs; 1817 } 1818 1819 /* 1820 * The way this works is that at some point in the future 1821 * some task will call _switch to switch to the new task. 1822 * That will pop off the stack frame created below and start 1823 * the new task running at ret_from_fork. The new task will 1824 * do some house keeping and then return from the fork or clone 1825 * system call, using the stack frame created above. 1826 */ 1827 ((unsigned long *)sp)[STACK_FRAME_LR_SAVE] = (unsigned long)f; 1828 sp -= STACK_SWITCH_FRAME_SIZE; 1829 ((unsigned long *)sp)[0] = sp + STACK_SWITCH_FRAME_SIZE; 1830 kregs = (struct pt_regs *)(sp + STACK_SWITCH_FRAME_REGS); 1831 kregs->nip = ppc_function_entry(f); 1832 if (unlikely(args->fn)) { 1833 /* 1834 * Put kthread fn, arg parameters in non-volatile GPRs in the 1835 * switch frame so they are loaded by _switch before it returns 1836 * to ret_from_kernel_thread. 1837 */ 1838 kregs->gpr[14] = ppc_function_entry((void *)args->fn); 1839 kregs->gpr[15] = (unsigned long)args->fn_arg; 1840 } 1841 p->thread.ksp = sp; 1842 1843 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1844 for (i = 0; i < nr_wp_slots(); i++) 1845 p->thread.ptrace_bps[i] = NULL; 1846 #endif 1847 1848 #ifdef CONFIG_PPC_FPU_REGS 1849 p->thread.fp_save_area = NULL; 1850 #endif 1851 #ifdef CONFIG_ALTIVEC 1852 p->thread.vr_save_area = NULL; 1853 #endif 1854 #if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP) 1855 p->thread.kuap = KUAP_NONE; 1856 #endif 1857 #if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP) 1858 p->thread.pid = MMU_NO_CONTEXT; 1859 #endif 1860 1861 setup_ksp_vsid(p, sp); 1862 1863 #ifdef CONFIG_PPC64 1864 if (cpu_has_feature(CPU_FTR_DSCR)) { 1865 p->thread.dscr_inherit = current->thread.dscr_inherit; 1866 p->thread.dscr = mfspr(SPRN_DSCR); 1867 } 1868 1869 p->thread.tidr = 0; 1870 #endif 1871 return 0; 1872 } 1873 1874 void preload_new_slb_context(unsigned long start, unsigned long sp); 1875 1876 /* 1877 * Set up a thread for executing a new program 1878 */ 1879 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1880 { 1881 #ifdef CONFIG_PPC64 1882 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1883 1884 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled()) 1885 preload_new_slb_context(start, sp); 1886 #endif 1887 1888 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1889 /* 1890 * Clear any transactional state, we're exec()ing. The cause is 1891 * not important as there will never be a recheckpoint so it's not 1892 * user visible. 1893 */ 1894 if (MSR_TM_SUSPENDED(mfmsr())) 1895 tm_reclaim_current(0); 1896 #endif 1897 1898 memset(®s->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0])); 1899 regs->ctr = 0; 1900 regs->link = 0; 1901 regs->xer = 0; 1902 regs->ccr = 0; 1903 regs->gpr[1] = sp; 1904 1905 #ifdef CONFIG_PPC32 1906 regs->mq = 0; 1907 regs->nip = start; 1908 regs->msr = MSR_USER; 1909 #else 1910 if (!is_32bit_task()) { 1911 unsigned long entry; 1912 1913 if (is_elf2_task()) { 1914 /* Look ma, no function descriptors! */ 1915 entry = start; 1916 1917 /* 1918 * Ulrich says: 1919 * The latest iteration of the ABI requires that when 1920 * calling a function (at its global entry point), 1921 * the caller must ensure r12 holds the entry point 1922 * address (so that the function can quickly 1923 * establish addressability). 1924 */ 1925 regs->gpr[12] = start; 1926 /* Make sure that's restored on entry to userspace. */ 1927 set_thread_flag(TIF_RESTOREALL); 1928 } else { 1929 unsigned long toc; 1930 1931 /* start is a relocated pointer to the function 1932 * descriptor for the elf _start routine. The first 1933 * entry in the function descriptor is the entry 1934 * address of _start and the second entry is the TOC 1935 * value we need to use. 1936 */ 1937 __get_user(entry, (unsigned long __user *)start); 1938 __get_user(toc, (unsigned long __user *)start+1); 1939 1940 /* Check whether the e_entry function descriptor entries 1941 * need to be relocated before we can use them. 1942 */ 1943 if (load_addr != 0) { 1944 entry += load_addr; 1945 toc += load_addr; 1946 } 1947 regs->gpr[2] = toc; 1948 } 1949 regs_set_return_ip(regs, entry); 1950 regs_set_return_msr(regs, MSR_USER64); 1951 } else { 1952 regs->gpr[2] = 0; 1953 regs_set_return_ip(regs, start); 1954 regs_set_return_msr(regs, MSR_USER32); 1955 } 1956 1957 #endif 1958 #ifdef CONFIG_VSX 1959 current->thread.used_vsr = 0; 1960 #endif 1961 current->thread.load_slb = 0; 1962 current->thread.load_fp = 0; 1963 #ifdef CONFIG_PPC_FPU_REGS 1964 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1965 current->thread.fp_save_area = NULL; 1966 #endif 1967 #ifdef CONFIG_ALTIVEC 1968 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1969 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1970 current->thread.vr_save_area = NULL; 1971 current->thread.vrsave = 0; 1972 current->thread.used_vr = 0; 1973 current->thread.load_vec = 0; 1974 #endif /* CONFIG_ALTIVEC */ 1975 #ifdef CONFIG_SPE 1976 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1977 current->thread.acc = 0; 1978 current->thread.spefscr = 0; 1979 current->thread.used_spe = 0; 1980 #endif /* CONFIG_SPE */ 1981 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1982 current->thread.tm_tfhar = 0; 1983 current->thread.tm_texasr = 0; 1984 current->thread.tm_tfiar = 0; 1985 current->thread.load_tm = 0; 1986 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1987 } 1988 EXPORT_SYMBOL(start_thread); 1989 1990 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1991 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1992 1993 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1994 { 1995 struct pt_regs *regs = tsk->thread.regs; 1996 1997 /* This is a bit hairy. If we are an SPE enabled processor 1998 * (have embedded fp) we store the IEEE exception enable flags in 1999 * fpexc_mode. fpexc_mode is also used for setting FP exception 2000 * mode (asyn, precise, disabled) for 'Classic' FP. */ 2001 if (val & PR_FP_EXC_SW_ENABLE) { 2002 if (cpu_has_feature(CPU_FTR_SPE)) { 2003 /* 2004 * When the sticky exception bits are set 2005 * directly by userspace, it must call prctl 2006 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 2007 * in the existing prctl settings) or 2008 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 2009 * the bits being set). <fenv.h> functions 2010 * saving and restoring the whole 2011 * floating-point environment need to do so 2012 * anyway to restore the prctl settings from 2013 * the saved environment. 2014 */ 2015 #ifdef CONFIG_SPE 2016 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 2017 tsk->thread.fpexc_mode = val & 2018 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 2019 #endif 2020 return 0; 2021 } else { 2022 return -EINVAL; 2023 } 2024 } 2025 2026 /* on a CONFIG_SPE this does not hurt us. The bits that 2027 * __pack_fe01 use do not overlap with bits used for 2028 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 2029 * on CONFIG_SPE implementations are reserved so writing to 2030 * them does not change anything */ 2031 if (val > PR_FP_EXC_PRECISE) 2032 return -EINVAL; 2033 tsk->thread.fpexc_mode = __pack_fe01(val); 2034 if (regs != NULL && (regs->msr & MSR_FP) != 0) { 2035 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1)) 2036 | tsk->thread.fpexc_mode); 2037 } 2038 return 0; 2039 } 2040 2041 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 2042 { 2043 unsigned int val = 0; 2044 2045 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) { 2046 if (cpu_has_feature(CPU_FTR_SPE)) { 2047 /* 2048 * When the sticky exception bits are set 2049 * directly by userspace, it must call prctl 2050 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 2051 * in the existing prctl settings) or 2052 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 2053 * the bits being set). <fenv.h> functions 2054 * saving and restoring the whole 2055 * floating-point environment need to do so 2056 * anyway to restore the prctl settings from 2057 * the saved environment. 2058 */ 2059 #ifdef CONFIG_SPE 2060 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 2061 val = tsk->thread.fpexc_mode; 2062 #endif 2063 } else 2064 return -EINVAL; 2065 } else { 2066 val = __unpack_fe01(tsk->thread.fpexc_mode); 2067 } 2068 return put_user(val, (unsigned int __user *) adr); 2069 } 2070 2071 int set_endian(struct task_struct *tsk, unsigned int val) 2072 { 2073 struct pt_regs *regs = tsk->thread.regs; 2074 2075 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 2076 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 2077 return -EINVAL; 2078 2079 if (regs == NULL) 2080 return -EINVAL; 2081 2082 if (val == PR_ENDIAN_BIG) 2083 regs_set_return_msr(regs, regs->msr & ~MSR_LE); 2084 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 2085 regs_set_return_msr(regs, regs->msr | MSR_LE); 2086 else 2087 return -EINVAL; 2088 2089 return 0; 2090 } 2091 2092 int get_endian(struct task_struct *tsk, unsigned long adr) 2093 { 2094 struct pt_regs *regs = tsk->thread.regs; 2095 unsigned int val; 2096 2097 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 2098 !cpu_has_feature(CPU_FTR_REAL_LE)) 2099 return -EINVAL; 2100 2101 if (regs == NULL) 2102 return -EINVAL; 2103 2104 if (regs->msr & MSR_LE) { 2105 if (cpu_has_feature(CPU_FTR_REAL_LE)) 2106 val = PR_ENDIAN_LITTLE; 2107 else 2108 val = PR_ENDIAN_PPC_LITTLE; 2109 } else 2110 val = PR_ENDIAN_BIG; 2111 2112 return put_user(val, (unsigned int __user *)adr); 2113 } 2114 2115 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 2116 { 2117 tsk->thread.align_ctl = val; 2118 return 0; 2119 } 2120 2121 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 2122 { 2123 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 2124 } 2125 2126 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 2127 unsigned long nbytes) 2128 { 2129 unsigned long stack_page; 2130 unsigned long cpu = task_cpu(p); 2131 2132 if (!hardirq_ctx[cpu] || !softirq_ctx[cpu]) 2133 return 0; 2134 2135 stack_page = (unsigned long)hardirq_ctx[cpu]; 2136 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2137 return 1; 2138 2139 stack_page = (unsigned long)softirq_ctx[cpu]; 2140 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2141 return 1; 2142 2143 return 0; 2144 } 2145 2146 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p, 2147 unsigned long nbytes) 2148 { 2149 #ifdef CONFIG_PPC64 2150 unsigned long stack_page; 2151 unsigned long cpu = task_cpu(p); 2152 2153 if (!paca_ptrs) 2154 return 0; 2155 2156 if (!paca_ptrs[cpu]->emergency_sp) 2157 return 0; 2158 2159 # ifdef CONFIG_PPC_BOOK3S_64 2160 if (!paca_ptrs[cpu]->nmi_emergency_sp || !paca_ptrs[cpu]->mc_emergency_sp) 2161 return 0; 2162 #endif 2163 2164 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE; 2165 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2166 return 1; 2167 2168 # ifdef CONFIG_PPC_BOOK3S_64 2169 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE; 2170 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2171 return 1; 2172 2173 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE; 2174 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2175 return 1; 2176 # endif 2177 #endif 2178 2179 return 0; 2180 } 2181 2182 /* 2183 * validate the stack frame of a particular minimum size, used for when we are 2184 * looking at a certain object in the stack beyond the minimum. 2185 */ 2186 int validate_sp_size(unsigned long sp, struct task_struct *p, 2187 unsigned long nbytes) 2188 { 2189 unsigned long stack_page = (unsigned long)task_stack_page(p); 2190 2191 if (sp < THREAD_SIZE) 2192 return 0; 2193 2194 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2195 return 1; 2196 2197 if (valid_irq_stack(sp, p, nbytes)) 2198 return 1; 2199 2200 return valid_emergency_stack(sp, p, nbytes); 2201 } 2202 2203 int validate_sp(unsigned long sp, struct task_struct *p) 2204 { 2205 return validate_sp_size(sp, p, STACK_FRAME_MIN_SIZE); 2206 } 2207 2208 static unsigned long ___get_wchan(struct task_struct *p) 2209 { 2210 unsigned long ip, sp; 2211 int count = 0; 2212 2213 sp = p->thread.ksp; 2214 if (!validate_sp(sp, p)) 2215 return 0; 2216 2217 do { 2218 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp); 2219 if (!validate_sp(sp, p) || task_is_running(p)) 2220 return 0; 2221 if (count > 0) { 2222 ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]); 2223 if (!in_sched_functions(ip)) 2224 return ip; 2225 } 2226 } while (count++ < 16); 2227 return 0; 2228 } 2229 2230 unsigned long __get_wchan(struct task_struct *p) 2231 { 2232 unsigned long ret; 2233 2234 if (!try_get_task_stack(p)) 2235 return 0; 2236 2237 ret = ___get_wchan(p); 2238 2239 put_task_stack(p); 2240 2241 return ret; 2242 } 2243 2244 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2245 2246 void __no_sanitize_address show_stack(struct task_struct *tsk, 2247 unsigned long *stack, 2248 const char *loglvl) 2249 { 2250 unsigned long sp, ip, lr, newsp; 2251 int count = 0; 2252 int firstframe = 1; 2253 unsigned long ret_addr; 2254 int ftrace_idx = 0; 2255 2256 if (tsk == NULL) 2257 tsk = current; 2258 2259 if (!try_get_task_stack(tsk)) 2260 return; 2261 2262 sp = (unsigned long) stack; 2263 if (sp == 0) { 2264 if (tsk == current) 2265 sp = current_stack_frame(); 2266 else 2267 sp = tsk->thread.ksp; 2268 } 2269 2270 lr = 0; 2271 printk("%sCall Trace:\n", loglvl); 2272 do { 2273 if (!validate_sp(sp, tsk)) 2274 break; 2275 2276 stack = (unsigned long *) sp; 2277 newsp = stack[0]; 2278 ip = stack[STACK_FRAME_LR_SAVE]; 2279 if (!firstframe || ip != lr) { 2280 printk("%s["REG"] ["REG"] %pS", 2281 loglvl, sp, ip, (void *)ip); 2282 ret_addr = ftrace_graph_ret_addr(current, 2283 &ftrace_idx, ip, stack); 2284 if (ret_addr != ip) 2285 pr_cont(" (%pS)", (void *)ret_addr); 2286 if (firstframe) 2287 pr_cont(" (unreliable)"); 2288 pr_cont("\n"); 2289 } 2290 firstframe = 0; 2291 2292 /* 2293 * See if this is an exception frame. 2294 * We look for the "regs" marker in the current frame. 2295 * 2296 * STACK_SWITCH_FRAME_SIZE being the smallest frame that 2297 * could hold a pt_regs, if that does not fit then it can't 2298 * have regs. 2299 */ 2300 if (validate_sp_size(sp, tsk, STACK_SWITCH_FRAME_SIZE) 2301 && stack[STACK_INT_FRAME_MARKER_LONGS] == STACK_FRAME_REGS_MARKER) { 2302 struct pt_regs *regs = (struct pt_regs *) 2303 (sp + STACK_INT_FRAME_REGS); 2304 2305 lr = regs->link; 2306 printk("%s--- interrupt: %lx at %pS\n", 2307 loglvl, regs->trap, (void *)regs->nip); 2308 __show_regs(regs); 2309 printk("%s--- interrupt: %lx\n", 2310 loglvl, regs->trap); 2311 2312 firstframe = 1; 2313 } 2314 2315 sp = newsp; 2316 } while (count++ < kstack_depth_to_print); 2317 2318 put_task_stack(tsk); 2319 } 2320 2321 #ifdef CONFIG_PPC64 2322 /* Called with hard IRQs off */ 2323 void notrace __ppc64_runlatch_on(void) 2324 { 2325 struct thread_info *ti = current_thread_info(); 2326 2327 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2328 /* 2329 * Least significant bit (RUN) is the only writable bit of 2330 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2331 * earliest ISA where this is the case, but it's convenient. 2332 */ 2333 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2334 } else { 2335 unsigned long ctrl; 2336 2337 /* 2338 * Some architectures (e.g., Cell) have writable fields other 2339 * than RUN, so do the read-modify-write. 2340 */ 2341 ctrl = mfspr(SPRN_CTRLF); 2342 ctrl |= CTRL_RUNLATCH; 2343 mtspr(SPRN_CTRLT, ctrl); 2344 } 2345 2346 ti->local_flags |= _TLF_RUNLATCH; 2347 } 2348 2349 /* Called with hard IRQs off */ 2350 void notrace __ppc64_runlatch_off(void) 2351 { 2352 struct thread_info *ti = current_thread_info(); 2353 2354 ti->local_flags &= ~_TLF_RUNLATCH; 2355 2356 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2357 mtspr(SPRN_CTRLT, 0); 2358 } else { 2359 unsigned long ctrl; 2360 2361 ctrl = mfspr(SPRN_CTRLF); 2362 ctrl &= ~CTRL_RUNLATCH; 2363 mtspr(SPRN_CTRLT, ctrl); 2364 } 2365 } 2366 #endif /* CONFIG_PPC64 */ 2367 2368 unsigned long arch_align_stack(unsigned long sp) 2369 { 2370 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2371 sp -= get_random_u32_below(PAGE_SIZE); 2372 return sp & ~0xf; 2373 } 2374